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Stability of Alfvén gap modes in burning plasmas

R. Betti and J. P. Freidberg
Massachusetts Institute of Technology, Plasma Fusion Center, Cambridge, MA 02139

A stability analysis is carried out for energetic particle-Alfvén gap modes.
Three modes have been identified: the Toroidicity, Ellipticity and Noncir-
cular Triangularity Induced Alfvén Eigenmodes (TAE, EAE and NAE).
In highly elongated plasma cross sections with kK — 1 ~ 1, the EAE may
be a more robust mode than the TAE and NAE. It is found that electron
Landau damping in highly elongated plasmas has a strong stabilizing in-
fluence on the n = 1 EAE, while ion Landau damping stabilizes the n = 1
TAE in high density regimes. Furthermore, the NAE turns out to be sta-
ble for all currently proposed ignition experiments. The stability analysis
of a typical burning plasma device, Burning Plasma Experiment (BPX)
[Phys. Scr. T16, 89 (1987)] shows that n > 1 gap modes can pose a serious

threat to the achievement of ignition conditions.



I Introduction

Since the original observation of “fishbone oscillations” in the PDX tokamak,! there
has been considerable interest in the theory of resonant particle effects on MHD modes.
The excitation of these modes by resonant interaction with an energetic particle species
is expected to enhance loss of alpha particles in future burning plasma experiments and
ignited devices such as the Burning Plasma Experiment (BPX),2 Ignitor,® and the In-
ternational Thermonuclear Reactor (ITER).# Specifically, it has been shown® that MHD
Alfvén waves whose frequency w, is lower than the alpha diamagnetic frequency wuq
can be driven unstable via transit resonance with alpha particles. Modes with toroidal
wavenumber n = 2 and frequency of the order of the Alfvén frequency have been observed
in TFTR during neutral beam injection.® The current view is that Toroidal Alfvén Eigen-
modes (TAE)7~11 can pose the most serious threat. In the present paper we show that
two other global Alfvén modes, the Ellipticity Induced Alfvén Eigenmode (EAE)!? and the
Noncircular Triangularity Induced Alfvén Eigenmode (NAE) can be excited via resonant
interaction with alpha particles and that their stability threshold can be lower than that
of the TAE in high density regimes and for toroidal wavenumber n > 1. The TAE7 results
from the effects of toroidicity that couples the neighboring poloidal harmonics. Its fre-
quency lies in the gaps generated by the toroidal coupling and in the limit of large aspect
ratio (calculated at the gap position, €gap < 1), the mode is localized in a narrow region

of thickness ~ €gapa about the ¢ = (2m + 1)/2n surface.

The EAE!? is a global mode resulting from two elliptically coupled harmonics. Its
frequency lies in the Alfvén continuum gaps generated by the elliptical coupling. In the
limit of small ellipticity (x — 1 < 1) the mode is localized in a narrow region of thickness
~ (x — 1)a/2 about the ¢ = (m + 1)/n surface.

The NAE results from the coupling induced by the triangularity of the plasma cross
section. The mode consists primarily of two triangularly coupled harmonics, localized in a
region of thickness ~ §a/4 about the ¢ = (2m + 3)/2n surface, and its real frequency lies

in the Alfvén continuum gaps generated by the triangular coupling.

In particular since many tokamaks have finite ellipticity (x — 1)/2 >~ 0.5, as compared
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to small toroidicity and triangularity (egqp < 1, 6/4 < 1) the EAE may be a potentially
more dangerous mode than either the TAE or NAE.

I The Model

A The basic moment equations

Consider a plasma consisting of bulk electrons and ions and a species of energetic

particles, each described by the Vlasov equation

2] 9j
79..tl..}.V.ij-{-;’;(E-}-VXB)-vaj=0. (1)

Here, j denotes particle species. Taking the zeroth order moment leads to the well known

conservation of mass relation

on;

—5tl+V-njuj=0. (2)
Similarly, the first order moment yields the momentum equation

o —
mj-ét-(nju]') +V. l]j = g;n;(E 4+ uj x B) (3)

where

«—

IO =m; /vvfjdv. (4)

«—
Note that IIJ- contains both thermal and inertial effects.

The desired form of the momentum equation is obtained by summing Eq. (3) over

species and using the quasineutral condition. This gives
JxB=Z(V- n,-+mjan,-uj). (5)
j

' «—
Our approach is to solve the Vlasov equation and evaluate nj,u; and II; in terms of
the electric and magnetic fields. The model is closed by the addition of the low frequency

Maxwell equations

4B
VXE—-_OT
V x B = pod (6)
V-B=0



Equations (2), (5) and (6) represent the basic moment description of the problem.

B Equilibrium

The equilibrium distribution function for a finite 3, finite aspect ratio, noncircular
axisymmetric Vlasov plasma is assumed to be an arbitrary function of the constants of

motion € and py; that is

foj = Fj(e,pg) (7)
where
mive
€= ‘; + qj@
(8)

Py = mjRvy + q; ¥

and ®(R,Z), ¥(R, Z) are the equilibrium electric potential and poloidal flux function re-
spectively. For low frequency phenomena fy could also be a function of the adiabatic

invariants p and o = v)/[y/.

We now make a number of simplifying assumptions that minimizes the volume of al-
gebra required while maintaining the essential physics. First we assume that the ions and
energetic species can carry only a toroidal current, so that Eq. (7) is the exact form of equi-
librium distribution function. The electrons are allowed to carry both toroidal and poloidal
current. Their distribution function is of the form fo. = F.(€, pg) + F.(e, P4, H,0) Where
F./F. ~ r1./a. The quantity F., which generates poloidal current, does not explicitly
enter the evaluation of ﬁ, in the small gyroradius limit and makes inertial contributions
of order m./m; smaller than for the ions. Thus, i’e never explicitly enters the calculation

and is hereafter suppressed from the analysis.
Second, observe that in the small gyroradius limit

ijv¢£9_li+
G oV

Fj(e,pg) = Fj(e, ¥) +
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The dominant contribution to I, arises from the first term whose form implies that
the equilibrium pressure is isotropic. This is a good assumption for most tokamaks.

Anisotropic pressure would require finite  dependence in Fy.

The third simplification arises from the assumption that the equilibrium electric field
is zero: (R, Z) = 0. In practice small electric fields do exist, but as is shown in Appendix

A, they do not alter the dispersion relation in any substantial manner.

Under these assumptions the equilibrium momentum balance equation reduces to

JxB=Vp (10)
where Hj = pj ?,
p(¥) =) p;(¥) (11)
J
and R
pi(¥) = / T2 Fi(e, )dv. (12)

Equation (10) implies that any ideal MHD equilibrium solution is also a solution
to the more general model considered here. Using Ampere’s law and following standard

procedures, it is possible to reduce Eq. (10) to a single Grad-Shafranov equation for ¥

given by
d, dF
=y _ e
A"V = —uoR 70 qu’ (13)
F 1
B=—§e4,+I—2V‘lee¢

where p(¥) and F(V¥) are free functions.

Finally, note that the assumption ® = 0 implies that the ions and energetic species
are held in macroscopic equilibrium primarily by the u; x B force. In the small gyroradius
limit the toroidal fluid velocity for these species can be written as

R dpj

L= %P5 14
Ugj g;jn; d¥ ( )

This completes the specification of the equilibrium problem. For the stability analysis it
is assumed that a solution has been found to Eq. (10) or equivalently Eq. (13).



C Stability

The stability analysis proceeds in the standard manner. All perturbed quantities are

written as
Q1 = Q1(R, Z) exp(—iwt — ing). (15)

The perturbed distribution function is found by the method of characteristics
q; t
fij = —--i/ (Ey +vxB;): VvFjdt’. (16)
mj J_oo

Using the equilibrium relation F; = Fj(¢, pg), it can easily be shown that f;; has the form

3FJ OF; OF;

=2 —1 _n_d - vdt!

flJ [ ap RE1¢ (w De napd’) _.,_,o El v ] (17)
Equation (17) can be further simplified by making the assumption E;) = 0. This is a good
approximation for MHD Alfvén waves although a small portion of the overall electron

Landau damping is neglected. The condition E;; = 0 allows us to define
EIJ_-Eiwf_LXB (18)

where £ | represents the perturbed E x B displacement. Using Eq. (18) we can rewrite the
quantity E; - v (evaluated along the unperturbed orbit) as follows

E1-V=—iw£_L-(va)=-in-'l£J_ c_iz____iw:_n_l[_(‘l. v)—v: KJ—‘] (19)

qj dt dt

The desired form of the perturbed distribution function becomes

oy g€ V) im; (w52 - ng ) [erov- [ v-Srer].

fij= 374 .
Equation (20) is exact. In principle we want to utilize this equation to calculate the
perturbed n;, u;, and ﬁj in terms of €, by taking appropriate moments. Observe that
most of the terms represent simple fluid-like contributions whose moments can be easily
evaluated. The difficulty of course lies with the last term which involves a complicated
integral along the unperturbed orbits. It is here that the substitution given by Eg. (19)

proves useful. The form of the integral in Eq. (20) is smaller by r7;/a than that appearing
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in Eq. (17). It can be easily evaluated in the small gyroradius limit using only the zeroth
order guiding center orbits. This calculation is carried out in the next section in the

interesting regime corresponding to finite wavelength, macroscopic modes.
D The drift kinetic expansion

The last step in the simplification of f j is the substitution of the small gyroradius,

drift kinetic expansion into Eq. (20). The explicit transformation is given by

v =y b(R) + v, [n(R)cos¢ — 7(R)sin(]

(21)

Vi
(R)
where (; = ¢jB/mj, b = B/B, R is the guiding center of the particle, and (n,7,b) are

x=R+

[n(R)sin¢ + 7(R) cos(]

a right;handed set of locally orthogonal unit vectors in physical space. The quantity ¢
is the gyrophase angle of the particle while vy and v are the parallel and perpendicular
particle velocities. The variables v) and v actually represent an intermediate step in the
transformation. In the final step Y) and v, are related to the energy and magnetic moment

by the usual relations

(22)

Along the unperturbed orbits, the guiding center variables satisfy the following equa-

tions of motion

= 1 (23)



where

VD =VvB + Vk
2

vuB =%belnB (24)
7
il
Ve = h—b X K

7

and kK = b - Vb. The equations for i, ¢, and R are correct to leading order in §; = rp;/a.
The higher order corrections are not explicitly needed. Note also that the E x B drift

velocity vanishes in the expression for vp since Eg = 0.
The next step is to substitute the drift kinetic expansion into the expression for
v - (d{/dt) in Eq. (20). A simple calculation shows that v - (d¢/dt) has the form

v -gé—t- =ap +are + age? (25)

with a; = a;(e, 4, R, t'). The last two terms are rapidly oscillating and nearly average to

zero. It can be easily shown that their contributions to f1; are smaller by §; than those

already appearing. The quantity ag represents the resonant particle effects. It produces

a larger contribution competitive with the fluid contribution and is dissipative in nature.
This is the only term that need be maintained. A short calculation shows that

v2 v2 .
ao(e,p,R,t')=—2J=V-£J_+ ?'L-vﬁ € -nx. (26)
The final form for f;; is obtained by substituting Eq. (26) into Eq. (20) and introducing

the drift kinetic expansion into the fluid-like terms. The result is

OF; , . \OF; t
flj = —-ﬁ(fl-V'Il)-{-zmj(w—-w.j) a: l:f_L-V—/ aodt'] . (27)
-0
In this expression F; = Fj(¢, ¥) and
. _ n OF;/0¥
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It is important to notice that ag is a function of the invariants of motion ¢, u, the time
t and the guiding center position R. Since the guiding center trajectories are much simpler

than the full particle orbits, an analytic approximation can be used to obtain explicit

evaluations.
III Application to Energetic Particle-Alfvén Waves

A The moment equations

By focussing attention on energetic particle-Alfvén waves, the basic stability equation
is obtained by linearizing the basic moment equation [Eq. (5)] and Maxwell’s equations
[Eq. (6)], and then substituting the expression for f1; (Eq. (27)] to evaluate the perturbed

> .
II; and nju;. From the definition E; = iw€| x B, Maxwell’s equations yield

B, =V x (£, x B)

(29)
podi =V x V x (€, x B).
The linearized form of the momentum equation is given by
J1 xB+J x By =Z [V- l'llj —-iwmj(nljuj-i—njulj)] . (30)

J
For simplicity, zero subscripts have been omitted from equilibrium quantities. Recall that
at this point we have introduced the small gyroradius approximation in deriving the per-
turbed distribution function, but have made no assumptions regarding the size of 3 or
e. For Alfvén waves this is formally equivalent to introducing the gyroradius parameter

6 = rz;/a and assuming that

(73 w
~ 1 —_—~ &
k”va Qg
Mo T 1 (31)
n; T; &
Wei Wae o Waa
W w w
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where the subscripts e, 7, a denote electrons, ions, and alphas, respectively.

On the basis of Eq. (39) it follows that the ion contribution dominates the inertial

effects:
ij(nljuj +njuy5) = Z m; /Vfljdv ~ wzpf_L. (32)
J J
For simplicity the subscript ¢« has been omitted from p, the ion mass density.

>
Similarly, a straightforward calculation shows that the II;; tensor has the form

ﬁlj = /mjvvfljdv
piy; O 0
=10 pi; O (33)
0 0 Py
The elements p; | j and py; are given by

PlJ.j‘_“'E_L'VPj“i/(“"“:)q) 7 B deV

1 = —€1-Vp; _i/(w “-’t])mJ‘U” B s;dv

t 2
8j=mj/;°°|:‘LV £_L+<—§-—v“)f_;_-n]dt'. (35)

Combining these results leads to a single vector equation for the unknown £ |

where

—puw?€] =F (€1)+iD (€)). (36)

Here

Fi(.)=J1xB+JxBy+V(L:Vp) (37)

is the ideal MHD force operator for incompressible displacements (and as implied, F, - b
can be easily shown to vanish). The operator D | contains the dissipative effects associated

with resonant particles and can be written as
v? v? . OF;
1) = ijf [—EEV_L + (v} - -7'1'):: [(w -w.,-)—a-;la,-] dv. (38)
j
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Equations (36)-(38) describe the low frequency, finite wavenumber stability of ener-

getic particle-Alfvén waves in an axisymmetric torus.

It is now convenient to introduce a subsidiary expansion in 3. We assume § < 3 < 1,
but note that no ordering is required for the inverse aspect ratio, the deviation from

circularity, or the safety factor: e~x —1~g¢~ 1.

The low 8 assumption is useful because the dissipation operator becomes small com-

pared to the inertial effects. This can be seen by recognizing that the orbit integral s;

scales as
2
mjv_LfJ_
8 ~ = (39)
J R(w - knv”)
Equation (38) implies that
pi€L
Dj ~ -léijZ(mj) (40)

where D; is the j’th particle contribution to D |, zj = w/kjvr;, and Z(z) is the plasma
dispersion function. The function zZ(z) is in general complex, but |zZ (z)] $1forallz
assuming w; > 0. By noting that F)} ~ kﬁBzf_L/po and k| R ~ n/q~ 1 for Alfvén waves
it follows that

IDL/F.| <8 (41)

This scaling result is important because in the low 8 limit it implies that the kinetic
effects make only a small modification to the ideal MHD wave. In particular, the real part of
iD | leads to a small 3 correction in the basic dispersion relation w ~ kjva- The imaginary
part of iD | produces the kinetic dissipation effects that determine the growth rate and

stability boundaries. Since Im(iD ) is also small, it can be calculated perturbatively.
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B General expression for the growth rate

In this section we make use of the low 3 ordering to derive a general expression for
the growth rate of energetic particle Alfvén waves. The derivation is based on an energy
relation obtained by multiplying Eq. (36) by £ /2 and integrating over the plasma volume.
We assume § < 1 but temporarily treat 8 ~ 1. Using Eq. (32) we obtain

WK = Wy + Wk (42)

where

Kor=; [ olesds (43)

is the plasma kinetic energy normalization,

Wi = -3 [ €1-Fule)de (44

is the ideal MHD perpendicular potential energy and

sy = -3 [ €1 -Du€udr (45)

is the kinetic contribution to the energy. After a simple integration by parts, §Wg can be

rewritten as
ds

1 . \OF; ;
6WK = 5;/(@' -—w..J)—aTSJ dt dvdr. (46)

The next step is to recognize that s; is an integral along the unperturbed particle

orbits as a function of the guiding center coordinates. Therefore,

d‘g; . ow ok »
_T = w "j + DSJ'. (47)
where
D=v-V+LyxBy-Vy (48)

m
J
If we write the complex quantity s; as s; = a; + ic; and make use of Eq. (47), we obtain

ds*

. . 1
sj# = zw'lsjlz +i(cjDa; — ajDcj) + ED (a? + c?) . (49)
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Since F' and w. are functions of the constants of motion € and pg, the contribution to §Wg
from the last term in Eq. (49) is an exact differential that integrates to zero over the phase

space volume. The quantity §Wg can thus be rewritten as
Wy = Z/ w,.] 1(R; + iw;|sj|?)dvdr (50)

where ﬁj is a real quantity given by

RJ = CjD"'j - aijj - erSjlz. (51)

Consider now the limit w; < wy corresponding to either marginal stability or the low

( assumption. A straightforward dimensional analysis using Eq. (39) shows that
OF; 42
/ 953 |5, Pdvdr < {ﬂi ~ L (52)

Thus, the term iw;|s;|2 in Eq. (50) leads to a finite contribution in §Wx as w; — 0. More
subtlely, the R; term in Eq. (50) also leads to a finite contribution of order 3;6W)s. This
is a direct consequence of Eq. (41) and the discussion therein. The subtlety is that each
of the separate terms in I_Zj diverge as 1/w;, but because of the general scaling argument

associated with Eq. (41), these singularities must cancel identically.

The desired expression for the growth rate is obtained by setting the real and imagi-

nary parts of Eq. (42) to zero and introducing the low 3 expansion. The real part yields

2_Wn

The real frequency and eigenfunction correspond to the ideal MHD Alfvén wave.

In the limit w; < wy consistent with low 3, the imaginary part of Eq. (42) yields

; = 54
~ Yk (54b)
Ky



where

Wy = — Z/w*] wy) eu.v1|.sJ|2 dvdr

wi —vO 4wy

F.
Kk 6‘7

Rj dvdr.

Note that Kk is neglected in the second expression for w; since Kg ~ BKps. Also, for

rigid rotor distribution functions w,; = w.; = const.

Equation (54b) is a general expression for the growth rate. It is valid for arbitrary
aspect ratio and noncircularity but requires § « § <« 1. Its evaluation requires a knowl-
edge of the trajectory integral s; along the unperturbed guiding center orbits. This can be
carried out “exactly” numerically for realistic tokamak geometries, or evaluated approxi-
mately analytically using the additional assumption of large aspect ratio. For the usual
case of OF/8e < 0, we see that a given species produces a stabilizing contribution to the
dispersion relation when its diamagnetic frequency is less than the real frequency of the
mode: &,; < wy. The converse situation applies when &,; > wy. The point of equality
@yj = wr represents the transition from the positive to negative dissipation for the j’th

species.
C The TAE growth rate

The general expression for the growth rate given by Eq. (54b) is now applied to
the TAE instability. To proceed analytically we assume large aspect ratio as well as low
B. Specifically, we assume a circular cross section tokamak satisfying the ohmic scaling

expansion 3 ~ €2, ¢ ~ 1.

The analysis begins with the evaluation of the unperturbed particle orbits and the
trajectory integral sj. Consistent with the ohmic expansion, the leading order guiding

center orbits are given by

r(t)) =r(t)
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The particles lie on circular flux surfaces and move parallel to B.

Next, note that within the tokamak expansion V - ¢, + 26, - K ~ O(¢?) and x =
er/Ro + O(€?/a) for Alfvén waves. Thus, to leading order ¢, s; reduces to

t
8; = —my \/;00 (v” + ) 5{; dt'. (57)

Also note that both v and v are constant to leading order in e.

The integral s; is evaluated by expanding the eigenfunction &, = £ as a general Fourier

series

€= Z Em(r)eimo

m

(58)
b =iy (rém)’ _imo

m

where the second expression follows from the relation V - §; ~ Of(e). Substituting into

Eq. (58) and focussing on circulating particles we obtain

2 ! ! —twt—ing+imé
_tmi (2 V1 _(rbm-1)’ | (rémi1) ] e
3; = 2R, (Uu -+ 2 ); [Em-—l +€m+1 m—1 + ——" o — o (59)
where
m Y|
wWm = ; -n —Ea. (60)

Equation (59) is valid for both the TAE and EAE instabilities.

Consider now the TAE instability. This perturbation consists primarily of two toroidally
coupled harmonics ém and £m41. All other harmonics are essentially zero. Furthermore,
the strongest coupling occurs in a narrow region of thickness ~ ea localized about the
surface r = rg corresponding to gop = g(ro) = (2m + 1)/2n. The mode localization implies
that the £/ ., terms dominate in Eq. (59). Substituting these results into the expression
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for s; and maintaining only those terms which do not average to zero in 0, leads to the

following expression for |3j|2:

. miTS vL ez el 1 1
5,2 = + + + . (61)
7 4R? i m2  (m+ 12| [|w—wm-12  |w—wm|?

In this expression all equilibrium quantities are evaluated on the surface r = ro.

At this point the general expression for the growth rate [Eq. (54b)] can be simplified

significantly by noting that for localized perturbations, the kinetic energy normalization

! ! 2
Ky~ rZpo /[mz 4 el ] i (62)

2 m2  (m+1)2

reduces to

where pg = pi(rg). Observe that K)s and |sjl2 have the same combination of £/, and
'n+1 terms which thus cancel when evaluating w;. Using the fact that wy ~ kjva with
kj = 1/2Roqo for the TAE instability, we obtain the following expression for the growth

rate

2,2 2\2
wj Hom;qq / 2, V1 < 0F; n 3F]> w; wj ]
=L J 0 L - — dv.
kHva Wi—'O; 233 (‘U“ + 2 “r O¢ 9 ov |w —wm-—llz " |w — wm |2 v

(63)

In the limit of small w;, the v integral can be carried out analytically. A short

+

VH =Va

calculation yields
2
5 2n2pom? Rog} /‘ <v +v3_> ( 0F; n OF; )v o
= 3 - - 14V
k“va F BO I 2 66 qj 6\1! vy =va/3
(64)

Equation (64) gives the TAE growth rate for arbitrary distribution functions Fi(e, ¥).

The growth rate can be easily evaluated for a Maxwellian distribution function

m. \3/2 ,
F; = (2 ,} ) exp(—m;v*/2T;). (65)
Here nj = n;(¥) and Tj = Tj(¥). Some straightforward algebra leads to
. HT +n;JF. ;)
wi — —a203. T _ 6‘( J 66
(’cnva> ; P [Gm’ mad =y (66)
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where §; = 2uon;T;/B3, & = —rre(dp;/dr)/pj, rrs = vr;j/Qj, Q¢ = q;Bp/m; and
nj = dlnTj/dInn;. Each of these quantities is evaluated at r = rg. The functions G;[,

HJT and J_;T are functions of the single parameter A; = vo/vr; and are given by

1/2 N
G;I;lj = gm(Aj) + gm(A;/3) gm(X;) = 1-2-—/\1-(1 + 2)\? + ZA“;)C Aj
1 1/2 2
HY; = hm(Aj) + 3hm(Xi/3) hm(A) = 5=(1+ 23 +2x])e™ (67)
. 1. , nl/2 L
Jmi = Im(A3) + 33m(Aj/3) im(Aj) = 5 (3/2+ 233 + 27 +2X])e 75

The Maxwellian distribution function is a good approximation for electrons and ions.
For these species the parameter §; (the ratio of poloidal gyroradius to pressure scale length)

satisfies §; < 1. Consequently only the GJT term need be maintained.

For the alpha particles it is more reasonable to assume a slowing down distribution.
A simple model that has the correct asymptotic behavior and allows a simple evaluation

of the integrals is as follows
A
(v? +v8)%/2

where 4 = A(¥) and vZ = vg(‘Il): are two free functions that are easily related to the density

Fy = 0<v<vgy (68)

and temperature. The quantity vg represents the low velocity transition to the bulk plasma.
Typically mqv3/2 ~ 2T(¥) where T is the bulk plasma temperature. The cutoff velocity
Vq is defined by mqvZ /2 = Eq = 3.5 MeV. Clearly v2 3> v3. After another straightforward
calculation we obtain an analogous expression for the alpha particle contribution to the

growth rate

(kwi ) ~ ~g80a(Gla — naobaHa) (69)
1Ye / o

with By = 2ponaTa/B2, 6a = —(2/3)re(dpa/dr)/Pas TLh = Va/Dpa, and Qg =

gaBp/ma. The functions G and H are functions of the parameter Ao = vq/va and can be

written as
3
Gl = 2s(0a) + 2:(0a/3) g4(3a) = (35 ) Aa3-+ 430 ~ 032 = X)H(1 = o)
| (70)
1 3r
HEI = hy(0a) + 3hs(Aa/3) hs(Xa) = (-ﬁ) (14622 —4x2 —3HH(1 - Xo).
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Here H is the Heaviside step function.

The final form of the growth rate is obtained by combining these expressions and

assumingn;, xne=n, T, =xT; =T

w; J¢)

T =~} | 5 (Gri+ Ghe) + Ba(Cla — naosa HL)| - (71)
Ilva 2

where (. = 4uonT/ B(Z, is the core beta. Equation (71) is a more accurate expression of

the TAE growth rate given in the original work of Fu and Van Dam,? where the effect of

the ion Landau damping was not included. Applications of Eq. (71) and comparisons with

other expressions of the TAE growth rate are discussed shortly.

D The EAE growth rate

We consider the EAE in the limit of small ellipticity (x — 1 « 1). The strongest
coupling occurs about the ¢ >~ go = (m + 1)/n surface and the perturbation consists
primarily of two elliptically coupled harmonics m and m+2. Following the same procedures

used for the TAE, the expression for |.s]-|2 becomes

2.2 2
mﬁ=%”(ﬁ+ﬁ) P&P+mﬁﬁ} 1
2

4R% m?  (m+2)?| [w—wm_1|?

2
1

el
sm+2 §£n_
Iw’“’m+1]2

m+2 m

Notice that, unlike the TAE, Ks and |.s;j|2 do not have the same combination of ¢, and

mt+2- Thus, the lowest order eigenfunctions given in Ref. [12] are needed. As for the TAE,
the largest contribution comes from the resonant layer about the ¢ = go surface. In the
limit of small w; and using a slowing down distribution function for the alphas, the growth

rate has the following form

== (D)5 (cBi+6h) +6 (B -"RerE)] ()
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where

GE; = gm(A;/2) + / dxgm(un; /Iyl F(€)
GE, = g,(Aa/2) + / dxga(tna/y) F(€)

HE = 5hia/2) + [ ax 22 b una /) P(E)

! ! 2 ! 2 r 12
" __ | 5m+2 __ﬁ_m_ £m+2 _f_r_rl
Fi&) = m+2 m /_/ m+2 + m dx
_2n ) _2n \ dx—27r2R0r§A’d
Unj = QOAI j Una = QOA, a = 50 Yy

289 [T —19 rogh , k(r) -1\’
= — = — A = —_—
y A, ( T0 ) %0 q0 r 2

Appliéations of Eq. (72) are also discussed shortly.

To

E The NAE growth rate

‘The Noncircular Triangularity Induced Alfvén Eigenmode (NAE) which results from
triangular coupling is localized about the ¢ ~ gqo = (2m + 3)/2n surface and consists
primarily of the two harmonics m and m + 3. The procedure to calculate the growth rate
is identical to that used for the TAE and in the limit of small triangularity, the mode is
highly localized so that the growth rate is independent of the eigenfunction (as for the
TAE). It is easy to show that using a slowing down distribution function for the alphas,

the NAE growth rate has the form

;T":_a _ (%Q)z [% <G,1Xi + Gﬁe) + Ba (G,’\L - fgﬁaaﬂﬁ,)] (73)

where

GN; = gm(3X;) + gm(3A,/5)
GY, = gs(3)a) + 95(3Xa/5)

HI] = 3hy(3Xa) + (3/5)hs(3Xa/5)

19



IV  Discussion

Marginal stability conditions can be easily evaluated by setting w; = 0 in Eqgs. (71),
(72) and (74). In order to find the parameter B4 = 2uonaTn/ B2, we first calculate T,

from the a equilibrium distribution function
1
nalag = gma/vzfadsv.

For an isotropic slowing down distribution function with a cutoff energy E,, the temper-
ature is approximately constant and it is given by T, ~ E, /6. The a particle density can

be obtained by balancing the production with the slowing down rate

ne _ma

where 74 = 1.17 10'2[T.(keV)]3/2 /ne(cm™3) is the slowing down time. If we assume that
Te ~ T;, then the marginal stability condition for the TAE and NAE can be written in the
form

nZ'N = nZ’N(Te, Bo, q(r),a, Rg,m,n). (75)

Since the growth rate of the EAE depends on the mode eigenfunctions, the dependence on

the plasma elongation must be included and the EAE marginal stability condition becomes
E__E
ne = ng (Te, Bo,q(r),x(r), a, Ry, m,n). (76)

Stability domains in the (n., T) space, for typical ignition experiment parameters (Bo =8
T, g0 ~ 1, go =~ 3.5,x(a) = 1.8,a = .78, Ry = 2.4) are illustrated in Fig. 1. Instability
occurs in a well defined range nmpin < n < nmaz. The lower boundary occurs when the
Alfvén velocity becomes so high that there are no resonant o particles, while the higher
limit occurs when the ion or the electron Landau damping becomes dominant. For BPX
operational density of ng ~ 5x 1020 m—3 and temperatureof Tp ~ 20 keV them = 1,n = 1
gap modes seem to be stable. Modes with m > 1,n > 1 show a lower instability threshold
and therefore are more likely to be destabilized in a burning plasma. In particular the

EAE m = 3,n = 3 seems to pose a potential threat to a BPX-like device.
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Several interesting conclusions can be extracted from Egs. (71), (72) and (73). First,
we observe that for large 3, the resonance v| = vq /3 of the TAE strongly enhances the jon
Landau damping. This explains the stability domain of the TAE at high plasma densities

as shown in Fig. 2.

The next point to note is that the electron Landau damping in highly elongated
plasmas strongly stabilizes low-n EAEs. Figure 3 shows the EAE (m = 1,n = 1) stability

boundaries for different values of the plasma elongation.

We also observe that for all three gap modes the destabilizing term is proportional
to the product ngg. Therefore, we expect the high-m modes to be the most unstable as

shown in Fig. 1.

Other expressions for the TAE growth rate have been compared with Eq. (71). The
most recent one is given in Ref. [13] where a slowing down distribution function for the
alphas has been used, but the effects of the poloidal sideband coupling has not been

included.

According to Ref. [13] and in the limit of v4/v4 > 1, the marginal stability condition
for the TAE (n = 1,m = 1,3) can be written in the following form

B2 5= 3 Bi9(05)/(Fa = 2a) (77
j

where 84, Aa, A; and g(A;) have the same meaning as in Egs. (67-71).

For the same conditions and neglecting the sideband coupling, Eq. (71) yields
32
Ba 2 5= 3 Bi9(05)/ (6a = 2Aa) (78)
j

which is in general agreement with the result of Ref. [13]. However, we emphasize the
importance of the sideband coupling on the stabilizing effect of the ion Landau damping,

as included in Eq. (71).

In the derivation of the gap mode growth rates, the effects of continuum damping and

trapped particle resonance have not been included. The latter are expected to be important
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for high-n modes. Finally, because of the limits of validity e € 1,k — 1 € 1,6 < 1,
low (m,n) the expressions (71), (72) and (73) can only be considered as an approximate

criterion to test stability against Alfvén gap modes.
V Conclusions

We have demonstrated that two new global Alfvén modes, the Ellipticity and Triangu-
larity Induced Alfvén Eigenmodes, can be destabilized via transit resonance with energetic
alpha particles. The growth or damping of these modes depends upon a competition be-
tween the alpha particle driver, electron and ion Landau damping. The electron Landau
damping turns out to be particularly important for the m = 1, n = 1 EAE in highly
elongated plasmas (k ~ 2). We have also shown that ion Landau damping can stabilize
the TAE at high density regimes. For sufficiently high densities and n > 1 the EAE
can ha..ve a stability threshold lower than that of the TAE. Both the EAE and TAE need
further investigation to determine how detrimental their effects can be on alpha particle

confinement in ignited tokamaks.

In particular, the behavior of higher n modes which have lower thresholds, but greater

localization needs to be addressed.
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Appendix A
Effects of an Equilibrium Electric Field

In this appendix we show that the existence of an equilibrium electric field Eq = — V¢,
does not fundamentally alter Eq. (27) upon which our stability analysis is based. To lowest
order in rr. /a the electrons are adiabatic and therefore neglecting the electron inertia, the
parallel electron momentum equation can be written as

E, =—V||1/dp°- (A1)

e e

Linearizing Eq. (A1) gives the following expression of the perturbed parallel electric field
Ejp=-b-V({, - E). (A2)

The definition of the E x B displacement can be rewritten as follows:

E1 = iwf_L X Bo - V(f.l. . Eo) (A3)
an Eq. (19) becomes
Brov=—iw™ [0 v)-v- B2 ] - ¢, o) (44)

Substituting these results into Eq. (17) leads to the following form of Eq. (20)

8F; 8F; . 8F;  OF; t o dE,

Opy —oo
(A5)

Following the averaging procedure described in section IID leads to an unchanged form of
Eq. (27)

, . OF f ,
fl_,-z—e_‘_-VF+zm,-(w——wj)-5€— §,-v- apdt' | .

-0
However, in the calculation of the divergence of the pressure tensor, the equilibrium electric
field contributes through an inertial term ~ Y jPiwwg;j; where p; is the density of the
species j, and wg; = k. - (Ep X Bo)/B2. For Alfvén waves (w ~ w,) and for small
a particle population (p; 3> pa), the ion inertia dominates (p;w? > pjwwg;) and the

equilibrium electric field contribution can be neglected.
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Figure Captions

Fig. 1 Plot of the stability domain in the (n., T) for BPX-like parameters (By = 8.1
T,a=.79m, Ry = 2.59m, q(0) = 1,q(a) =3.5): (a)m=1,n=1;(b)m=23,n=3;

(c)m=5,n=4.

Fig. 2 Plot of the stability domain in the (n.,T) space of the TAE m = 1,n = 1 for
BPX, including ion Landau damping (solid line) and neglecting it (dashed line).

Fig. 3 Plot of the stability domain in the (n.,T) space of the EAE m = 1,n = 1

for BPX, for different values of the plasma elongation and with g(a) = 4.
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