
Stability of Bounded and Unbounded Sets 
for Ordinary Differential Equations (*). 

R. C. Gl~I~ml~ (Carbondale, Ill.) - Jo~I~ R. HAD])OCI~ (Memphis, Tenn.) 

Summary. - The stability properties of subsets of 1~ ~ are exanvined using a ]amity o] ~iapunov 
functions and the invarianee properties o] the sets. 

1.  - I n t r o d u c t i o n .  

In  this paper we consider various stabil i ty properties of certain subsets of D c R ~ 
for the system of differential equations. 

(1) x ' =  t(t, x) ('= elat) 

where f: [0, c o ) × D - + R  ~ is continuous and D is an open region in R ~. 
We use the following notation.  For  a set B c R'~ /~, B~ and 3B will denote 

the closure, complement and boundary  of B, respectively. Also, d(x, B) = i n f  {Ix--Y I: 
y e B} will denote the distance between B and a point x in R~ where [. I is any  con- 
venient norm in R ~. Finally,  for e>O,  we define S ( B , s ) = { x : d ( x , B ) <  s} and 
R(B,  s) ---- {x: el2 < d(x, B)<s} .  

We shall examine stability, uniform stability,  asymptot ic  stabil i ty and global 
asymptot ic  stabil i ty of certain subsets of D. We want  our results to include sets 
which may  have unbounded solutions of (1) in every neighborhood. In  particular, 
we want  to consider sets in which solutions in every neighborhood may  have finite 
escape time. We give our stabil i ty definitions accordingly. 

DEFINITION 1. - -  Let iV be a closed subset of D. For a solution x(t, to, Xo) of (1) 
which satisfies x(to, to, xo)----xo, let [to, T) ( t o < T < + c o )  denote its maximal  right- 
interval of definition. 

(i) iv is stable if, for every to~>0 and s > 0 there exists ($= ~(to, s ) >  0 such 
tha t  d(xo, iV) < ~ implies d(x(t, to, x0), iv) < s for all t in [to, T). 

(ii) iv is uni]ormly stable if ~ in (i) is independent of to. 

(iii) iV is an attractor if, for each t0>0 there exists ~ =  ~(t0) > 0 with the prop- 
e r ty  tha t  d(xo, iV)< ~ implies d(x(t~ to, xo), IV) ---~0 as t - > T - .  IV is a global attractor 
if D - ~ R  ~ and for each to~>O, d(x(t, to, xo), i v ) - ~ 0  as t - + T - .  

(*) Entra~a in Redazione 1'8 giugno 1972. 
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(iv) N is asymptotically stable (globally a sympto t i ca l ly  stable) if it is a s table 

a t t r ac to r  (stable global a t t rac tor ) .  

We  note  t h a t  if 2¢ is a compac t  set in D, then  T ~ oo and  our definitions are 

the  usual  ones. 

2 .  - T h e  a u t o n o m o u s  c a s e ,  

I n  this  section we restr ic t  our a t t en t ion  to the au tonomous  sys tem 

(2) x'=](~) 

where ]: D - ~ R  ~ is cont inuous wi th  D open in R ~. For  the  ~utonomous  case we 

have  the  following definition. 

DEFI~I~IO~ 2. - A set G o D  is positively invariant for (2) if, given xo~G every  

solution x(t, O, xo) of (2) remains  in G on i ts  r ight  max ima l  in terva l  of definition. 

G is a semi-invariant set for (2) if, given x0 ~ G there  is a least  one solution of (2) 

with initial condit ion x0 a t  t =  0 which remains  in G on i ts  max ima l  in terval  of 

definition. 
Our first theorem gives the relat ion between a sympto t i c  s tabi l i ty  and a t t rac t ion  

for a compact  set. 

TgEO~E~ 1. - Le t  M e  G o D  where G is open and  posi t ively invar ian t  for (2) 

and M is a compac t  posi t ively  invar ian t  set for (2). Then M is asympto t ica l ly  stable 

and  G is conta ined  in i ts  region of a t t r ac t ion  if and  only if M is an  a t t r ac to r  wi th  G 

conta ined in its region of a t t r ac t ion  and if K is a compact  semi- invar iant  set for (2) 

conta ined in G, then  K c M. 

P~00F. -- Suppose M is a compac t  posi t ively invar ian t  a t t r ac to r  in G with  the  

p rop e r t y  t h a t  every  compac t  semi- invar ian t  set  in G is conta ined  in M. We  will 

show M is stable. 
Suppose M is not  stable. Then there is an s > 0 with S(M, s) c G such tha t  for 

every  posi t ive integer n, there  is an x~ with  d(x~, M ) <  1/n and a solution x.(t) 
of (2) with x . ( 0 ) - ~ x ,  and  t .  > 0  so t h a t  d(x.(t~), M ) = e .  Also, wi thout  loss of 
generali ty,  we m a y  assume t .  is the first such posit ive t. Now {a.(tn)} is a bounded  

set and  we m a y  assume,  b y  passing to a subsequenee if necessary,  t h a t  xn(t~) --> z 
as n - 7  oo for some z where d(z, M ) = s .  

We claim t . - T c o  as n - > o o .  I f  not,  then  {t.} has a subsequence s~ with 
s~--~ T~< co as j - ~  oo and  {xj(t)} is a bounded  uni formly  equicontinuous sequence of 
funct ions on [0, T~] and,  b y  Aseoli 's Theorem,  {xj(t)} has a un i formly  convergent  

subsequenee which converges to a solution a(t) of (2) on [0~ T~] where x(O) a M, 
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since d(x~, M)-->0 as n-->c~, and x(T1)~-z is not  in M. This, however,  is a con- 
t radic t ion of the  r ight- invariance of M. 

Consider now the solutions y~(t) of (2) where y~(t)=x~(t~ ÷ t )  for - - t ,< t<O.  
Then y~(0) -~z  as n - ~ c ~  and d(y,,(t), M ) < e  for ~t~<t<O.  As t,~-~c~, we have,  
for sufficiently large n, {y~(t)} is a bounded  uniformly equicontinuous sequence on 
any  interval  of the form [-- T2, 0], T2 > 0, and thus, {y~(t)} has a subsequence which 
is uniformly convergent  on compact  subintervals  of ( - - c o ,  0] to a solution x(t) 
of (2) and x ( 0 ) = z .  Also, since d(y~(t) ,M)<s for --t~<t<~O, we must  have 
d(x(t), M)<e  for t ~ 0 .  Since x (0 ) e G ,  we ma y  extend x(t) to ( - - c~ ,  c~) and we 
must  have x(t) ~ G for every  t and d(x(t), M) --~ 0 as t -~ co. This, however, is a 
contradict ion as /~, with K =  { x ( t ) : - - c ~ <  t <  ~ } ,  is a compact  semi-invariant  set 
in G. Bu t  /~ is not  contained in M as z is not  in M. Hence,  M must  be stable. 

Suppose now tha t  M is asymptot ica l ly  stable and G is in the region of a t t ract ion.  
Suppose there  is a compact  semi-invariant  set K c G t h a t  is not  contained in M. 
Le t  z ~ K ~ M  and x(t) a solution of (2) with x ( 0 ) = z  and with x(t) in K for all t < 0 .  
As M is stable, there  exists ~ > 0  so tha t  if d(xo, M ) <  ~, then  d(x(t, 0, x.), M ) <  

< ~-d(z, M) for all t~>0 for every  solution x(t, O, xo) of (2) with x(0, O, xo)-=xo. 
We must  have,  then,  that. d(x(t), M)>~ ~ for t < 0. Since K is compact  and contained 
in G, the  ~-limit set A of x(t) exists, is non-empty  and is a semi-invariant set for (2) 
contained in G. Le t  y e a  and y(t) a solution of (2) which remains in A for t~>0. 
As d(A, M)> ~ we have  d(y(t), M ) >  8 > 0 and, since y(t) is in G for t~>0~ we have 
a contradict ion.  Clearly, M is an a t t rac tor  and the proof is complete.  

In  G-=R", the  s t a tement  of Theorem 1 can be simplified as follows. 

TI~EOl~EYI 2. - Let M c R  ~ be a compact  posit ively invar iant  set for (2). Then M 

is globally asymptot ica l ly  stable if and only if M is a global a t t rac tor  and if K is a 
compact  semi-invariant  set for (2), then  K c M. 

I f  /(0)== 0, we have  the  following corollary. 

CO~OLLAI~Y ! .  - Let  0 e G c D  where G is open and posit ively invar iant  for (2). 
Then {0} is asymptot ica l ly  stable and G is contained in its region of at.traction if 
an4 only if {0} is an a t t rac tor  with G contained in its region of a t t rac t ion  and {0} 
is the only compact  semi-invariant  set for (2) contained in G. 

P ~ o o F .  - I f  {0} is an a t t rac tor  with G in its region of a t t rac t ion  and if {0} is the 
only compact  semi-invariant  set for (2) in G, then  the zero solution of (2) must  be 
unique to the  r ight  and hence, {0} is a compact  posi t ively invar iant  set for  (2). The 
result  now follows f rom Theorem 1. 

In  a similar fashion the  nex t  corollary follows f rom Theorem 2 and the fact  tha t  
the  closure of a bounded  semi-invariant  set is semi-invariant.  

COrOLLArY 2. - (0} is globally asymptot ica l ly  stable if and only if it is a global 
a t t rac tor  and (0} is the only bounded semi-invariant  set for (2). 

1 0  - A n n a l t  di  zVIatematica 
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An interest ing application of Corollary 2 can be made to the problem of perturbing 
equat ions t ha t  have  (0} as a global a t t rac tor  (see for example [7]). Suppose the 

equat ion 

(4) y '= /(y) ÷ g(t, y) 

is (( almost  autonomous  ~>; tha t  is, tg(t, Y) I gets ~( small ~) as t -~ c~. Then the ~-limit  
set a bounded solution of (3) is a semi-invariant  set for (2) under  very  general defi- 
nitions of (( small ~) (cf. [6] and [7]). However,  if (0} is a global a t t rac tor  for (2) bu t  
not  globally asymptot ica l ly  stable, then  there  must  exist bounded semi-invariant 

sets of (2) other  than  (0) and hence, bounded solutions of (3) m a y  not  tend to zero 
as t --> co in which case (0} will not  be a global a t t rac tor  for (3) (see [7, Corollary 3.3]). 

3. - Liapunov functions and stability o f  sets. 

We now re turn  our a t ten t ion  to the nonautonomoas  System 

(1) x'=/(t, x). 

We shall say tha t  /(t, x) satisfies hypothesis (A) in a set N e D  if, for every  x0 
in N there  exists U > 0  and a continuous funct ion g: [0, c o ) -~ [0 ,  co) with 

fg(t)dt=c~ such tha t  x in )7 and  Jx--xof< ~ implies If(t, x)]>g(t). 
0 

The above definition is due to B t~To~  [2]. In  this section we combine the ideas 
used in recent papers by  B ~ o ~  [1] and HADDoc~ [4] and examine stabil i ty proper- 

ties of certain subsets of D. In  [1] B v ~ r o ~  established conditions on Liapunov func- 
tions which guarantee  tha t  a closed set H is a global at t ractor .  Unlike other  results 
(cf., for example,  [8, Theorem 1]), his results do not  depend on boundedness of solu- 
tions of (1). Indeed,  his main results allow solutions of (1) to have finite escape time. 
In  the same spirit, we shall give sufficient conditions for a set H to be stable, uniformly 
stable, asymptot ica l ly  stable and globally asymptot ical ly  stable and we shall allow 
solutions in an arbi t rar i ly  small neighborhood of H to have finite escape time. 

DEFI~i~Io~ 3. - A scalar function V: [0, ~ )  × D -~ [0, c~) is a Liapunov function 
for (1) if: 

(i) V is C' and 

(ii) V'(t, x) : ~V/~t -F ~ ~V/~x~.f~(t, x)< 0 for all (t, x) ~ [0, c~) × D (where 
i = l  

x = co l  (x~, . . . ,  x D  a n d  / ( t ,  x) -~ col  (L( t ,  x),..., L(t, x)). 

For  the sake of simplicity we have asked t h a t  our L iapunov  functions be C'. 
However ,  for the most  par t ,  our results can be carried out  using Liapunov  functions 
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which are locally Lipsehitzian (el. [5, pp. 57-59]). Hencefor th ,  when we refer to a 
L iapunov function,  we shall mean a Liapunov funct ion for (1). 

In  [1] and [2] BU~ToN proved tha t  if V' satisfies certain (~ strong ~ conditions 

relat ive to some closed set H (either bounded or unbounded) and if f(t, x) satisfies 
hypothesis  (A) in H ~, then H is a global a t t rac tor .  Unlike BV~T0~, we shall restr ict  
our a t tent ion,  for the  most  par t ,  to a neighborhood of H. In  part icular ,  we shall 
ask tha t  V' sst isfy conditions which are similar to Bur ton ' s  in ~ neighborhood of H 
and we shall seek conditions on H and V which will yield the stabil i ty of H.  Although 
we shall ask tha t  V satisfy certain propert ies with respect  to H,  it  is significant t ha t  
we do not  require any  (~ definiteness ~ propert ies  of V. 

We shall say tha t  V(t, x) satisfies hypotheses (B) with respect to a closed set N if, 

for each t , > 0  and each e > 0 there  exists ~----~(to, e ) >  0 with the p roper ty  tha t  

V(to, x) < s whenever  0 < d(x, N) < (~. 
For  a L iapunov funct ion V define H----{x: V(t, x)---O for all t>0} .  I t  is easily 

seen tha t  if H ¢ ~, then V satisfies hypothesis  (B) with respect to any  compact  

subset of H.  
The following definition was given in [3]. 

DEFINITION 4. -- Vr(t, x) is strongly negative definite in a set N c R  ~ if there 

exists 6 > 0 so tha t  V'(t, x ) ~  ~ ~lf(t, x)[ for all x in N and all t>~0. 
We shall list the main theorems of this section cumulat ively  before giving the 

proofs. 

T~EO~E~ 3. -- Suppose there  exists ~ > 0 and a closed set H with S(H, ~ ) c D  
such that~ for every  e, 0 < s < s~, there  exists ~ Liapunov funct ion V~ with the 
p roper ty  tha t  V~ satisfies hypothesis  (B) with respect to H and V: is strongly negative 

definite in R(H, e). Then H is stable. 

TgEo~E)~ 4, - In  addit ion to the conditions of Theorem 3, suppose f(t, x) satisfies 
hypothesis  (A) in H°C~ S(H, ~). Then H is asymptot ical ly  stable. 

TREOaE~ 5. -- Suppose D = R ~ and suppose there  exists a closed set H e R  ~ 
such tha t ,  for every  e > 0 there is a Liapunov funct ion V~ with the p roper ty  tha t  V~ 
satisfies hypothesis  (B) with respect to H and V] is s trongly negat ive definite in 
S~(H, s). I f  f(t, x) satisfies hypothesis  (A) in H ~, then  H is globally asymptot ical ly  

stable. 

I%S.~AZK 1. - I f  there  exists a L iapunov funct ion V with V' strongly negative 
definite in S°(H, s) for each s > 0, then  V' is s trongly negative definite relat ive to 
H in the sense of Bu~To~ [1]. BU~TON [1, p. 547] proved tha t  the  existence of a 
L iapunov funct ion V with V ~ strongly negat ive definite in S~(H, s) for a rb i t ra ry  s 
is sufficient to guarantee  tha t  H is a global a t t ractor .  In  view of this, it  appears 
a t  a glance tha t  Theorem 5 is an immedia te  consequence of our Theorem 3 and 
Theorem 1 of [1]. However ,  B~RTo~ ~ asks for a L iapunov funct ion with strongly 



148 1~. C. G~I~lV~EI~ - JOHN 1~. HADDOCK: Stability o] bounded, etc. 

negative definite derivat ive in each SffH, e); we ask tha t  for each e > 0 there  exists 
a Liapunov funct ion (depending on e) with strongly negative definite derivat ive in 
S°(H, s). I t  is cur ren t ly  unknown if the two concepts are equivalent.  

RE~AgK 2. -- In  [2] BugT0~ gave a revised definition of V' strongly negative 
definite. Using our present  terminology,  we can state his new definition as follows: 
W is s trongly negative definite relat ive to a closed set H if, for every  e > 0, either 

(i) V' is strongly negative definite in S~(H, e) (in the sense of Definition 4) 
if H is unbounded  or 

(ii) there  exists 5 > 0 so tha t  x in SqH, e) implies V'(~, x) < - -  ~l](t, x)I(1 + Ix[) 

if H is bounded. (Here I" ] denotes euclidean length.) 

Since we are working primari ly in neighborhoods of closed sets, we are not  great ly  
benefi t ted by  considering bounded sets as a special case in Definition 4. For  instance, 
suppose H is bounded and W(t, x) < --  5[/(t, x)l for all x in R(H, e) and some (~ :> 0. 
Then  with ($z : (~(1 ÷ sup(Ixl:  x e R ( H ,  e)}), we have W(t, x ) < - - ~ J ( t ,  x)/(1 ÷ Ix]). 
The using of Bu t ton ' s  definition of V' s trongly negat ive definite does, however, 
s t rengthen Theorem 5 to some ex ten t  since, in this case, we want  each V] to be 
strongly negative definite in each SffH, e). 

Before s tat ing a theorem which provides sufficient conditions for the set H of 
Theorem 3 to be uniformly stabl% we need the following definition. 

DEFINITIO~ ~ 5. - V(t, x) is &crescent with respect to a closed set N c R" if there 
exists ~ > 0 and a continuous scalar funct ion Q(x) such tha t :  

(i) Q(x) > 0 for all x ~ S(N, ~), 

(ii) for every  e > 0 there  exists ~ > 0 so tha t  Q(x) < s whenever 0 < d(x, N) < U. 
and 

(iii) V(t~ x) <Q(x) for all (t, x) ~ [0, ~ )  × S(N, ~). 

THEOICEI~ 6. - In  addit ion to the conditions of Theorem 3, suppose, for each 
e > 0, V~ is decrescent with respect  to H.  Then H is uniformly stable. 

We note  t ha t  V decrescent with respect  to a closed set H implies tha t  V satisfies 
hypothesis  (B) with respect to H.  

The following simple example shows tha t  Theorem 4 cannot  be extended in the 
same manner  us Theorem 3. Tha t  is, decrescence of each V~ in Theorem 4 does not  
guarantee  uniform asymptot ic  s tabil i ty of H. For  the scalar linear equat ion 

(~) ~ ' =  - -x / ( t  + :t) 

{0} is not  uniformly asymptot ical ly  stable. However,  for V(t, x)-~ x~/2 we have V 
deerescent with respect  to {0} and V'(t, x) ---- --x~/(t + 1) is s t rongly negative defi- 
ni te  in each R((0}, s). Also, ](t, x ) - ~ - - x / ( t  q-1) satisfies hypothesis  (A). 
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We now give proofs of Theorem 3-6 and then we shall discuss how these theorems 
relate to results given in [5]. 

1)t¢ooF oF TI-IE01CE~ 3. - Suppose H is not  stuble. Then there  is t0~>0 and 

e > 0 so tha t  for every  ~ > 0 (~1 < e) there  exists xo and t* > to with d(xo, H ) <  ~? 
and d(x(t*, to, x0), H) = s for some solution x(t, to, Xo) of (1) where X(to, to, Xo) ----- Xo. 
B y  hypothesis,  there  is a Liapunov funct ion V ~ V~ and ~ > 0 so tha t  V satisfies 
hypothesis  (B) with respect to H and V'(t, x ) < - - b l f ( t  , x)[ for all t~>0 and x in 

R(H, e). Since V satisfies hypothesis  (B) with respect to H, there  exists (~o > 0, 
~o< e/2, such tha t  V(to, x ) <  ~e/2 whenever  d(x, H ) <  ~o. Since H is not  stable, there  
exist Xo, t~ and tz with the proper ty  tha t  d(xo, H ) <  ~o, d(x(t~, to, X o ) , H ) =  e/2, 
d(x(t2, to, xo), H) = e and s/2 < d(x(t, to, Xo), H) d e  whenever t o < t~ < t  <t~. Integrat ing 
V' along x ( t ) ~  x(t, to, xo) we obtain 

t2 

v(t~, x(t~)) = v(t~, x(t~)) + f v'(~, x(~))ds 
tx 

t~ 

< v(to, Xo) - ~jl/(~, x(~))lds 
t l  

t, 

< V(to, Xo) - -  ~ j x ' ( s ) d s  

= v( to ,  Xo) - ~ Ix(t.~) - x(t~)] 

< ~e/2-- ~e/2 = o.  

This contradicts V~>0 and hence, H is stable. 

PaooF  oF TI-moaE~ 4. - Le t  to > 0 and fi > 0 (3fl/2 < ~) be given. By  Theorem 3, 
H is stable and thus, there  exists (~o = ~o(to, fi) > 0 such tha t  d(xo, H) < ~0 implies 
d(x(t, to, xo), H ) <  fi for all t in the maximal  r ight interval  of definition [to, T) of 

x(t, to, x0). Suppose there  exists Xo such tha t  d(x0, H) < ~o and x(t) -~ x(t, to, Xo) + , H  
as t -> T- .  We will obtain in a contradict ion by  considering cases in which x(t) is 
unbounded  and x(t) is bounded. 

Suppose x(t) is unbounded  and d(x(t), H) -> c > 0 us t -> I'- for some o~<fl. Let  
s -~3e/2. Then e /2<  c <  e <  ~ and there  exists t*>to so tha t  x(t) is in R(H, s) for 
all t in [t*, T). By hypothesis,  there  exist a Liapunov function V = V~ and ~ > 0 
with W(t, x ( t ) ) ~ -  51](t , x(t))l for t in [t*, T). Since x(t) is unbounded,  there exists 
an increasing sequence (tr,} with t~-->.7' such tha t  Ix(t~)l-->c~ as n - >  c~ and 

lx(t,,)l > lx(t*)t for each n. In tegra t ing  V' along x(t) we obtain 

v(t, x(t)) < v(t*, x(t*)) - ~ f  l/(~, x(~))jd8 
t* 
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where t~<t.< t~+~. t tenee,  

v(t ,  x(t)) < v(t*, x(t*)) - ~]x(t~) - x(t*)l 

~nd V(t, x(t)) -->-- c~ as t --> T- .  This contradicts  V bounded  f rom below. Thus, 

there  exists  a , b > O ,  b/2<~a< b, and increasing sequences {t;}, {t:}, t ' ,< t :<t '~+l ,  
with t'~ --~ T -  such t h a t  d(x(t'~), H)  ~- a, d(x(~:), H)  -~ b for each n and a ~ d(x(t), H)  < b 
for tr,<~<t~. Thus, there exists ($~ > 0 and a L iapunov  funct ion V----V b such tha t  

V' ( t, x(t) ) <- -8~ t / ( t  , x(t) ) i if t'~ <~ t <~ t'~. In tegra t ing ,  we obtain  

t 

= V(to, Xo) + f r ' ( s ,  x(s))a~ V(t, x ( t ) )  

k t~ 

where t~<t<t'~+~. Hence,  
lz 

v(t ,  x(t)) < V(to, Xo) -  ~ Yi l~(t:)-x(t'~)t 
~ 1  

< V(to, x o ) -  a~k(b-- a). 

Again, we have  V(t, x(t)) - ~ - -  c~ as t -~ T -  which is a contradict ion and  thus  we 

m a y  assume x(t) is bounded  for t>~to. There mus t  be, then, an increasing sequence 

{t~} with  t~,. -~ c~ and  x(t,d --*- y as m --~ c~ for some y. I f  x(t) does not  converge 

to  y as t - -~c~ ,  there  exists s > 0 ,  s < ~ . ,  so t ha t  y is in the interior of R ( H , s )  
and el > 0 so tha t  S(y, e l ) c R ( H ,  e). Also, as x(t) does not  converge to y, we m a y  
assume sl is sufficiently small  so t h a t  there are increasing sequences {t;~} and  {t~,} 

t g ! r r 

with t , ,<  t , ,<  t~+ 1 and t~-~c~ as m--> c~ such tha t  Ixf t '~)--Yl-~ e~/2, lx( t ,~)--yl-~ el 
and el~2 <~ t x ( t ) - y l  K s~ for t'~ < t  < t : .  Arguing, now, as above  we obtain the contra- 
diction V(t, x(t)) -->-- c<) as t --> c~ where V = V,. 

Finally,  suppose x(t) ---~ y as t --> c~. As f(t, x) satisfies hypothesis  (A) in 
H e n  S(H,  ~), there exists ~ > 0 and g(t) with the  p rope r ty  t h a t  i](t, x)l > g(t) for 

I x - - y [ <  V, x in H ° n  S ( H , a )  where fg(t)dt= ~ .  Without  loss of general i ty  we 
0 

m a y  assume ~ is chosen sufficiently small so t h a t  there is s > 0 with S(y, ~ ) c  
o R ( H ,  s ) c S ( H , ~ ) .  Let  t*>to be chosen so tha t  t ~ t *  implies x ( t ) ~ S ( y ,  ~). Then 
there exist 8 > O and a L iapunov  funct ion V = V~ such t h a t  V'(t, x(t)) <~ - -  61](t , x(t)) t 
for all t~ t* .  Again, we in tegra te  V' along x(t) to obtain for t > t*. 

t 

v(t, x(t)) < v(t*, ~(t*)) - ~f l/(s, x(s))lgs 
t* 

t 

< v(t*, x(t*)) - ~lg(s)as 



R. C. Gt%]::~MEI~ - JOHN 1~. HADDOCK: Stability o/ bounded, etc. 151 

and  hence, V(t, (x)) -->-- co as t --> c~ which contradicts  V bounded  below. All pos- 

sibilities have  now been exhaus ted  and  the  proof is complete.  

P~ooF oF TgEO~E~ 5. - B y  Theorem 3, H is stable. I t  remains  to be shown 

tha t  H is a global a t t rac tor .  The proof of this will be omi t t ed  since it  is ve ry  similar 
to the  proof  of Theorem 4 and  Theorem 1 of [1]. 

PROOF OF THEOe]~  6. - Let  s > 0 be given with s <  ~. Then there exist 5 >  0 

and  a L iapunov  funct ion V ~ - V ,  which is decrescent with respect  to H and 

V'(t, x )<- -S I f ( t  , x)I for all x in R(H, s). Since V is decrescent with respect  to H ,  
there  exists ~o > 0 so t h a t  

(5) v (to , x . )  < ~ I2 

for any  to and x0 satisfying d(xo,H)< ~o. Since (5) holds for a rb i t r a ry  to, i t  follows, 
using a rguments  similar to these used in the  proof  of Theorem 3, t h a t  H is uni formly  
stable. 

As was previously  promised,  we shall now compare  our results  with results given 
b y  LASAbLE in [5]. For  simplicity,  we assume D ~--R ~. 

Le t  V{t, x) be a L iapunov  funct ion such t ha t  V'(t~ x)<~--W(x)<~O for all (t, x) 

in [0, c o ) × / ~  where W is continuous on i T .  Define E ~ {x: W(x) -~ 0). LASALLE 

proved  (among the  results  of Theorem I of [5]) t ha t  if ]](t, x)] is bounded on [0, c~) × A 

for each compac t  set A oR" ,  then  all bounded  solutions approach  E as t--> c~. 

We shall modi fy  LaSal le 's  conditions to  some ex ten t  in order to determine condi- 
t ions which guaran tee  t ha t  the  set E is a sympto t i ca l ly  stable. 

C o x 0 L L ~ ¥  3. - Suppose W(x) is posi t ive definite with respect  to E, t h a t  is, 
for s > 0 sufficiently small, there is k ~ k ( s ) >  0 so t h a t  W(x)~  k for x in R(E, s), 
and suppose V satisfies hypothesis  (B) with respect  to  E.  I f  there  exists ~ > 0 so 

t h a t  ]](t, x)l is bounded  on [0, c~)×S(E,~) ,  then  E is asympto t ica l ly  stable. 

P~00F. -- TO prove  t ha t  E is stable it suffices to show V' is s t rongly negat ive 

definite in R(E,  e) for e > 0 sufficiently small. Since W(x) is posit ive definite with 

respect  to E,  for each e > 0 sufficiently small  there  exists kt > 0 so t ha t  W(x)>~ kl 
whenever  s/2 <~d(x, E) <~e. Also, e/2 <d(x, E) <e implies ]/(t~. x)] <k2 for all t ~ 0  and  
some ks > 0. Le t  5 ----- k~/k~. Then,  for s/2 < d(x, E) <~ s, we have  

v '  (t, x)  < - w (~) < - kl  = - (kl/k2) k~ 

< - -  (kl/k2)]!(t, x)l 

= - ~]/( t ,  x) l. 

Hence,  V' is s t rongly negat ive  definite in R(E,  s). Since e was arb i t rary ,  the condi- 

tions of Theorem 3 are satisfied and  E is stable. 
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We cannot  immediate ly  conclude f rom Theorem ~ tha t  E is asymptot ical ly  stable 
since we have not  assumed tha t  f(t, x) satisfies hypothesis  (A). However ,  in the proof 
of Theorem 4, hypothesis  (A) was used to obtain a contradict ion only for the case 
where x(t) --> y with x(t) bounded. This case can be. discarded in the present proof 

by  using the fact  tha t  W@) is positive definite with respect to E. Hence, E is asymp- 
tot ical ly stable and the corollary is proven.  

An interesting consequence of the above corollary is a stabil i ty theorem which 
was originally proved by  }IAaAC~IKOFF in 1940 (see [4, Corollary 2.2] for details). 

We once again examine the autonomous system 

(2) z'=/(x) 

in which ease our Liapunov funct ion has a simpler definition. In  particular,  if V(x) 

is a Liapunov funct ion for (2), then  V ' ( x ) =  f(SV/Ox~)]~@). Let  V(x) be a Lia- 

punov  funct ion for (2) and define E v = {x: g'(x) = 0}. Le t  M s denote the  largest 
semi-invariant  subset of E v. LASALLE recent ly  proved the following theorem. 

THEOI~EI~ 7 ([5, Theorem 3]). - Let  G be bounded,  open, posit ively invar iant  
set. I f  solutions of (2) are unique and if V(x) is a L iapunov funct ion for (2) such 

tha t  (i) Mvc  G and (ii) V is constant  on the boundary  of Ms, then  M v is asymp- 
tot ical ly  stable. 

Since solutions are unique in Theorem 7, it  follows tha t  M s is the  largest invar iant  
subset of E v. We now show, by  using Theorem 1, tha t  this theorem can be proven 
wi thout  assuming uniqueness of solutions. 

T~E0~E3~ 8. - Le t  G be a bounded,  open, posi t ively invar iant  set. I f  there  
exists a L iapunov funct ion V(x) for (2) such tha t  (i) M v c G  and (ii) V is con- 

s tant  on the boundary  of My, then  M v is asymptot ieMly stable and G is in the  region 
of a t t rac t ion .  

Pao0F.  - By  Theorem 2 of [5], each solution star t ing in G approaches M v and 
so M v is an a t t rac tor  and G is in its region of a t t ract ion.  Also, as M vc  G and G 
bounded,  it  is easy to see tha t  21I v is semi-invariant  using s tandard  arguments  except  
tha t  Ascolis' Theorem is used in place of cont inui ty  with respect to initial conditions. 

Then as Mv c Ev, we must  have M V closed and, thus, compact.  
Now M v must  be posit ively invariant .  I f  not,  there  is a solution x(t) of (2) with 

x(0) in M v and x ( h ) ~ M  v for some t l > 0  and, as M v is an a t t rac tor ,  we have 
d(x(t), My) -> 0 as t --> co. Also, we m a y  ex tend  x(t) negat ively on (-- co, 0] with 
x(t) in M v f o r - c o < t < 0  as M s is semi-invariant.  Now { x ( t ) : - - c o < t <  co} is a 
semi-iuvariant  set in G bu t  not  in E s as x(t~) is not  in M v. As x(0) is in M s a.nd x(td 
is not,  there  exists a value of t, say t2, where sc(t~)6~Mv, 0 4 t ~ <  h- As {x(t)} is 
not  contained in Ev, V '<  0 along some n o n e mp t y  t in terval  (ts, t4), ts>t~, and so 
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V(x(t~)) < V(x(t.~)). This is a contradiction, however, as d(x(t), Mv) --> 0 as t---> co 
implies V(x(t)) -+ V(x(t~)) as t--~ oo and V(x(t)) <~ V(x(t4)) for t>t4. 

Now, suppose M v is not  stable. Then by  Theorem 1, there exists a compact  semi- 

invariant  set K c G but  K ¢  M V. Let  x(t) be a solution of (2) in K such tha t  x(0) 

is not  in M V. As above, { x ( t ) : -  c o <  t <  oo} cannot  be contained in E v and by  

Theorem 2 of [5], we have d(x(t), M ) - ~ 0  as t - ÷  co and as t - - ~ - - c o .  Thus. 

V ( x ( t ) ) - ÷ C  as t - ~ c o  and t - + ~ c o  where V ( x ) = C  for all x ~ M  r. As abov% 

however, we must  have V ' <  0 along x(t) on some t interval  and we again have a 

contradict ion and the proof is complete. 

I t  is interesting to note  tha t  in general we cannot  assume M v is an invar iant  

set as i~ is possible for E v to have no invar iant  subsets. For  example, consider the 

scalar equat ion 

(6) x ' =  - -  Ix] ~ sgnx 

where 0 < y < l  and let V = x 2 / 2 .  Then V ' = - - [ x [ V x s g n x  and E v : { 0  }. However,  

the zero solution of (6) is not  unique to the left and, thus, there are no invuriant  

sets in E v. 
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