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Block algorithms are becommg mcreasmgly popular m matrix computations. Since their basic

umt of data M a subm atnx rather than a scalar, they have a higher level of granularity than

point algorithms, and this makes them well suited to high-performance computers. The numeri-

cal stability of the block algorithms in the new hnear algebra program library LAPACK m

mvestlgated here. It 1s shown that these algorithms have backward error analyses m which the

backward error bounds are commensurate with the error bounds for the underlying level-3 BLAS

(BLAS3) One lmphcatlon is that tbe block algorithms are as stable as the corresponding point

algorithms when conventional BLAS3 are used, A second lrnphcatlon 1s that the use of BLAS3

based on fast matrix mulhphcatlon techmques affects the stablhty only insofar as It increases

the constant terms m the normwlse backward error bounds For linear equation solvers employ-

ing L U factorization, it is shown that fixed precision iterative refinement helps to mitigate the

effect of the larger error constants, Despite the posltwe results presented here, not all plausible

block algorithms are stable; we Illustrate this with the example of LU factorization with block

triangular factors and describe how to check a block algorithm for stability without doing a full

error analysls

Categories and subject Descriptors G 13 [Numerical Analysis]” Numerical Linear Algebra
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1. INTRODUCTION

A block algorithm in matrix computations is defined in terms of operations

on submatrices rather than matrix elements. Such algorithms are well suited
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to many high-performance computers because their data locality properties

lead to efficient usage of memory hierarchies [16, 17, 18, Ch. 1].

When a block algorithm is coded in FORTRAN, advantage can be taken of

the level-3 Basic Linear Algebra Subprograms (BLAS3). The BLAS3 are a set

of FORTRAN primitives for various types of matrix multiplication, together

with solution of a triangular system with multiple right-hand sides [11, 12].

For a suitably coded block algorithm, the bulk of the computation is carried

out by calls to the BLAS3.

The BLAS3 specifications [11] stipulate the input, output, and call se-

quence for each routine, but allow freedom of implementation, subject to the

requirement that the routines be numerically stable. This freedom includes

not only the various ways to order matrix multiplication, but the use of

algorithms algebraically different from the conventional ones. Of chief inter-

est here are algorithms that achieve a more favorable operation count (for

suitable dimensions) through the use of a fast matrix multiplication tech-

nique. We refer to such BLAS3 implementations as “fast BLAS3 .“

One set of fast BLAS3 is proposed in [21]. There it is shown how asymptotic

speedups can be produced in all the BLAS3 routines by the use of Strassen’s

method for matrix multiplication [32], which forms the product of two n X n

matrices in O(n1°~’7) operations (logz7 = 2.807). A set of fast BLAS3 can also

be built from Winograd’s matrix multiplication method [36] (which has an

operation count of 0( n3 ) with different constants than the conventional

technique) or one of the methods with a lower exponent than Strassen’s

(although the practical utility of the latter methods has yet to be demon-

strated [23]). In the case of complex matrices, all these possibilities can be

combined with the technique analyzed in [25], which enables the product of

two complex matrices to be formed using only three real matrix multiplica-

tions. Several researchers are experimenting with the use of fast BLAS3 in

linear equation solvers. In particular, we mention the work of Bailey et al.

[3], who use Strassen’s method for the matrix multiplications arising in the

LAPACK LU factorization routine SGETRF.

Our purpose is to investigate the numerical stability of block algorithms

that employ fast BLAS3. We restrict our attention mainly to the block

algorithms used in LAPACK [4, 9]. For block size 1, the algorithms in

LAPACK are classical point algorithms that are well known to be numeri-

cally stable; that is, each computed answer is the exact answer to a perturbed

problem, where the norm of the perturbation is bounded by the product of the

unit roundoff, a modest constant depending on the dimensions and the norm

of the data. (To be precise, this statement is true modulo the possibility of a

large growth factor in Gaussian elimination with partial pivoting, and a

weaker definition of stability for matrix inversion [15].) For bllock sizes r > 1,

with conventional BLAS3, it is generally accepted that the same stability

results are valid, although we are not aware of any detailed proofs (in the

case of block L U factorization one can argue that the same arithmetic

operations are carried out as for r = 1, albeit in a different order). The

question of particular interest here is the effect on the stability of using fast

BLAS3 when r > 1. We show that, for all BLAS3 implementations of inter-
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est, backward error bounds hold for the block algorithms that are commensu-

rate with the error bounds for the BLAS3 themselves. This is clearly the best

we could expect to prove.

As our model for floating-point arithmetic, we take

fl(xty) =x(l+a)iy(l+ ~), la],lplsu,

fl(xopy) =(xopy)(l +8), 181< u,op =*,/,

where u is the unit roundoff. We need to make some assumptions about the

stability of the BLAS3. The BLAS3 primitives involve three types of matrix

multiplication: a general product AB, a cross product A~A, and the product

of a triangular matrix with a full matrix. It is sufficient to assume that all

these products satisfy the following general condition: if A G R m‘’, B G R n‘p

and ~ is the computed approximation to C = AB, then

e= AB+Ac,

where Cl( m, n, p ) denotes

matrix norm is defined by

Note that for this norm,

IIACII s cl(m, n,p)dAllll Bll + 0(u2), (1.1)

a constant depending on m, n, and p. Here the

11X11= maxlx,jl.
Z>J

with A and B dimensioned as above, II&l II <

nl] Al I IIB II is the best such inequality.

We also assume that the computed solution 2? to the triangular systems

TX = B, where T E R“”m and B c Rmxp, satisfies

TX=B + AB, IIABII < cz(m, p)ullTllllfll + 0(u2). (1.2)

For conventional BLAS3 implementations, conditions (1. 1) and (1.2) hold

with Cl(m, n,p) == nz and cz(m, p) = m(m + 1) [21].

For the fast BLAS3 proposed in [21], based on Strassen’s method, (1,1) and

(1.2) hold with c1 and Cz rather complicated functions of the dimensions m,

n > P, and the threshold no that determines the level of recursion. In the
special case, m = n =p = 2k, no = 21, the constants reduce to [21]:

()

n
log212

el(n, n,n) = — (n~+5no)–5n,
no

(H

n 10g’lz n~ 23

1

10 35 143
cz(n, n) = — H + ~?zo +fin~+fino ——

no 55 ‘“

Condition (1. 1) also holds when the multiplication is done by Winograd’s

method with scaling, or, in the case of complex matrices, by the method of

[251 combined with any method for real matrix multiplication that satisfies

(1. 1) (see the error analysis in [6] and [25]).

Note that for conventional multiplication we have the following component-

wise version of ( 1. 1):

~ =AB + AC, ICI < nu/AllBl + 0(u2). (1.3)
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Here IAl denotes the matrix (I a,~ 1) and inequalities hold componentwise.

Similarly, for the substitution algorithms for solving triangular systems, we

have

TX=B + AB, IABI < (m. + l)uITIIXI+ O(U2). (1.4)

We stress that these bounds are much stronger than (1.1) and (1.2). For

example, if D = diag(dt) with d, > 0 for all i, then scaling AB ~ AD “ D-lB

leaves C and the upper bound in (1.3) unchanged, and scaling AB ~ DA. BD

causes the bound of (1.3) to scale in the same way as C; (1.1) does not share

these favorable scaling properties. For further remarks on the differences

between (1. 1) and (1.3), see [21]. A consequence of (1.3) and (1.4) is that for

some block algorithms it is possible to obtain stronger backward error results

than the usual normwise ones (perhaps for certain classes of matrix only); for

examples see [8] and [22]. These stronger results are usually not valid for any

of the fast BLAS3 discussed above.

The block algorithms in LAPACK break into two main classes: those based

on LU factorization and those involving orthogonal transformations. In the

next section we give an error analysis of block LU factorization. We show

that iterative refinement in fixed precision is beneficial for all BLAS3 imple-

mentations and point out the instability of L U factorization with block

triangular factors. We also explain how to investigate the stability of a block

algorithm without doing a full error analysis. In Section 3 we consider the

use of aggregated Householder transformations, which form the basis of a

variety of block algorithms involving orthogonal transformations. Some con-

cluding remarks are given in Section 4.

Block algorithms for matrix inversion are analyzed by DuCkoz and Higham

[15], so we do not consider them here. It is shown in [15] that one particular

block algorithm for inverting a triangular matrix is unstable, even though the

point algorithm from which it is derived is stable; this serves to emphasize

that stability of block algorithms cannot be taken for granted.

2. LU FACTORIZATION

2.1 Error Analysis

In this section we examine in detail the stability of block LU factorization.

Initially we assume that no pivoting is used and that the factorization

succeeds; below we discuss the addition of pivoting.

Consider a block implementation of the outer product form of LU factoriza-

tion [17, p. 91], [18, p. 100]. The algorithm may be described through the

partitioning

where All is r x r. One step of the block algorithm consists of factoring

All = LIIUII, solving the multiple right-hand side triangular systems

Lll Ulz = Alz and LZIUII = Azl for UIz and Lzl, respectively, and forming
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B = Azz – LjlU1z. This procedure is then repeated on B. The block opera-

tions defining Ulz, Lzl, and B are level 3 BLAS operations.

We assume that the block level LU factorization is done in such a way that

the computed LU factors of All G R r x r satisfy

We claim that under these assumptions, together with (1.1) and (1.2), the

LU factors of A G Rn’n computed using a block size r satisfy

iti=A + AA, IIAAII s zL(8(n, r)ll All + f)(n, r)llij Iltill) + O(u’), (2.2)

where ~( n, r ) and 0( n, r) are constants depending on n and r. The proof is

essentially inductive. For n = r, (2.2) holds with

8(r, r) =0, (3(Z-,Z-) =Cq(r), (2.3)

in view of (2.1). Consider the first block stage of the factorization. The

assumptions imply that

To obtain B = Azz
AA

– L21UH We fIrst COmPUte C = LZIUIZ ! obtaining

~ =&lti12 + AC, IIACII < Cl(rz – r,r, n – r) ZJlli211111dlJ + 0(u2),

and then subtract from Azz, obtaining

B= A2z– ~ +~, IIFII s U(IIA2211 + Ildll) + O(U’). (2.6)

It follows that

B =A22 – zt21U12+ AB,

IIABII s U(IIA2211 + 11~211111~1211+ cl(n - r,r, n - r)lli211111~1211)

+ 0( ZL2). (2.7)

The remainder of the algorithm consists of the computation of the LU

factorization of B, and by our inductive assumption (2.2), the computed LU

factors satisfy

i22fi,2 =B + AB,

IIA811 < ti(n - r,r)ulllll + @(n - r,r)ull~221111~2211 + O(u’). (2.8)
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(2.8), and bounding IIA IIusing (2.6), we obtain

izlfilz + i!zzl?zz = Azz + AAZZ ,

IIAAZ211< Z@ + ti(n - r,r)]llA2211

+[1 +Cl(?”, n –r, n –7-) + 8(ZZ –r, r)]llli2Jlli7~~11

+O(rz – r,r)ll&lllo2211) + 0( ZL2). (2.9)

Collecting together (2. l), (2.4), (2.5), and (2.9), we have

LO= A+ AA, (2.10)

where bounds on IIA A,j l\ are given in the equations just mentioned. These

bounds for the blocks of A A can be weakened slightly and expressed together

in the more succinct form

lliiAll < u(ti(n, r)llAll + ~(n, r)ll~ll 11~11)+ O(ZL2) (2.11)

where

ti(n, r) = l+8(n–r, r),

(l(zz, r) =max{c~(r), c2(r, rz –r),

l+cl(z-, rz-r, n-r) +8(n-r, r) *O(n–r,7-)}.

Using (2.3) it follows that ~(n, r) s zz/r.

These recurrences show that the basic error constants in assumptions ( 1. 1),

(1.2), and (2. 1) combine additively at worst. Thus the backward error analysis

for the LU factorization is commensurate with the error analysis for the

particular implementation of the BLAS3 employed in the block factorization.

In the case of the conventional BLAS3, we obtain a generalization of the

classical Wilkinson result for r = 1,with @(n, r) = 0( rz3).

Although the above analysis is phrased in terms of the block outer product

form of LU factorization, the same result holds for other “ijk” block forms

(with slightly different constants), for example the gaxpy or sdot forms.

If we incorporate partial pivoting in the above factorization, then two of the

block steps are coalesced: Lll and Lzl are obtained by using Gaussian

elimination with partial pivoting (GEPP) to compute the factorization

(2.12)

Thus each main step of the algorithm involves two, rather than three, BLAS3

operations. If the obvious analog of (2.1) holds for (2.12), then (2.10) (with A

replaced by PA) and (2.11) remain valid, with minor changes in the recur-

rences for ~(n, r) and 61(n, r).

There is no difficulty in extending the analysis to cover sollution of Ax = b

using the computed L U factorization. Invoking the usual e~-ror analysis for

substitution (see [18, Sec. 3.1], for example), we find that [A + A A)2 = b,
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with

IIAAII s ZL(6(V)IIAII + (6(n, r) + 2n2)lltlllltill) + O(U2). (2.13)

For a linear system with multiple right-hand sides, AX = B with X, B ●

R n‘ P, both substitution stages are BLAS3A operations. Using (1.2), it is

straightforward to show that the computed X satisfies

lld-Blls ([c~(%~)(~’ +n) + O(rz,r)n]llilllldll + 8(n, r)rzllAl]

Xllxllu + O(u’). (2.14)

We mention that the error analysis given in this section adapts in a

straightforward way to block L U factorization for banded matrices, block

factorization of symmetric indefinite matrices [ 18, p. 168], and block Cholesky

factorization of (banded) symmetric positive definite matrices [26].

2.2 Iterative Refinement

The LAPACK routines for solving linear equations support fixed precision

iterative refinement [ 10], that is, iterative refinement in which no extra

precision is used in calculating the residuals. The benefits of this process can

be explained in terms of the componentwise relative backward error CO(y) of

an approximate solution y to Ax = b. This quantity is defined by

co(y) =min{~:(A + AA)y = b + Ab, lAAl < ~lAl,lAbI < ●lbl},

lb –Aylz

= ‘:x (]AIIYI + Id), ‘
(2.15)

where the latter equality is proved by Oettli and Prager [27]. A small value

for 0(y) implies that y is the solution of a system in which each element of A

and b has undergone a small relative perturbation—in particular, zero

elements are not perturbed. However, in general, all that can be guaranteed

for the 2 from GEPP is that the normwise relative backward error T(2) =

0( u), where

TI(Y) = min{~: (A + AA)Y = b + Ab, IIAAIIM s EIIAII=, llAd~ s 4W}

Ilrllx

IIAII=IIYII= + Ilbllm “
(2.16)

Skeel [31] showed that as long as A is not too ill-conditioned and the

components of the vector IAl Ix I do not vary too much in magnitude, then

d Y) = O(u) for the vector y obtained from GEPP with one step of fixed

precision iterative refinement. Skeel’s result, together with further analysis

by Arioli et al. [ 1], provides the theoretical foundation for the inclusion of

fixed precision iterative refinement in LAPACK.

In LAPACK, iterative refinement is terminated if

(1) O-J< u,

(2) o has not decreased by a factor of at least 2 from the previous iteration,

or

(3) five iterations have been performed.
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These criteria have been chosen to be robust in the fact of different BLAS

implementations and machine arithmetics.

Skeel’s result is applicable only when conventional BLAS3 are used. To

investigate the effect of using fast BLAS3, we can make use of work by

Higham [24] that covers fixed precision iterative refinement with an arbi-

trary linear equation solver. For our purposes, the results in [24] require a

bound of the form Ib – 4 I s uGI A I for the given solver, where G is a

nonnegative matrix. For block LU factorization with partial pivoting, we

have

lb -Ail < IAAII;I,

where IIA All is bounded in (2.13). We assume that the residual for the

refinement step is computed in the conventional way, via inner products or

saxpy operations as in LAPACK. Since we have only a normwise bound on

AA, we cannot apply a direct generalization in [24] of Skeel’s result (to do so

we would need to have IA Al < uGI Al with IIGII bounded independently of A).

However, we can invoke the weaker Theorem 2.1 in [24] to obtain

lb -A~l< (n +2)u(lAlljl +Ibl) +O(U2), (2.17)

where ~ is the computed vector obtained after one step of fixed precision

iterative refinement. This result has two main features. First, it is asymp-

totic, and the second order term prevents us concluding from (2.17) and (2.15)

that CO(j) < (n + 2)u. However, if the components of IAl Ij I + Ib I do not vary

too much in magnitude, it is likely that this inequality will be satisfied (if not,

extra refinement steps may help to achieve a small ~). The second point is

that AA does not appear in the first order term of (2. 17)—it is hidden in the

second order term where it multiplies a vector with elements of 0(u). This

means that the refinement step tends to suppress any instability manifested

in AA.

LAPACK also supports iterative refinement for linear systems with multi-

ple right-hand sides, AX = B where X, B ● R n‘P. In this case it is appropri-

ate to consider whether a small componentwise relative backward error is

achieved for each individual system AAx, = bZ, i = l:p. If conventional BLAS3

are used for the computation of X and for the refinement process, then

Skeel’s result is applicable to each system Ax, = b,.

Suppose that fast BLAS3 are used in computing ~. First, we obtain a

bound of the form Ib, – &, I < UGZ12, I for each i. It is necessary to do this in

an indirect way, as follows. We note first that (2.14) implies

IIA.2, - b,llm sMp,ullAllvl/2,11c + 0(u2), i = l:p,

where

M=

p, =

AA

[C,(w)(n’ + n) + (WV-)72]“;:\:”+a(n, r)n,
m

11X11

Ilitllm 2 1“
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From (2. 16), it follows that

(A+ AAz)2, =bt, llAALJx < iWKzullAll_ + O(u’). (2.18)

Hence we have lb, – A4rl < IA A, I12,1, with llAA,ll~ bounded as in (2.18). In

invoking Theorem 2.1 of [24], we need to specify how the residuals R = B –

AX are computed and how the corrections for the refinement are computed.

We assume that the residuals are computed using conventional BLAS3. If

fast BLAS3 are used, we can do no better than to obtain a normwise bound

for each b, – A~, that is proportional to the fast BLAS3 error constant c1

(this is not surprising, since it is a general principle for iterative techniques

that the stability or accuracy is limited by the quality of the computed

residuals).

If we use fast BLAS3 for the substitutions on the correction step, then for

each computed correction we have a result analogous to (2.18). Theorem 2.1

of [24] than shows that (2. 17) holds for b, and ~,, but the potentially very

large ~, term, and its analog for the refinement step, are present in the

second order term of (2.17), making the result of limited practical value. If

the substitutions are done using conventional BLAS3, then (2.17) holds for b,

and ~,, with p, alone present in the second order term; hence we would

expect a small d ~, ) as long as ~, is not too large. Finally, we note that if all

the substitutions in the computation of X and in the refinement process are

done with conventional BLAS3, then we can set K, - 1 in the above analysis

and obtain the same computed results as if the refinement were carried out

on each system Ax, = b, independently.

Our overall conclusion is that fixed precision iterative refinement can be

beneficial for GEPP with fast BLAS3 in two ways, assuming that residuals

are computed using conventional BLAS3. First, it may lead to a component-

wise relative backward error of order u, although the theoretical backing is

weaker than when conventional BLAS3 are used. Second, the refinement

will, in any case, tend to counteract any “mild instability” induced by the

potentially faster growth of errors in the fast BLAS3.

We present some numerical results for illustration. Our experiments were

performed in MATLAB, for which u = 2,2 X 10-lG. We solved AX = b by

block outer product LU factorization with partial pivoting, using both con-

ventional BLAS3 and a fast BLAS3; the latter uses conventional triangular

solves and does matrix multiplication by Strassen’s method with n ~ = 1

(recursion down to the scalar level). Iterative refinement was applied with

the convergence test w < u.

We give detailed results for three matrices taken from the test collection

[19]: pascal( n ) is a symmetric positive definite matrix constructed from the

elements of Pascal’s triangle; triw(n, a ) is upper triangular with 1s on the

diagonal and every entry in the upper triangle equal to a; and ipjfact( n, 1) is

the symmetric positive definite matrix with (i, j) entry l/(i + j)!. In each

case b was chosen randomly, with elements from the uniform distribution on

[0, 11. Tables I-III show the componentwise relative backward errors o for

the iterates, with the normwise relative backward errors q in parentheses;

ACM TransactIons on Mathematical Software, Vol. 18, No 3, September 1992
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Table I. A = pascal(8)

Km(A) = 3.96 x 107, cond(A) = 4.60 x 106

Conv., r = 1. Conv., r = 2. Fast, r = 2.

3.03e-16 (2.62e-18) 1.15e-16 (3.54e-18) 1.74e-14 (1.21 e-16)

4.91e-17 (8.60e-18) 4.92e-17 (8.60e-18)

Table II. A = triw(16, – 5)T

KM(A) = 3.57 X 10*3, cond(A) = 9.40 x 1011

Conv., r = 1. Conv., r = 2. Fast, r = 2.

8.42e-17 (4.28e-19) 8.42e-17 (4.28 e-19) 3.12e-9 (4.24e-19)

1.68e-16 (1.27e-18)

Table III. A = ipjfact (7,1)

Km(A) = 1.69 X 1014, cond(A) = 6.85 x 1010

Conv., r = 1. Conv., r = 2. Fast, r = 2.

8.45e-16 (1.51 e-20) 3.68e-16 (1.23 e-20) 2.09e-12 (5.49e-20)

1.98e-17 (1.07e-20) 5.89e-18 (3.19 e-21) 7.07e-18 (2.15e-21)

the column heading “Conv.” denotes conventional BLAS3. We also report the

condition numbers KX(A) = IIAIIWIIA-l L and cond(A) = II IA-ll Ml L.
In these three specially chosen examples, all the q values for the original

computed solution are less than u, but the a values for the fast BLAS3 are

substantially larger than for the conventional BLAS3. Note how iterative

refinement reduces the co values below u in one step in the first three

examples. More typical, less extreme behavior is illustrated in Table IV,

where rand( n) is a random matrix with elements from the uniform [O, 1]

distribution.

The matrices in the first three examples each have nonnegative elements of

widely varying magnitude. These matrices were tried because it is known

that Strassen’s method can provide poor relative accuracy when forming the

product of such matrices in floating-point arithmetic [21]. It is interesting to

recall the result that the computed solution to Ax = b obtained by GEPP in

floating-point arithmetic is invariant under row or column scalings by powers

of the machine base, as long as the same pivot sequence is chosen [7, p. 181].
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Table IV. A = rand(32)

Km(A) = 6.00 x 102, cond(A) = 3.33 x 102

Conv., r = 1. Conv., r = 8. Fast, r = 8.

1.48e-16 (2.67e-17) 2.34e-16 (4.56e-17) 6.81e-16 (1.07e-16)

2.31e-17 (7.16 e-18) 2.99e-17 (8.38e-18)

This invariance property does not hold when Strassen’s method is used in the

BLAS3—this observation provides some further insight into the first three

examples.

2.3 Block-Triangular LU Factorization

Next, we discuss the computation of a true block LU factorization A = LU e

R n‘ n, where L and U are block lower triangular and block upper triangular,

respectively [ 17, 29]. This factorization is not used in LAPACK; we consider it

here because it provides a salutary example of how a plausible block algo-

rithm can be unstable.

Assuming that All G R ‘x r is nonsingular, we can write

‘=[:; ::]=[;, !][A;lj2]=L~> (2.19)

which leads to the following algorithm for computing the block triangular

factors L and U:

(1) Solve LZIAI1 = Azl for Lzl.

(2) B = Az, – LZIA1,.

(3 j Compute the block LU factorization of B recursively.

There is some freedom in how step 1 is accomplished. Assume for the moment

that Lzl is computed via Gaussian elimination with partial pivoting and that

conventional BLAS3 are used throughout. Then it is straightforward to show

that the computed LU factors L and ~ satisfy LU = A + AA, where A A

satisfies a bound of the form

IAAI < u(@, r)lAl + 61(n,r)l~lltil) + O(u’). (2.20)

This is a componentwise analog of (2.11). The same form of bound (2.20) holds

for standard LU factorization (without pivoting); one might therefore sur-

mise that block LU factorization has similar stability to standard LU

factorization. However, the stability is not at all satisfactory, as the following

numerical experiment makes clear.

We implemented two versions of the block LU algorithm in MATLAB,

using conventional BLAS3. Version Gepp uses Gaussian elimination with

partial pivoting in step 1. Version Inv explicitly computes A~ll using Gauss-

ian elimination with partial pivoting and then forms Lzl = Azl x A~ll; such
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Table V. Relative residuals for block LU factorization

r

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Km(A16(–2)) = 0(1016)

~~(~ls(10-4)) = 0(1015)

Moler matrix A16(–2)

Version Gepp Version Inv

0.00 0.00

0.00 0.00

6.64e-17 3.36e-16

2.56e-16 2.40e-15

3.67e-16 1.47e-14

1.18e-15 1.13e-13

4.09e-15 5.95e-13

1.66e-15 1.83e-11

1.02e-14 1.18e-10

1.14e-13 4.82e-10

1.56e-13 1.93e-8

7.63e-13 1.lle-7

3.89e-13 1.54e-6

1.71e-12 8.49e-6

2.95e-11 1.13e-4

Dorr matrix 1116(10-4)

Version Gepp Version Inv

5.89e-17 2.94e-17

2.92e-14 2.49e-14

1.06e-12 1.05e-12

7.lle-12 1.75e-11

7.59e-09 1.58e-09

1.51e-10 1.47e-10

1.42e-05 1.15e-05

1.~8e-19 2.33e-19

9.98e-17 8.52e-17

3.67e-14 3.03e-14

1.54e-12 9.49e-13

1.52e-10 1.48e-10

3.10e-8 2.84e-8

8.98e-6 6.30e-6

5.44e-4 4.53e-4

use of explicit inverses can lead to greater efficiency on parallel machines [17,

29].

We report results for two matrices from [19]: the symmetric positive

definite Moler matrix A.(a) = triw(n, a )~triw(n, a ) c R n x‘, where

triw( n, a) is defined in Section 2.2, and the Dorr matrix I).(a), which is an

unsymmetric row diagonally dominant tridiagonal matrix. ( Dn( a ) has diago-

nal dominance factors y, := Id,, ! – 1~,,,-11 – Id ,,, +11=(~ + l)2a for i = l,fz

and y~ = O otherwise; we perturbed the diagonal elements d22, . . . . dn. 1, ~. 1

to ensure that y, > 10- 15 for the computed matrix). The relative residuals

IIA – Ltill./ll Allm for the block LiY factorization are displayed in Table V for

block sizes r = 1,2,.. . , n – 1. The results reveal instability of both imple-

ment ations; the instability increases steadily with the block size for the Moler

matrix, but is less regular for the Dorr matrix. Interestingly, for the trans-
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pose of the Dorr matrix in Table V, which is diagonally dominant by columns,

all the residuals are of order the unit roundoff (in contrast, standard LU

factorization performs equally well on row and column diagonally dominant

tridiagonal matrices [201).

The essential reason for this instability is that the norm of the term I~11~1

in (2.20) depends on tQe ~ondition of constituents of Schur complements of A,

and, consequently, II ILIIUI 11~can greatly exceed IIAll.. For example, if n – r

< r, then there is just one block stage of the factorization, and from (2. 19) we

have

whose (2, 1) submatrix is IA21 A~ll IIAll 1. For st~ndard LU factor~zat~on, the. .
corresponding submatrix (I LIIUI)21 = IA21u1–11IIU1l I, wh:re AJ1 = L1lU1l. If A

is symmetric positive definite, for example, then IAzl U1-ll IIUll I is guaranteed

to have m-norm of order IIAll. in view of standard results (see, for example,

[18, Sect. 4.2]), but IA21 A~~ IIAlll can have a mush la~ger norm. For the

Moler matrix AIG( – 2), with r = 12, II IAZIU;IIIIU Ilx = 288, while

II lAmAItllA1ll ]Ir = 1.6 X 107 (11A16(-2)llm = 455).

The instability of block LU factorization has not, to our knowledge, been

pointed out before in the literature. However, we know of applications with

diagonally dominant matrices in which the factorization has been found to

perform stably. An interesting topic for further research is to identify particu-

lar classes of matrix for which the factorization is guaranteed to be stable.

For example, it is clear that block LU factorization performs stably when A

is symmetric positive definite and sufficiently well conditioned.

2.4 Recognizing a Stable Block Decomposition

How can we distinguish a stable block algorithm from an unstable one? Here

we present an informal approach that can allow easy recognition without the

need for a full error analysis. Our approach has some similarities with that of

Wilkinson [35], who describes a general approach to analyzing unblocked

algorithms.

We consider LU factorization with partial pivoting, although the same

approach applies to the other factorization mentioned at the end of Section

2.1 and to QR factorization. We view the algorithm as a sequence of com-

puted decompositions

PILllJ+R, =A+ AA,, i= O:m, (2.21)

where one or more such decompositions describe a single step of the block

algorithm. P, is a permutation matrix and AA, represents rounding errors

introduced by the first i steps of the algorithm. Initially, PO = LO = 1, UO = A,

and R. = AAO = O, while L~ is unit lower triangular, U~ is upper triangu-

lar, and R~ = O. The term R, is introduced for notational convenience.

The matrices P,, L,, U,, and R, are transformed to P,, ~, L,, ~, U,+ ~ and

R , , ~ by a single matrix operation, either unblocked (BLAS1 or BLAS2) or
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blocked (BLAS3). The rounding error introduced by this matrix operation is

AA,+ I – A A,. If each AA, is small (IIAAIII = O(UIIAII)), then the algorithm is

stable.

To illustrate, the first stage of the block LU factorization in Section 2.1

(ignoring pivoting) may be written, using (2.21) with i = 0:4, as

(2.22)

It is clear from the assumptions (1.1) and (1.2) that each rounding error term

A A,l has a bound of order u IIAll as long as there is no undue element growth,

and (2.22) shows that the contribution of the A A,J is additive. It follows that

the whole process is stable. (Note that an analog of (2.22) holds for the

method of section 2.3, with IA Al bounded as in (2.20), but here undue element

growth can make lLIli7 > IAl.)

One possible obstacle to stability, which does not occur in LAPACK, would

be computing part of a decomposition (say All = L1lU1l, aboveJ using it to

compute other parts of the decomposition (L21, U12, and B), and then

recomputing it by some method yielding different rounding errors. There is

no motivation for this in Gaussian elimination, but it is conceivable that such

redundant operations would be needed to use the BLAS3. (There are redun-

dant operations in the use of block orthogonal transformations in the next

section, but they do not lead to this difficulty). How could this recomputation

damage stability? Suppose we :efactorize All ~ ~lloll stably after the last

step above, and replace Lll by Lll and Ull by U1l. This will change A A12 by

(ill – LII)UIZ and AA21 by L21(011 – UII), and neither of these quantities is

guaranteed to be small.

3. ORTHOGONAL TRANSFORMATIONS

In this section we consider block algorithms based on orthogonal transforma-

tions. The algorithms of interest include QR factorization, orthogonal reduc-

tion to Hessenberg, tridiagonal or bidiagonal form, the unsymmetric QR

algorithm, and algorithms for generalized eigenvalue or singular value com-

putations. The techniques used in LAPACK for constructing block versions of

these algorithms are based on the aggregation of Householder transforma-
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tions. Our aim is therefore to analyze the stability of these aggregation

techniques.

One form of aggregation is the “WY” representation of Bischof and Van

Loan [5]. This involves representing the product Q, = P, P, _ ~ . . . PI of r

Householder transformations P, = I – u, u? G R” x‘ ( u~u, = 2) in the form

Q, =1+ W,Y:, W,, Y, ● R“”.

This can be done using the recurrence

Using the WY representation, a block QR factorization can be developed as

follows. Partition A G R my‘( m > n) as

and compute the Householder QR factorization of Al,

P, P,.l... PIA1 = II
RI

o“

The product P, P,. ~ . . . PI = I + W,Y,~ is accumulated as the P, are gener-

ated and then B is updated according to

which involves only BLAS3 operations. The process is now repeated on the

last m – r rows of B.

An alternative form of accumulation is proposed in [14] for r = 2, extended

to general r in [13], and used in [2]. In the context of orthogonal similarity

reduction to Hessenberg form, the technique involves expressing

P, P,.l... PIAP1 . . . P,_l P, = A – U,V,T – WrU,T, (3.1)

where U,, V,, W, = R‘”’. We refer the reader to [ 13] for details of how to

obtain this representation. The key point is that, once again, only BLAS3

operations are involved in computing the update, once U,, V,, and W, have

been formed,

Now we consider numerical stability. We concentrate on the WY technique,

and comment that similar analysis applies to the alternative method of

aggregation (3. 1), as well as to the more storage efficient compact WY

representation of Schreiber and Van Loan [30], First, we note that the

construction of the W and Y matrices is done in a stable manner (indeed, it

does not i~volve the BLAS3): Bischof and Van Loan [5] show that the

computed Q = 1 + ~ T is such that

IIQTQ -111 = o(u), (3.2)

Ilwl/= o(l), Ilfll = o(l). (3.3)
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Condition (3.2) implies that

that is, Q is close to an exactly orthogon~l matrix.

~~ext we consider the application of Q. Suppose we form C = QB = (I +

WY~)B, obtaining

d =fl(B +fl(W(i’B))).

Analyzing this BLAS3-based computation using (1.1) and (3.4), it is straight-

forward to show that

d= UB+AC=U (B+ U’AC),

IIACII < c~~(c,(~,~,~) + cl(n, r,rz))u\lBll + 0(u2), (3.5)

where CA is a constant of order 1. This result shows that the computed update

is an exact orthogonal update of a perturbation of B, where the norm of the

perturbation is bounded in terms of the error constants for the BLAS3.

In the case r = 1, (3.5) reduces to Wilkinson’s result on the application of a

single Householder transformation [34, p. 160]. Wilkinson uses this result to

obtain a backward error result for the application of a sequence of House-

holder transformations [34, pp. 160-161]. With the use of (3.5), it is straight-

forward to show that Wilkinson’s method of analysis can be adapted to

accommodate WY updates. Alternatively, to obtain a backward error result

for a sequence of orthogonal similarity transformations, we can simply insert

the bound (3.5) into the general analysis of Parlett [28, Sec. 6-5] or Wilkinson

[33]. It follows that the standard backward error analysis results for House-

holder transformation algorithms remain valid when the WY technique is

used, as long as the constants in the error bounds are replaced by appropriate

linear combinations of c1 terms.

Our overall conclusions are as follows. First, algorithms that employ aggre-

gated Householder transformations with conventional BLAS3 are as stable as

the corresponding point algorithms. Second, the use of fast 13LAS3 for apply-

ing the updates affects stability only through the constants in the backward

error bounds.

4. CONCLUDING REMARKS

Our main conclusion is that the use of fast BLAS3 satisfying (1.1) and (1.2)

with LAPACK block algorithms is “safe” from a numerical standpoint. The

algorithms retain their normwise backward stability, but the actual back-

ward errors may increase to reflect any decreased accuracy in the BLAS3.

Also, any special properties relating to componentwise backward error may

be lost in switching to fast BLAS3.

How large the increase in backward errors will be, on average, is difficult to

say, since the theoretical error bounds tend to be quite pessimistic (this

applies particularly to the bound for Strassen’s method—see [211). A quanti-

tative assessment of the speed versus stability tradeoff must await the
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accrual of experience in using fast BLAS3 for the values of n for which useful

speedups are obtained.

In the important application of solving Ax = b by LU factorization, the use

of fast BLAS3 need carry no stability penalty: we have shown that fixed

precision iterative refinement with conventionally computed residuals can

improve normwise stability and can even produce a small componentwise

relative backward error, although we have not been able to state useful

conditions under which such improvements are guaranteed.

Finally, we reiterate a point discussed in [21]. When replacing conventional

BLAS3 by fast BLAS3 in an iterative algorithm, it is important to consider

the implications for the convergence tests—a change in the BLAS3 may

necessitate a retuning of the algorithm parameters. Ideally, a convergence

test will be effective across different BLAS3 implementations and computer

arithmetics and so will not need tuning. The stopping criterion used in

LAPACK for iterative refinement of linear equations (see Section 2.2) has

been designed with this goal in mind. Experience will tell whether the goal

has been achieved!
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