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Abstract. The aim of this study is to assess the contri-
bution of cocontraction and spindle feedback to local
stability during bipedal stance. To that aim, an existing
nonlinear state space model of the human musculoskel-
etal system is linearized in a reference equilibrium state.
The maximal real part of the eigenvalues of the linearized
system matrix A and the low-frequency joint stiffness are
used as a measure of local stability. Muscle properties, as
represented in a Hill-type muscle model, are shown to
improve the behavior, the improvement being larger at
high cocontraction. However, even at maximal cocon-
traction the low-frequency joint stiffness generated by the
muscle properties is insufficient to yield a locally stable
system. It follows that feedback is necessary to ensure
local stability. In this study, the potential contribution of
spindle feedback is investigated by optimizing the feed-
back gains for contractile element length and velocity for
each muscle. It is found that in the case of time-delayed
negative feedback, it is impossible to stabilize the system
on the basis of spindle feedback. When positive time-
delayed feedback is allowed, a barely stable system is
obtained. When the time delays are removed, the
feedback gains can be chosen such that a locally stable
system is obtained, indicating the limitations imposed by
the presence of time delays. Finally, it is shown that for
small perturbations the response of the linear system to
an arbitrary perturbation is similar to that of the
nonlinear system, indicating the validity of the approach
used. It is concluded that the combination of muscle
properties and time-delayed spindle feedback is insuffi-
cient to obtain a system with reasonable local stability.

1 Introduction

Stable bipedal stance is not only an important task in
itself, it is also an important prerequisite for execution of

tasks involving both upper extremities. As the gravita-
tional force destabilizes the inverted-pendulum-like
skeletal system during bipedal stance, ensuring stability
is an important task of the postural control system. The
performance of the human postural control system has
been evaluated in several different ways. Experimentally,
human bipedal stance has most often been investigated
in terms of the center of pressure (COP) trajectories,
either during unperturbed stance (e.g., Collins and De
Luca 1993) or after platform perturbations (e.g., Nakata
and Kyonosuke 2001). In some studies, a measure of
system stability is based on statistical quantities such as
the root mean square of the COP trajectory (e.g.,
Nakata and Kyonosuke 2001). In other studies, stabi-
logram diffusion analysis (e.g., Collins and De Luca
1993) is employed, with the advantage that no assump-
tions are needed regarding the stationarity of the COP
signal. Whatever the method used, it is not easy to
characterize the stability of the high-dimensional neu-
romusculoskeletal system in terms of descriptors of the
low-dimensional COP trajectory.
Phenomenological models have been proposed that

reproduce the behavior of the COP both during unper-
turbed human stance and after platform perturbations.
An example is the pinned polymer model (Chow and
Collins 1995) that was later extended by Dijkstra (2000)
with an extra degree of freedom representing the dy-
namic drift of the COP set point. Although the pinned
polymer model is based on spontaneous postural sway
data, Lauk et al. found that postural system dynamics
are the same for quiet standing and small perturbations
(Lauk et al. 1998; Chow et al. 1999). They concluded
that this follows from the fact that at a certain time the
postural system cannot distinguish between a random
and applied perturbation, which suggests that the same
neuromuscular control mechanisms are used under
quiet-standing and dynamic conditions. Rosenblum et al.
(1998) described the behavior of the COP with two
coupled chaotic oscillators. Inverted-pendulum models
have also been shown to be capable of reproducing ex-
perimental sway data (Eurich and Milton 1996; Peterka
2000).
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Finally, structural models based on current knowl-
edge of the dynamics of the neuromusculoskeletal sys-
tem have been proposed (e.g., He et al. 1991; Kuo 1995;
van der Kooij 1999). If simulation results from such
models are in accordance with experimental data, such
models can provide insight into the relative importance
of the sources of sensory information. Most of the
structural models proposed use high-level optimal con-
trol theory and assume a high-level controller that has
full state information. Thus, these models do not take
into account the hierarchical organization (e.g., Bern-
stein 1967) of the nervous system. In fact, it has been
argued (van Soest and Bobbert 1993; Loeb et al. 1999)
that the control problem for the higher parts of the
central nervous system is overestimated when low-level
contributions to system behavior, such as the visco-
elastic properties that arise from the force-length-ve-
locity relation of muscle, are not explicitly considered. It
is currently unclear to what extent low-level dynamics
can contribute to the stability of bipedal stance.
In this study, a nonlinear model of the musculoskel-

etal system incorporating these low-level processes is
used to assess the contribution of low-level processes to
local stability of the system. As the nonlinear model is
smooth in the reference state, linearization at this ref-
erence state is possible, and analysis of local stability is
straightforward.
Regarding the lowest level, i.e., the force-length-

velocity relation of muscle, it has often been suggested
(e.g., Hogan 1984; Gottlieb 2000) that cocontraction of
antagonistic muscles improves joint impedance and,
more specifically, increases the low-frequency joint
stiffness, which in turn contributes to the overall stability
of the system. In fact, Winter et al. (1998) suggested that
this stiffness is sufficient to adequately compensate for
the destabilizing gravitational stiffness so that open-loop
control could result in a stable system. In the present
study, the contribution of the force-length-velocity
relation of muscle and, relatedly, cocontraction to the
stability of human bipedal stance is the first issue
addressed.
Moving up one level in the hierarchy of the system,

we next consider the muscle spindle system, a monosy-
naptic spinal feedback system that is generally viewed as
the first neural line of defense against perturbations.
Modeling the spindle system as time-delayed negative
feedback of contractile element length and velocity, the
question is addressed of whether the feedback gains can
be chosen such that a locally stable system is obtained.
Earlier studies (e.g., He et al. 1991) in which time delays
were not taken into account have been criticized because
time delays are known to limit the potential contribution
of feedback to system impedance. In order to assess how
serious this criticism must be taken, we compare the
results for the time-delayed system to those for a (hy-
pothetical) nondelayed system.
The neurophysiology of the monosynaptic spindle

feedback is such that it can only be negative. This is in
line with basic control theory indicating that negative
feedback can improve the impedance of an isolated
system. However, it is plausible that through a small

number of spinal interneurons spindle information can
also be fed back positively onto the alpha motoneuron.
Furthermore, in a high-dimensional system as consid-
ered in this study, it is not necessarily optimal to have
negative feedback only. Therefore, we finally consider
the question of whether local stability can be improved
by allowing positive spindle feedback.

2 Methods

2a Outline of the study

As the independent variables considered in this study do
not lend themselves to experimental manipulation, this
study is based on modeling only. The model describes
the dynamics of the musculoskeletal system during
human stance. Input of this forward dynamics model
is the neural input of the nine muscle groups modeled.
Output of the model is the resulting kinematics and
kinetics of the 2D three-segment skeletal model. The
local stability of the system is investigated on the basis of
a linearization of the system in an almost erect
equilibrium posture.

2b Model of the musculoskeletal system

In this study we use an extended version of an existing
nonlinear model originally developed to study human
vertical jumping (e.g., van Soest and Bobbert 1993) and
cycling (van Soest and Casius 2000). One muscle was
added to the model as described in van Soest and Casius
(2000), resulting in a model having a pair of antagonistic
monoarticular muscles at each of the three joints
modeled as well as three biarticular muscles (see Fig. 1).
The 2D skeletal model consists of four rigid segments.

These segments represent the foot, lower leg, upper leg,
and HAT (head, arms, and trunk). The connections
between the segments are modeled as frictionless hinge
joints between these segments. The foot segment is
fixed to the earth. Thus the skeletal model has three
mechanical degrees of freedom.
‘‘Muscles’’ are described by a Hill-type muscle model

containing a contractile element, a series elastic element,
and a parallel elastic element (see van Soest and Bobbert
1993 for an extensive description). The flow of calcula-
tions is schematically represented in Fig. 2. Functions f1
and f2 together describe a nonlinear first-order system
linking active state q as defined in Ebashi and Endo
(1968) to stimulation, the one-dimensional input of the
muscle, as proposed by Hatze (1981). In this model of
activation dynamics, active state also depends on con-
tractile element length. Function f3 represents the Hill
force-velocity relationship formulated such that con-
tractile element velocity is calculated from contractile
element length, force, and active state. This force is
calculated in f5 from series elastic element length, which
is modeled as a quadratic spring. Series elastic element
length in turn is calculated in f4 as the difference between
muscle-tendon complex length and contractile element
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length. Polynomial relations are used in function f4 to
calculate muscle-tendon complex length from the joint
angles; these polynomial relations are based on cadaver
studies (Grieve et al. 1978; Huijing, personal communi-
cation). Finally, f6 transforms the muscle forces in their
contributions to net joint torques, using moment arms
that follow from the same polynomial relations. To-
gether with the gravitational forces these net joint tor-
ques determine the acceleration of the skeleton (as well
as the reaction forces) in f7. The Newtonian equations of
motion in f7 are automatically derived using MUSK
(Casius 1995). For the complete open-loop system as
presented in Fig. 2, the state vector has dimension 24
(three segment angles u, three segment angular velocities
x, nine Ca2þ concentrations c, and nine contractile
element lengths LceÞ.
All the parameter values of the model are identical to

those used in a sprint cycling study (van Soest and

Casius 2000). The parameter values for the added mus-
cle (short head of the biceps femoris) were based on
Yamaguchi et al. (1990). Values for the most important
parameters are presented in Tables 1 and 2.

2c Linearization at a reference equilibrium state

The open-loop controlled musculoskeletal model de-
scribed above can be formally represented by a nonlin-
ear time-invariant state space model:

_xx ¼ fðx; stimÞ
y ¼ gðx; stimÞ

ð1Þ

where x is the system state vector, stim is the neural
input vector, y is the vector of measurable outputs of the
system, and f and g are vector functions. Linearization
of this open-loop system at any reference point
x0; stimref;0 implies calculation of four matrices of partial
derivatives:

D _xx ¼ ðof=oxÞ � D _xxþ ðof=ostimÞ � Dstim
¼ Aol � D _xxþ Bol � Dstim

D _yy ¼ ðog=o _xxÞ � D _xxþ ðog=ostimÞ � Dstim
¼ Col � D _xxþDol � Dstim

ð2Þ

The matrices of partial derivatives in Eq. 2 are usually
referred to as Aol, Bol, Col; Dol, Aol also being referred to
as the ‘‘system matrix.’’ D in Eq. 2 indicates that the
variables are taken relative to the reference point.
Linearization can only be carried out if the partial

derivatives in Eq. 2 are well defined. In the musculo-
skeletal model, there is one relation that violates this
smoothness requirement: based on physiological evi-
dence, the slope of the force-velocity curve at the iso-
metric point is different for the concentric and eccentric
sides. In order to ensure linearizeability of the model, the
eccentric slope was set equal to the concentric one in this
study. It was found that this adaptation has a negligible
effect on the open-loop dynamics.
In this study, linearization of the model at the various

equilibrium states considered was carried out numeri-
cally using the central difference method. Care was taken
to use the smallest step size for which rounding error
was negligible.

Fig. 1. Schematic representation of the musculoskeletal model used in
this study

Fig. 2. Block diagram showing the flow of calculations in the
nonlinear model. Numbers in parentheses represent the dimension
of the juxtaposed variable. Closing the switch transforms the open-
loop system into the closed-loop system. Note that in the system with

the sign of the feedback as shown, positive values for KVce and KLce
effectively result in negative feedback. See text for details on blocks f1
through f7. Blocks containing the integral sign indicate integration
with respect to time
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Regarding the position of the skeletal model in the
reference state, the knee and hip joints are chosen to be
0.2 rad from full extension; in this position, the contri-
bution of passive structures can be neglected. The center
of gravity is chosen to lie 18% of the foot length in front
of the ankle axis. This results in an ankle angle that is in
the midrange of the range of motion.

2d Analysis of the local stability
of the open-loop system

Local stability of the open-loop controlled system can be
directly judged from the properties of the system matrix
Aol. More precisely, whenever all real parts of the
eigenvalues of Aol are negative, the linear system is
stable and the underlying nonlinear system is locally
stable. Therefore, MRE(AolÞ, which is the maximal real
part of the eigenvalues of the system matrix Aol, is used
as a measure of local stability in this study. For a stable
system (MRE(AolÞ < 0), the negative reciprocal of the
value of MRE(AolÞ indicates the slowest component
(that is, the component with the highest time constant)
of the system. Another variable related to local stability
is the low-frequency joint stiffness, which is an aspect
of joint impedance that is easily interpretable.
Low-frequency joint stiffness indicates the steady-
state net muscle torque change per steady-state joint
angle change. If at any of the joints this stabilizing

low-frequency joint stiffness does not outweigh the
corresponding destabilizing gravitational stiffness, the
system cannot be locally stable. In passing, it is noted
that the opposite is not true: an adequate low-frequency
joint stiffness does not guarantee local stability. The
stiffness matrix can be obtained analytically from the
linearized system as outlined in the Appendix.
In order to assess the contribution of muscle prop-

erties and cocontraction to stability, four systems are
compared: (1) a torque-driven system system lacking
these muscle properties; (2) a three-muscle system where
equilibrium is produced by the monoarticular extensors
soleus, vasti, and gluteals; (3) a six-muscle system, where
equilibrium is produced through maximal cocontraction
of a pair of monoarticular muscles at each joint (soleus
and tibialis anterior; vasti and short head of biceps
femoris; gluteals and iliopsoas); and (4) the full nine-
muscle system, where the nine muscle stimulation levels
that minimize MRE(AolÞ while ensuring that equilibri-
um is maintained was determined iteratively. In addition
to these four systems, the maximally attainable low-
frequency stiffness at the required net joint torque was
determined for each of the joints separately on the basis
of a grid search.

2e Modeling and optimization of muscle spindle feedback
and modeling of neural time delays

The firing frequency of muscle spindle afferents is known
to depend in a complex way on the length and stretch
velocity of the sensory zone (Rothwell 1994). In the
present study, a black-box model of spindle feedback is
used. It is assumed that the spindle system effectively
provides perfect information to the spinal system about
contractile element length Lce and velocity vce. Sensor
dynamics is not modeled because its bandwidth far
exceeds the range of frequencies that are relevant to
postural sway (Rothwell 1994). The analysis is restricted
to the monosynaptic loop; that is, spindle information
from a muscle feeds back only on the stimulation of that
muscle itself; cross couplings between muscles are not
considered. As the only issue addressed in this study is
local stability, spindle feedback is modeled to be linear.
It is assumed that at the spinal level there is full and
independent control over the linear feedback gains for
length and velocity, for each muscle separately.
Spindle activity does not instantaneously affect stim-

ulation at the neuromuscular junction. The time lag is
largely determined by the conduction speed of type Ia
and type II afferents and of efferent nerves and is
modeled as a pure time delay of 0.035 s (Rothwell 1994).
This pure time delay is modeled using a fifth-order Padé
filter for each muscle. The structure of the feedback
controlled system is shown in Fig. 2 (switch closed).
Note in Fig. 2 that, contrary to the customary situation,
the sign of the feedback is defined as positive. This is
done to ensure that positive feedback gains effectively
result in negative feedback.
In terms of the state space model, the muscle spindle

feedback controlled system constitutes output feedback

Table 1. Parameter values of the skeletal system. For lower legs
and upper legs values are for left and right body side combined.
HAT = Head-Arms-Trunk, modeled as one rigid segment. Center
of mass (COM) position is relative to the caudal end of the seg-
ment. Segment angles are defined counterclockwise from the right
horizontal

Length
(m)

COM
position
(m)

Mass
(kg)

Moment
of Inertia
(kg�m2Þ

Segment
angle
(rad)

Lower legs 0.46 0.26 7.1 0.14 1.46
Upper legs 0.49 0.28 16.9 0.42 1.66
HAT 0.90 0.29 55.8 3.90 1.46

Table 2. Muscle parameter values. Fmax is maximum isometric
force, for left and right body side combined; Lce;opt is contractile
element optimum length; Lslack is series elastic element slack length

Fmax
(N)

Lce;opt
(m)

Lslack
(m)

Moment arm
(m)

Ankle Knee Hip

Tibialis Ant. 2396 0.087 0.317 )0.037
Soleus 5991 0.055 0.236 +0.044
Gastrocnemius 2996 0.055 0.376 +0.044 +0.018
Vasti 10490 0.093 0.160 )0.042
Rectus Fem. 3469 0.081 0.340 )0.042 )0.035
Glutei 5532 0.200 0.150 +0.062
Hamstrings 4426 0.104 0.370 +0.026 +0.077
Iliopsoas 7988 0.102 0.115 )0.050
Biceps C. Breve 1000 0.133 0.100 +0.026
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control when the output vector Dy in Eq. 2 is defined as
the time-delayed [DLce;Dvce]. In other words, the effec-
tive input Dstim in Eq. 2 can be replaced by:

Dstim ¼ Dstimref þ Kfb � Dy ð3Þ

Here, Kfb is a matrix of feedback gains of dimension
9� 18, of which 18 elements (9 autogenous length
feedback gains and 9 autogenous velocity feedback
gains) will be allowed to be nonzero.
After substitution of Eq. 3 in Eq. 2, and using the fact

that for our musculoskeletal model Dol is a null matrix,
we find:

D _xx ¼ ðAol þ Bol � Kfb � ColÞ � D _xxþ Bol � Dstimref

¼ Acl � D _xxþ Bol � Dstimref

D _yy ¼ Col � D _xx

ð4Þ

The matrix (Aol þ Bol � Kfb � ColÞ is the system matrix of
the closed-loop system and will be referred to as Acl.
Given the linearized open-loop state space model, Acl is
seen to depend on the gain matrix Kfb only. Therefore,
the question of whether monosynaptic spindle feedback
can result in a locally stable system can be addressed by
investigating the eigenvalues of Acl as a function of the
gain matrix Kfb. In particular, the aim is to find the gain
matrix Kfb that minimizes MRE(AclÞ. As no analytic
methods are available to find the optimal matrix Kfb, a
simulated annealing algorithm for optimization based
on Goffe et al. (1994) is used to find the set of feedback
gains that minimizes MRE(AclÞ. In the optimizations,
the feedback gains were allowed to take on values
between 0 and 32.
In the study of the contribution of spindle feedback,

the position of the skeletal system was identical to that
used in the study of cocontraction. Because in reality
high levels of cocontraction are not found during human
standing, the active state of the nine muscles in the
equilibrium position was required to be below 0.25.
Cocontraction was chosen such that MRE(AclÞ was
minimized while satisfying this constraint on active state.

3 Results

The stability of the open-loop system was investigated
for four different situations: (1) torque-control model;
(2) three-muscle model; (3) six-muscle model; and (4)
nine-muscle model. The resulting MRE(AolÞ and the
low-frequency joint stiffnesses are reported in Table 3.
Furthermore, the maximally attainable low-frequency
joint stiffness at the required net joint torque was found
to equal 230, 318, and 791 Nm�rad�1 for ankle, knee,
and hip, respectively. All in all, it was found that the
intrinsic muscle properties contribute to the low-fre-
quency joint stiffness and that cocontraction does so
even more strongly; however, it was found impossible to
compensate for the destabilizing gravitational stiffness
(see Table 3) at the ankle and at the knee. The
insufficiency of the low-frequency joint stiffness is
reflected in the value of MRE(AolÞ, which is positive in

all four situations considered, signaling an unstable
system. Detailed analysis revealed that the low-frequen-
cy joint stiffness originated only partly from the
isometric torque-angle relationship of the muscles; it
was found that the length dependence of active state that
is present in the activation dynamics model described by
Hatze (1981) made a substantial contribution to the low-
frequency joint stiffness. The instability of the system is
confirmed by simulations of the nonlinear model, after
an arbitrary perturbation (data not shown).
For the system controlled by time-delayed negative

spindle feedback, Fig. 3 presents optimization results for
five independent optimization runs each of which started
from a random initial guess. Separate optimizations
yield values for MRE(AclÞ that are very similar (ranging
between +0.78 s�1 and +0.79 s�1Þ, while the feedback
gains vary somewhat between optimizations. We con-
clude that local stability cannot be obtained through
time-delayed negative spindle feedback. From Table 3
it is noted that the feedback contribution to the
low-frequency joint stiffness is such that this stiffness
adequately compensates for the destabilizing gravita-
tional stiffness; in other words, the reason for the
instability is not that the low-frequency joint stiffness is
insufficient.
Figure 3 shows that some of the length gains are zero,

suggesting that allowing positive feedback might
improve local stability. To follow up on this, five
independent optimizations of the feedback gains were
carried out where feedback was not required to be
negative; this yielded values for MRE(AclÞ ranging from
�0:25 s�1 to �0:41 s�1, indicating that positive feedback
may indeed improve local stability, effectively producing
a system that is just barely stable.
Finally, the effect of time delays was assessed by

carrying out five optimizations in the absence of time
delays (negative feedback). This yielded values for MRE
(AclÞ that ranged from �0:86 s�1 to �0:87 s�1, even
though there was substantial variation in the underlying
feedback gains (data not shown). Comparison to the
results for time-delayed negative feedback indicates that

Table 3. Max(real(eig(A))) and diagonal elements of the low-fre-
quency joint-stiffness matrix for open-loop torque control (OL_T),
and the three-, six-, and nine-muscle open-loop models, and for
closed-loop delayed negative (CL_DNF), delayed ‘‘arbitrary’’
(CL_DAF), and nondelayed negative (CL_NNF) feedback control.
For comparison, the destabilizing gravitational stiffness at ankle,
knee, and hip is also given

MRE(AÞ
(s�1Þ

Ankle
stiffness
(Nm�rad�1Þ

Knee
stiffness
(Nm�rad�1Þ

Hip
stiffness
(Nm�rad�1Þ

Gravitational
stiffness

)811 )469 )159

OL_T +17.49 0 0 0
OL_3 +7.41 74 35 61
OL_6 +2.85 229 128 361
OL_9 +2.51 172 252 748
CL_DNF +0.78 1152 760 565
CL_DAF )0.41 1164 1139 319
CL_NNF )0.87 1243 814 2170
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the time delay indeed limits the efficacy of the feedback
loop; in the absence of time delays, the contractile ele-
ment velocity feedback gains were substantially higher.
Furthermore, the pattern of the contractile element
length feedback gains was different in the absence of
time delays, which is reflected in the different pattern of
low-frequency joint stiffnesses (see Table 3).
In order to verify that conclusions based on analysis

of the linearized system also hold for the nonlinear
system, the response of both these systems to an arbi-
trary perturbation of 0.01 rad � s�1 of the trunk angular
velocity was calculated (Fig. 4). This comparison was

carried out for the (nonrealistic) nondelayed negative
feedback system, as this is the system for which
MRE(AclÞ was most negative. It is seen that for small
perturbations the responses are very similar, indicating
that it is meaningful to analyze the linearized system.

4 Discussion

The first aim of this study was to determine the potential
contribution of muscle properties to the local stability of
bipedal stance. Next, the contribution of time-delayed

Fig. 3. Results of five indepen-
dent optimizations of the feed-
back gains for time-delayed
negative feedback of contractile
element length and velocity.
MRE(Acl), the maximum of the
real parts of the eigenvalues of
the closed-loop system matrix
used as the objective function in
the optimization, ranges from
0.78 s�1 to 0.79 s�1

Fig. 4. Comparison of the behavior of the
nonlinear and the linearized nondelayed
negative feedback controlled system. The
horizontal position of the body center of
mass (relative to the ankle axis) in response
to a 0.01 rad � s�1 perturbation of the initial
trunk angular velocity is plotted as a function
of time
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negative muscle spindle feedback was investigated. In
addition, the limitations imposed by the time delays
were assessed, and the question of whether positive
feedback can improve local stability was investigated. It
was found that muscle properties improve low-frequen-
cy joint stiffness; however, even at maximal cocontrac-
tion, open-loop control does not result in a locally stable
system. More surprisingly, it was impossible to find
negative feedback gains for time-delayed muscle spindle
information that yield a locally stable system, for the
open loop equilibrium investigated. Lifting the con-
straint that feedback gains had to be negative did result
in a stable system, albeit just barely so. Negative
feedback in the absence of the neural time delays did
produce a stable system, underlining the limitations
imposed by time delays.
Analysis of the open-loop system revealed that

muscle properties contribute to low-frequency joint
stiffness but do so insufficiently to overcome the de-
stabilizing gravitational stiffness. This finding is not in
line with a control scheme for quiet standing proposed
by Winter et al. (1998). Given the fact that the model
used in this study had been previously shown to re-
produce the behavior of human subjects remarkably
well in a variety of tasks (e.g., cycling, van Soest and
Casius 2000; jumping, van Soest and Bobbert 1993;
and lifting, J.C.E. van der Burg et al. 2002, personal
communication, submitted), it seems likely that the
dynamic properties of the muscles are modeled with
reasonable accuracy; consequently, we tend to agree
with Morasso and Schieppati (1999) that stable stand-
ing cannot be achieved using open-loop control, that is,
on the basis of the viscoelastic properties of muscle.
These remarks should not be taken to indicate that
these properties may as well remain unmodeled. In fact,
the difference between the open-loop torque control
and the open-loop muscle control (Table 3) shows that
the control problem faced by the central nervous sys-
tem is overestimated when muscle properties remain
unmodeled. Furthermore, these muscle properties form
the only zero-delay system to counteract perturbations.
It must be noted that in this study, joint stiffness

arises from the interaction between the static force-
length relations of contractile element and series elastic
element of the Hill-type muscle model and from the
length-dependence of the active state (Hatze 1981). The
contractile element force-length relation is based on
myofilament overlap; however, cross-bridge stiffness,
which is another aspect of cross-bridge dynamics, is
not represented in our Hill-type muscle model. Cross-
bridge stiffness is much higher than the stiffness of the
static force-length relationship (Zahalak 1990). How-
ever, this stiffness is observable primarily during
high-frequency vibration experiments (Zahalak 1990);
therefore, inclusion of cross-bridge stiffness will not
affect the low-frequency stiffness. As open-loop control
produced insufficient low-frequency joint stiffness, we
expect that our conclusions regarding open-loop con-
trol will be upheld when cross-bridge stiffness is mod-
eled. The same reasoning does not necessarily apply
to negative spindle feedback control, however, as the

low-frequency stiffness is not the cause of instability
there. It would be interesting to investigate the contri-
bution to stability of this and other history-dependent
aspects of muscle dynamics that are not captured by a
Hill-type model.
In modeling spindle feedback, the usual assumption is

made that spindle afference signals contractile element
length and velocity (e.g., Rothwell 1994). It is not always
realized that this assumption implies that joint angles
and angular velocities are not directly sensed by muscle
spindles due to the presence of series elasticity. This may
be one factor in explaining why inclusion of negative
time-delayed spindle feedback does not yield local sta-
bility. Another factor that was directly shown to limit
the efficacy of spindle feedback is the presence of neural
time delays. The negative effect on stability of the time
delays can be readily understood from basic control
theory. A third factor that was shown to limit the effi-
cacy of spindle feedback is the assumption that this
feedback must be negative. When positive feedback is
allowed, a stable system is obtained, even though the
time constants are unrealistically large. Given the com-
plexity of the spinal circuitry, it must be expected that
positive spindle feedback is a neurophysiological possi-
bility. A final factor that may limit the contribution of
spindle feedback as identified in this study concerns the
fact that cross couplings of feedback pathways between
muscles were not considered. Cross couplings were ne-
glected because they have been shown to be weak in
comparison to feedback on the muscle itself (He et al.
1991; Smeets and van der Gon 1993) and because their
inclusion would have implied a dramatic increase in the
number of feedback gains to be optimized.
In optimizing the spindle feedback gains, sensory

dynamics was neglected, sensory noise was not consid-
ered, and it was assumed that length and velocity feed-
back gains could be tuned independently. Despite the
fact that length and velocity information is combined at
the level of the spindle, the latter assumption is sup-
ported by the literature; the sensitivity for length and
velocity differs between type Ia and type II spindle
afferents, and these sensitivities can be influenced by
intrafusal stimulation with static and dynamic gamma
efferent fibers (Rothwell 1994). All in all, the assump-
tions regarding spindle feedback are such that, if any-
thing, this study overestimates the potential contribution
of spindle feedback.
In conclusion, optimally tuned time-delayed negative

spindle feedback, in combination with the stabilizing
properties of muscle, does not suffice to stabilize the
musculoskeletal system as modeled in this study. As we
are confident that the salient features of the ‘‘real’’ sys-
tem are adequately represented in this model, it remains
an open question what the minimal control requirements
are for adequate stability of bipedal standing. In future
work we will investigate the potential contribution of
low-level force feedback as mediated through Golgi
tendon organs.
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Appendix: Determination of low-frequency joint stiffness

The most straightforward way to obtain low-frequency
joint stiffness is to clamp a joint angle at a slightly
perturbed value, perform a simulation until steady state
has been reached, and take the ratio of the change in
joint torque over the change in joint angle. This
Appendix deals with the question of how the resulting
ratio representing the low-frequency joint stiffness can
be directly calculated from the linearized system.
In order to answer this question we want to impose a

constant joint angle Dujo;ss (ss for steady state) and cal-
culate the steady-state joint torque Dsss that results. We
start from the linearized state space model in which we
partition the state vector into segment angles Du, seg-
ment angular velocities Dx, and the muscle-state vari-
ables Dl (actually, contractile element lengths and Ca2þ

concentrations), and in which we consider only the joint
torques s as outputs:

D _uu
D _xx
D _ll

2
4

3
5 ¼

0 I 0

Ax;u Ax;x Ax;l

Al;u Al;x Al;l

2
4

3
5 �

Du

Dx

Dl

2
4

3
5þ B � Du ð5Þ

Ds ¼ Cs;u Cs;x Cs;l

� �
�

Du

Dx

Dl

2
4

3
5 ð6Þ

Note that in the context of the present study, Du equals
zero at all times because the setpoint is stationary. Then,
the steady-state muscle state Dlss that corresponds to a
clamped steady-state segment angle vector Duss is found
from Eq. 5 by setting D _ll ¼ 0 and noting that a clamped
segment angle vector implies that the segment angular
velocity vector Dx ¼ 0:

Dlss ¼ �A�1
l;l � Al;u � Duss ð7Þ

Substituting Du ¼ Duss and Dl ¼ Dlss in Eq. 6 and
using Eq. 7, we can express the joint torque vector Dsss
as a function of the segment angle vector Duss:

Dsss ¼ Cs;u � Cs;l � A�1
l;l � Al;u

� �
� Duss ð8Þ

As we are interested in the relation between joint angle
and joint torque, we express the segment angles Du in
the joint angles Dujo:

Duss ¼
1 0 0

1 1 0

1 1 1

2
4

3
5 � Dujo;ss ¼ T � Dujo;ss ð9Þ

Finally, we substitute Eq. 9 into Eq. 8 and rearrange to
obtain the desired expression for the low-frequency
joint-stiffness matrix Kjo:

Kjo ¼
osss

oujo;ss

¼ Cs;u � Cs;l � A�1
l;l � Al;u

� �
� T ð10Þ
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