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Abstract. We study the stability of a stationary solution for the Lugiato-Lefever equa-
tion with the periodic boundary condition in one space dimension, which is a damped and
driven nonlinear Schrödinger equation introduced to model the optical cavity. In this paper,
we prove the Strichartz estimates for the linear damped Schrödinger equation with potential
and external forcing and investigate the stability of certain stationary solutions under the initial
perturbation within the framework of L2.

1. Introduction and main theorem. We consider the stability of a stationary solu-
tion for the nonlinear Schrödinger equation with damping and spatially homogeneous forcing
terms:

∂

∂t
A = −(1 + iθ)A + ib2 ∂2

∂x2 A + i|A|2A + F ,(1)

t > 0, x ∈ T = R/2πZ .

Here, A denotes the slowly varying envelope of the electric field, θ > 0 denotes the de-
tuning parameter, and b > 0 denotes the diffraction parameter. Let F > 0 be the spatially
homogeneous input field. In [12], Lugiato and Lefever present the equation (1) to model the
so-called cavity soliton in the ring or the Fabry-Pérot cavity oscillator (see also [1], [2], [3],
[9]). The existence and the stability of spatially nonhomogeneous stationary solutions for (1)
have been studied by the authors [13]. In this paper, we prove the Strichartz estimate for the
linear Schrödinger equation with potential and external forcing and investigate the stability of
certain stationary solutions for (1) given in [13] under the L2 perturbation. We decompose the
solution A(t) of (1) into effective dynamical components, following Buslaev and Perel’man
[6] (see also Soffer and Weinstein [15]) and show the a priori estimates of those effective
dynamical components, which ensure the asymptotic stability of stationary solution for (1).
There are many papers on the asymptotic stability of a family of equilibria in the setting of
nonlinear parabolic equation (see, e.g., Exercise 6 in Henry [11, Section 5.1]). In the case
of nonlinear parabolic equation, the smoothing property and the fractional power of infini-
tesimal generator for the holomorphic semigroup are useful. But, in the case of nonlinear
Schrödinger equation, the Strichartz estimate plays a crucial role, which enables us to treat
the rougher perturbation than the H 1 perturbation in the previous papers (see, e.g., Ghidaglia
[10], X.-M. Wang [16], and Miyaji, Ohnishi and Tsutsumi [13]).
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THEOREM 1.1. Assume D is a stationary solution of (1) such that the spectrum of
the linearized operator around D for the stationary equation associated with (1) lies in {z ∈
C ; Rez ≤ −α}∪{0} for some α > 0 and the eigenspace corresponding to the zero eigenvalue
is a one dimensional subspace in L2 spanned by ∂xD. Let A0 ∈ L2 and let ε > 0. For c ∈ R,
we put

Dc(x) = D(x + c) .

Then, there exist δ > 0 and 0 ≤ c0 < 2π such that if the initial data A0 satisfies

‖A0 − D‖L2 < δ ,

we have

sup
t≥0

[ inf
0≤c<2π

‖A(t) − Dc‖L2] < ε ,

‖A(t) − Dc0‖L2 → 0 (t → ∞) ,

where A is a solution of (1) with A(0) = A0.

REMARK 1.1. (i) It is known that there exists a spatially nonhomogeneous station-
ary solution of (1) satisfying all the assumptions in Theorem 1.1 (see Theorems 2.1 and 2.2
in Section 2).

(ii) If we consider the equation (1) and the initial perturbation within the framework
of H 1, it would be slightly easier to prove Theorem 1.1. Indeed, H 1 ⊂ L∞ in the one
dimensional case and the a priori estimates in H 1 needed for the proof of Theorem 1.1 follows
from the energy estimates only. We note that Theorem 1.1 can cover the L2 perturbation,
which belongs to a bigger class than H 1.

The present paper is organized as follows. In Section 2, we summarize results on the
existence of a stationary solution and the spectral analysis of the linearized operator, which
are mainly proved by the authors [13]. In Section 3, we show the Strichartz estimate of the
linear Schrödinger equation with complex potential and shift terms, which plays a crucial role
in the proof of Theorem 1.1. Finally, in Section 4, we give a sketch of the proof of Theorem
1.1.

2. Existence of a stationary solution and linear stability. In this section, we sum-
marize the results on the existence of a stationary solution and the spectrum of the linearized
operator, which have been obtained by the authors [13]. Let the spatially homogeneous sta-
tionary solutions AS be defined as follows.

(2) AS = F

1 + i(θ − α)
, α = |AS |2 ,

where α is uniquely determined by the condition

(3) F 2 = α{1 + (α − θ)2} , θ <
√

3 .

We now consider the stationary Lugiato-Lefever Equation and change the unknown func-
tion A to B as follows. Set A = AS(1 + B). Then, B satisfies
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(4) 0 = −(1 + iθ)B + ib2∂2
xB + iα(2B + B̄ + B2 + 2|B|2 + |B|2B) , x ∈ T .

REMARK 2.1. Instead of F , we regard α as a bifurcation parameter. In that case, AS

and F are determined for given α through (2), (3).

We first state the existence theorem of spatially nonhomogeneous stationary solutions
which bifurcate from the spatially homogeneous stationary solution AS .

THEOREM 2.1. There exist b > 0,
√

3 > θ > 0, η > 0, n ∈ N, B0 ∈ C such that
the equation (4) has a family of solutions {(α(s), B(s)) ∈ R × H 2 ; −η < s < η} satisfying
the following conditions

B(s) = sB0 cos(2πnx) + r(s) , s ∈ (−η, η) ,

‖r(s)‖H 2 = o(s) (s → 0) ,

r(s) ⊥ span{cos(2πnx)} ,

r(·, x) = r(·,−x) , x ∈ T ,

α(s) = 1 − 30θ − 41

9(2 − θ)2 s2 + o(s2) (s → 0) .

For the proof of Theorem 2.1, see Theorem 3.1 in [13, pp. 2071, 2072].
We next consider the spectrum of the linearized operator and the linear stability of sta-

tionary solutions given by Theorem 2.1. We set

AS(1 + B(s)) = w(s) + iz(s) , s ∈ (−η, η) ,

where w and z are real-valued functions.
Let L be the linearized operator around (w, z) for (1):

(5) L =
( −1 − 2wz −�b,θ − 2V+ + V−

�b,θ + 2V+ + V− −1 + 2wz

)
,

where

�b,θ = b2∂2
x − θ ,

V± = w2 ± z2 .

THEOREM 2.2. Assume 0 < θ < 41/30. Then, there exist η′ > 0 and γ ∈ C((−η′,
η′); R) such that γ (s) > 0 (0 < |s| < η′), γ (0) = 0 and

σ(L) ⊂ {z ∈ C ; Re z ≤ −γ } ∪ {0} (0 < |s| < η′) .

In addition, when η′ > |s| > 0, the eigenspace belonging to the zero eigenvalue of L consists
of the derivative of the stationary solution (w, z), which is an odd function.

For the proof of Theorem 2.2, see [13, pp. 2071, 2072].

REMARK 2.2. We can completely analyze the spectrum of the linearized operator near
the bifurcation point. Because at the bifurcation point, the linearized operator around the
homogeneous stationary solution is reduced to the Sturm-Liouville operator with constant
coefficients.
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REMARK 2.3. Theorem 2.2 implies the linear stability of stationary solutions given
by Theorem 2.1 for θ < 41/30 within the framework of even functions (in fact, the nonlinear
stability is proved in [13]). In the ODE case, it is well known that when all eigenvalues of
the linearized operator have negative real part except for the zero eigenvalue and every orbit
starting from a neighborhood of stationary solution has a non-empty ω-limit set, the stationary
solution is nonlinearly stable (see, e.g., [4, Proposition 1.1]). In the nonlinear PDE case,
the situations are more complicated, but suitable a priori estimates often ensure the similar
conclusion as the ODE case.

REMARK 2.4. It can be proved that when θ > 41/30, the stationary solution given by
Theorem 2.1 is nonlinearly unstable (see [13]).

3. Strichartz estimate. In this section, we prove the global Strichartz estimate in
time for the Schrödinger equation on one-dimensional torus with linear time-independent
potential and external forcing.

i∂tu = −∂2
xu + V u + f , t > 0 , x ∈ T ,(6)

u(0, x) = u0(x) .(7)

We assume the following two hypotheses:
(A1) V is a complex-valued function in L∞(T),
(A2) There exists γ > 0 such that

σ(i(∂2
x − V )) ⊂ {z ∈ C ; Re z ≤ −γ } .

REMARK 3.1. (i) We note that (A2) is equivalent to the condition that there exists
γ > 0 such that

Re(−i(∂2
x − V )v, v) ≥ γ ‖v‖2

L2 , v ∈ H 1 .

This implies that the potential V has a damping effect, which yields the global Strichartz
estimate in time for (6).

(ii) The linearized equation of (1) has the form : i∂tu = −∂2
xu + V1u + V2ū. This

includes the conjugate linear term V2ū. But the Strichartz estimate of this equation can be
proved in the same way, if we replace (A2) by the condition that there exists γ > 0 such that

Re(−i(∂2
x − V1)v + iV2v̄, v) ≥ γ ‖v‖2

L2 , v ∈ H 1 .

We set

U0(t) = eit∂2
x , U(t) = eit (∂2

x−V ) , R+ = (0,∞) .

We first give two lemmas, which are useful for the proof of the Strichartz estimate of (6), (7).
We begin with the Christ-Kiselev lemma (see [8, Theorem 1.2]).

LEMMA 3.1. Let X, Y be Banach spaces and let T > 0. Assume K(t, s) is continuous
from [0, T ] × [0, T ] to B(X, Y ) and that 1 ≤ p < q ≤ ∞. We put

Sf (t) =
∫ T

0
K(t, s)f (s) ds ,
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S̃f (t) =
∫ t

0
K(t, s)f (s) ds .

Assume that

‖Sf ‖Lq((0,T );Y ) ≤ C‖f ‖Lp((0,T );X) .

Then, we have

‖S̃f ‖Lq((0,T );Y ) ≤ C̃‖f ‖Lp((0,T );X) .

For the proof of Lemma 3.1, see [14, Lemma 3.1].
The following lemma is concerned with the Strichartz estimate of (6), (7) without poten-

tial (see [5, Propositions 2.1, 2.33]), which is traced back to Zygmund [17].

LEMMA 3.2. We have

‖U0(·)u0‖L4((0,2π)×T) ≤ C‖u0‖L2(T) ,∥∥∥∫ t

t0

U0(t − s)f (s) ds

∥∥∥
L4((t0,t0+2π)×T)

≤ C‖f ‖L4/3((t0,t0+2π)×T) ,

where t0 is an arbitrary real number.

For the convenience of the reader, we present the proof of Lemma 3.2.

PROOF. We show the first inequality. By the Fourier expansion, we have

u0 = 1√
2π

∞∑
m=−∞

û0(m)eimx ,

û0(m) = 1√
2π

∫ 2π

0
u0(x)e−imx dx .

Then, since we have

U0(t)u0 = 1√
2π

∞∑
m=−∞

û0(m)e−i(m2t−mx),

a simple computation yields∫
T

∫ 2π

0

∣∣U0(t)u0
∣∣4

dtdx

= 1

(2π)2
×

∫
T

∫ 2π

0

∑
m1,m2 ,
m3,m4

û0(m1)û0(m2)û0(m3)û0(m4)(8)

×e−i(m2
1+m2

2−m2
3−m2

4)t ei(m1+m2−m3−m4)x dtdx .

On the right-hand side of (8), the integrals vanish unless

m2
1 + m2

2 − m2
3 − m2

4 = 0 , m1 + m2 − m3 − m4 = 0

⇐⇒
{
m1 = m3 ,

m2 = m4 ,
or

{
m1 = m4 ,

m2 = m3 .
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Thus, the right-hand side of (8) is equal to:

2
(∑

m1

|û0(m1)|2
)(∑

m2

|û0(m2)|2
)

= 2‖u0‖4
L2(T)

.

We next show the second inequality. We put

G =
∫ t0+2π

t0

U0(t − s)f (s) ds .

The first inequality proved above yields

(9) ‖G‖L4((t0,t0+2π)×T) ≤ C

∥∥∥∥
∫ t0+2π

t0

U0(−s)f (s) ds

∥∥∥∥
L2(T)

.

On the other hand,∥∥∥∥
∫ t0+2π

t0

U0(−s)f (s) ds

∥∥∥∥2

L2(T)

=
〈
f (s),

∫ t0+2π

t0

U0(s − s′)f (s′) ds′〉

≤ C‖f ‖L4/3((t0,t0+2π)×T)

∥∥∥∫ t0+2π

t0

U0(s − s′) f (s′)ds′
∥∥∥

L4((t0,t0+2π)×T)
,

where 〈·, ·〉 denotes the inner product of L2((t0, t0 + 2π) × T ). Combining this inequality
and (9), we have ∥∥G

∥∥
L4((t0,t0+2π)×T)

≤ C‖f ‖L4/3((t0,t0+2π)×T) .

This and Lemma 3.1 imply the second inequality. �

We first consider the Strichartz estimate for (6), (7) without external forcing term.

THEOREM 3.3. Assume (A1) and (A2). Let 0 < γ ′ < γ . Then, we have

‖eγ ′tU(t)u0‖L∞(R+;L2(T)) ≤ C‖u0‖L2(T) ,

‖eγ ′tU(t)u0‖L4(R+×T) ≤ C‖u0‖L2(T) .

PROOF OF THEOREM 3.3. The first inequality follows immediately from (A2) and the
standard L2 inequality. For the proof of the second inequality, we consider the Cauchy prob-
lem of (6) with initial data prescribed at t = t0, where t0 ≥ 0. By Duhamel’s principle,

u(t) = U0(t − t0)u(t0) − iF (t) , t ≥ t0 ,

F (t) =
∫ t

t0

U0(t − s)V u(s)ds .

If we can prove

(10) ‖F‖L4((t0,t0+2π)×T) ≤ C‖u‖L∞((t0,t0+2π);L2(T)) ,

then, for any n ∈ N ∪ {0}, we have by Lemma 3.2

(11) ‖u‖L4((2πn,2π(n+1))×T) ≤ C‖u(2πn)‖L2(T) + C‖u‖L∞((2πn,2π(n+1));L2(T)) .
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On the other hand, for 0 < γ ′ < γ , (A2) yields

‖U(t)u0‖L2(T) ≤ C exp
(
−γ + γ ′

2
t
)
‖u0‖L2(T), t ≥ 0 .

We use this inequality to bound the two terms on the right-hand side of (11) by

C exp(−π(γ + γ ′)n)‖u0‖L2(T) .

Accordingly, we conclude that for 0 < γ ′ < γ ,

‖eγ ′tu‖L4(R+×T) ≤
∞∑

n=0

e2πγ ′n‖u‖L4((2πn,2π(n+1))×T)

≤ C

∞∑
n=0

e−π(γ−γ ′)n‖u0‖L2(T)

≤ C‖u0‖L2(T) ,

which implies Theorem 3.3.
It remains only to prove the estimate (10). We easily see by Lemma 3.2 that∥∥∥∥

∫ t0+2π

t0

U0(t − s)f (s) ds

∥∥∥∥
L4((t0,t0+2π)×T)

=
∥∥∥∥U0(t)

∫ t0+2π

t0

U0(−s)f (s) ds

∥∥∥∥
L4((t0,t0+2π)×T)

≤ C

∥∥∥∥
∫ t0+2π

t0

U0(−s)f (s) ds

∥∥∥∥
L2(T)

≤ C‖f ‖L1((t0,t0+2π);L2(T)) .

Lemma 3.1 ensures that the integral operator∫ t

t0

U0(t − s)f (s) ds

has the same estimate as above. Therefore, we obtain

‖F‖L4((t0,t0+2π)×T) ≤ C‖V u‖L1((t0,t0+2π);L2(T))

≤ C‖u‖L∞((t0,t0+2π);L2(T)) ,

which yields inequality (10). �

We next consider the Strichartz estimate for (6), (7) with u0 = 0.

THEOREM 3.4. Assume (A1) and (A2). Let u be the solution of (6), (7) with u0 = 0.
Then, for any γ ′ with 0 < γ ′ < γ , we have

‖eγ ′tu‖L∞(R+;L2(T)) ≤ C‖eγ tf ‖L4/3(R+×T) ,

‖eγ ′tu‖L4(R+×T) ≤ C‖eγ tf ‖L4/3(R+×T) .
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REMARK 3.2. It seems likely that eγ t can be replaced by eγ ′t on the right-hand sides
of the two inequalities in Theorem 3.4.

PROOF OF THEOREM 3.4. We begin with the proof of the second inequality. We follow
the same strategy as in the case of the homogeneous Schrödinger equation. We take the L2

inner product of (6) and e(γ ′+γ )tu and integrate the resulting equation in t to have by (A2)

(12)
∥∥e(γ ′+γ )t/2u(t)

∥∥2
L2(T)

≤ C‖eγ ·f ‖L4/3((0,t )×T) × ‖eγ ′·u‖L4((0,t )×T) , t > 0 .

We note that Duhamel’s principle yields

u(t) = U(t − t0)u(t0) + G(t) ,(13)

G(t) = −i

∫ t

t0

U(t − s)f (s) ds

for any t0 ≥ 0. If we can prove

(14) ‖G‖L4((t0,t0+2π)×T) ≤ C‖f ‖L4/3((t0,t0+2π)×T) ,

then, for any n ∈ N ∪ {0}, we have by Theorem 3.3

(15) ‖u‖L4((2πn,2π(n+1))×T) ≤ C‖u(2πn)‖L2(T) + C‖f ‖L4/3((2πn,2π(n+1))×T) .

Inequalities (12) and (15) yield the following estimate

‖u‖L4((2πn,2π(n+1))×T) ≤ Ce−π(γ ′+γ )n‖eγ tf ‖1/2
L4/3((0,2πn)×T)

‖eγ ′tu‖1/2
L4((0,2πn)×T)

+C‖f ‖L4/3((2πn,2π(n+1))×T) .

Accordingly, we conclude that for 0 < γ ′ < γ ,

‖eγ ′t u‖L4(R+×T) ≤
∞∑

n=0

e2πγ ′(n+1)‖u‖L4((2πn,2π(n+1))×T)

≤ C

∞∑
n=0

e−π(γ−γ ′)n[‖eγ tf ‖1/2
L4/3((0,2πn)×T)

‖eγ ′tu‖1/2
L4((0,2πn)×T)

+‖e(γ ′+γ )t/2f ‖L4/3((2πn,2π(n+1))×T)

]
≤ C‖eγ tf ‖L4/3(R+×T) + 1

2
‖eγ ′tu‖L4(R+×T) .

This shows Theorem 3.4.
It remains only to prove (14). We first note that G satisfies the following conditions

i∂tG = −∂2
xG + V G + f , t > t0, x ∈ T ,(16)

G(t0, x) = 0 , x ∈ T .

Therefore, Duhamel’s principle yields

G(t) = −iG1(t) − iG2(t) , t ≥ t0 ,

G1(t) =
∫ t

t0

U0(t − s)V G(s) ds , G2(t) =
∫ t

t0

U0(t − s)f (s) ds .
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Furthermore, by (16) and (A2), we have

(17) ‖G(t)‖2
L2(T)

≤ C‖f ‖L4/3((t0,t )×T)‖G‖L4((t0,t )×T) , t > t0 .

On the other hand, by Lemma 3.2, we have

‖G‖L4((t0,t0+2π)×T) ≤ C[‖G‖L∞((t0,t0+2π);L2(T)) + ‖f ‖L4/3((t0,t0+2π);L2(T))] .

By combining this inequality and (17), we obtain (14).
The first inequality follows from (17) and the second inequality was proved above. �

REMARK 3.3. We note that Theorems 3.3 and 3.4 also hold for the linear Schrödinger
equation with shift term:

i∂tu = −∂2
xu − iċ(t)∂xu + V u + f , t > 0 , x ∈ T ,(18)

u(0, x) = u0(x) ,

where c(t) is a continuously differentiable real-valued function. In fact, if we put

U1(t, s) = ei[(t−s)∂2
x−(c(t)−c(s))∂x] (t ≥ s ≥ 0) ,

then we have Lemma 3.2 without any change for U1(t, 0). Because the shift term −iċ(t)∂xu

only leads to the spatial translation of solutions. The norms appearing in Lemma 3.2 are
invariant under the spatial translation and so the spatial translation caused by the shift term
has no influence on the Strichartz estimate for the Schrödinger equation:

i∂tu = −∂2
xu − iċ(t)∂xu + f , t > 0 , x ∈ T .

Furthermore, the shift term −iċ(t)∂xu has no influence on the exponential decay in L2(T) of
solution, either. This enables us to prove Theorems 3.3 and 3.4.

4. Proof of Theorem 1.1. In this section, we describe the proof of Theorem 1.1.
Let L be the linearized operator around D(x) defined as in (5). We denote the subspace
span{∂xD(x))} and its complementary subspace in L2(T) by L2

0 and L2− , respectively. We
choose L2− so that L2− is an invariant subspace of L. Let ∂̃xD denote the normalization in L2

of ∂xD. Let Q and P be the projections from L2(T) to L2− and from L2(T) to L2
0, respectively.

The projections Q and P are explicitly expressed as follows.

Qf = f − (f,E)∂̃xD , Pf = (f,E)∂̃xD ,

where E is the normalized eigenfunction belonging to the zero eigenvalue of the adjoint op-
erator of L. We choose 2π > c1 ≥ 0 such that

‖A0(· + c1) − D(·)‖L2 = min
2π>c≥0

‖A0(· + c) − D(·)‖L2 .

Without loss of generality, we may change the initial data A0(x) to A0(x + c1), since the
equation (1) is invariant under the spatial translation. We denote A0(x + c1) by A0(x) again
and we have

(19) Re(A0, ∂xD) = 0 .
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It is expedient to work with the real and the imaginary parts of complex-valued functions and
to regard the space L2(T) as a real Hilbert space with inner product Re(·, ·). In that case, (19)
implies that A0 is orthogonal to the subspace spanned by ∂xD. Let w and z denote the real
and the imaginary parts of the stationary solution D(x), respectively. We now decompose the
solution A into effective dynamical components, following Buslaev and Perel’man [6] and
Soffer and Weinstein [15] (for the case of the nonlinear parabolic equation, see Exercise 6 in
Henry [11, Section 5.1]). For the solution A of (1), we make an ansatz as follows.

(20) A(t, x) = D(x + c(t)) + u(t, x + c(t)) + iv(t, x + c(t)) , u, v ∈ L2− ,

where u(t, x) and v(t, x) are real-valued functions, and c(t) is a continuously differentiable
function with c(0) = 0 to be determined later. If we insert the ansatz (20) into (1) and remove
the spatial translation c(t) by the change of variables, then we rewrite the equation (1) as in
the following form.

∂tT − LT + ċ(t)Q∂xT = QF(x, T ) , t > 0 , x ∈ T ,(21)

ċ(t) = (F(x, T ),E)

a − (T , ∂xE)
, t > 0 , a = (∂xD,E) ,(22)

T (0, x) = T0(x) (x ∈ T) , c(0) = 0 ,(23)

where

T (t, x) =
(

u(t, x)

v(t, x)

)
∈ L2− , T0(x) =

(
Re(A0(x) − D(x))

Im(A0(x) − D(x))

)
,

F ∈ C2(T × R2; R4) ,

|F(x, T1) − F(x, T2)| ≤ C(|T1| + |T2| + |T1|2 + |T2|2)|T1 − T2|
(x ∈ T , T1, T2 ∈ R2) ,

|∂T F(x, T1) − ∂T F(x, T2)| ≤ C(1 + |T1| + |T2|)|T1 − T2|
(x ∈ T , T1, T2 ∈ R2) .

Here, |T | = √
u2 + v2 for T = (u, v) ∈ R2. Let Uc(t, s) (t ≥ s ≥ 0) denote the evolution

operator associated with the infinitesimal generator L− ċ(t)∂x for each c(t). We note that the
Strichartz estimates such as Theorems 3.3 and 3.4 are applicable to the first and the second
components of the solution T of (21) (see Remark 3.1 (ii) and Remark 3.3). In fact, we have

ċ(t)Q∂xT = ċ(t)∂xT − ċ(t)P∂xT ,

and the term ċ(t)P∂xT can be regarded as a small regular perturbation as long as ċ(t) is small.
Furthermore, we note that the unique global existence of the solution A(t) on the time interval
(−η,∞) for the Cauchy problem of (1) with initial data in L2(T) follows from the result by
Bourgain [5], where η is a small positive constant depending only on the initial data. For a
given solution A(t), by (20), we set

T (t, x) = A(t, x − c(t)) − D(x) .
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We insert T into (22) to have by (23)

(24) c(t) =
∫ t

0

(F(x, T ),E)

a − (T , ∂xE)
ds, t > −η .

For a short time, we have the solution c(t) of (24) by the implicit function theorem as long as
T is small. Because a direct computation yields

∂

∂c

(
c −

∫ t

0

(F(x, T ),E)

a − (T , ∂xE)
ds

)

= 1 −
∫ t

0

(∂T F(x, T )∂xA(s, x − c),E)

a − (T , ∂xE)
ds

+
∫ t

0

(∂xA(s, x − c), ∂xE)(F(x, T ),E)

(a − (T , ∂xE))2 ds

= 1 +
∫ t

0

(F(x, T ), ∂xE) + (∂xF(x, T ),E) − (∂xD,E)

a − (T , ∂xE)
ds

−
∫ t

0

(T , ∂2
xE)(F(x, T ),E) − (∂xD, ∂xE)

(a − (T , ∂xE))2 ds .

The right-hand side of this formula does not vanish at (t, c) = (0, 0). We note that the right-
hand side of this formula makes sense for |t| < τ , provided that for some τ > 0, T is in
L∞((−τ, τ ); L2(T)) ∩ L4((−τ, τ ) × T) and T is small in L∞((−τ, τ ); L2(T)). These facts
and the implicit function theorem imply the existence of c(t) for a short time. From the above
construction of the function c(t), it automatically follows that T (t) must satisfy (21). Indeed,
the L2

0-component of T satisfies

d

dt
(PT ) = 0 , t > 0 , (PT )(0) = 0 ,

which implies that T (t) ∈ L2− for each t > 0. Therefore, if we have proved the a priori
estimates of (T (t), c(t)), then we obtain Theorem 1.1.

By the L2 estimate, Theorem 3.3 and Remark 3.3, for some 0 < γ ′ < γ , we have∥∥eγ ′t (Uc(t, 0)T0)
∥∥

L∞(R+;L2)
≤ C‖T0‖L2 ,∥∥eγ ′t (Uc(t, 0)T0)

∥∥
L4(R+×T)

≤ C‖T0‖L2 .

We put δ = C‖T0‖L2 . Later, we choose T0 so small in L2(T) that δ is sufficiently small. We
define the space Xδ by{

(T , c) ∈ (L∞(R+; L2) ∩ L4(R+ × T))2 × Cb([0,∞));
c(0) = 0 , ‖(T , c)‖Xδ ≤ 2δ

}
,

where Cb([0,∞)) denotes the space of all bounded continuous functions defined on [0,∞)

and

‖(T , c)‖Xδ = max
{‖eγ ′t T ‖L∞(R+;L2), ‖eγ ′t T ‖L4(R+×T), ‖eγ ′t ċ‖L2((0,∞);R)

}
.
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Let (T , c) ∈ Xδ be the solution of (21)–(23). We now prove the a priori estimates for
(T , c), which ensure the global existence of (T , c) and there exists c0 ∈ R such that

‖T (t)‖L2(T) → 0 ,(25)

c(t) → c0 (t → ∞) .(26)

We first show that if δ > 0 is sufficiently small, (T , c) is small in Xδ . We apply Theorems
3.3 and 3.4, together with Remark 3.3, to (21) and have by the Hölder inequality and the
assumption γ ′ < γ

‖eγ ′t T ‖L∞(R+;L2) ≤ δ + C
(‖eγ ′t T ‖2

L4(R+×T)
+ ‖eγ ′t T ‖3

L4(R+×T)

)
≤ δ + C(δ + δ2)δ,

‖eγ ′t T ‖L4(R+×T) ≤ δ + C
(‖eγ ′t T ‖2

L4(R+×T)
+ ‖eγ ′t T ‖3

L4(R+×T)

)
≤ δ + C(δ + δ2)δ

for T ∈ Xδ . We easily see that

‖eγ ′t ċ‖Cb([0,∞)) ≤ C
(δ + δ2)δ

a − Cδ
.

Here, if we choose δ > 0 such that

C(δ + δ2) ≤ 1, C
(δ + δ2)

a − Cδ
< 1, a − Cδ > 0 ,

then we can conclude that
‖(T , c)‖Xδ ≤ 2δ .

This implies (25) and (26), that is, the asymptotic stability of D.
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