
Kyushu J. Math. 71 (2017), 187–196
doi:10.2206/kyushujm.71.187

STABILITY OF C∞ CONVEX INTEGRANDS

Erica Boizan BATISTA, Huhe HAN and Takashi NISHIMURA

(Received 9 March 2016 and revised 15 June 2016)

Abstract. In this paper, it is shown that the set consisting of stable convex integrands
Sn → R+ is open and dense in the set consisting of C∞ convex integrands with respect
to Whitney C∞ topology. Moreover, examples are given representing well why stable convex
integrands are preferred.

1. Introduction

In the celebrated series [14–19], Mather gave a complete answer to the problem of density
of proper stable mappings in a surprising form. For proper C∞ mappings of special type, it
is natural to ask a similar question: are generic proper mappings of special type stable? Such
investigations, for instance, can be found in [20] for generic projections of submanifolds,
in [6] for generic projections of stable mappings and in [8–11] for generic distance-squared
mappings and their generalizations.

Motivated by this earlier research, in this paper, the density problem for C∞ convex
integrands is investigated. The notion of a convex integrand was first introduced in [23],
which is defined as follows. For a positive integer n, let Sn be the unit sphere of R

n+1.
The set consisting of positive real numbers is denoted by R+. Then, a continuous function
γ : Sn → R+ is called a convex integrand if the boundary of the convex hull of inv(graph(γ ))
is exactly the same set as inv(graph(γ )), where graph(γ ) is the set {(θ, γ (θ)) | θ ∈ Sn} with
respect to the polar plot expression for Rn+1 − {0} and inv : Rn+1 − {0} → R

n+1 − {0} is
the inversion defined by inv(θ, r)= (−θ, 1/r). The notion of a convex integrand is closely
related to the notion of a Wulff shape, which was first introduced in [24] as a geometric model
of a crystal at equilibrium. Integration of a convex integrand γ over Sn represents the surface
energy of the Wulff shape associated with γ . Hence, γ is called a convex integrand. For more
details on convex integrands, see for instance [22, 23].

Set
C∞

conv(S
n, R+)= {γ ∈ C∞(Sn, R+) | γ is a convex integrand},

where C∞(Sn, R+) is the set consisting of C∞ functions Sn → R+. The set C∞(Sn,R+)
is endowed with Whitney C∞ topology (for details on Whitney C∞ topology, see, for
instance, [2, 7]) and the set C∞

conv(S
n, R+) is a topological subspace of C∞(Sn, R+).
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Two C∞ functions γ1, γ2 : Sn → R+ are said to be A-equivalent if there exist C∞
diffeomorphisms h : Sn → Sn and H : R+ → R+ such that the equality γ2 =H ◦ γ1 ◦ h−1

holds. A C∞ function γ ∈ C∞(Sn, R+) is said to be stable if the A-equivalence class A(γ )
is an open subset of the topological space C∞(Sn, R+). By definition, any function A-
equivalent to a stable function is stable. Set

S∞(Sn, R+)= {γ ∈ C∞(Sn, R+) | γ is stable}.
By definition, S∞(Sn, R+) is open. The following proposition is one of the corollaries of
Mather’s series [14–19].

PROPOSITION 1.
(1) A C∞ function γ ∈ C∞(Sn,R+) is stable if and only if all critical points of γ are non-

degenerate and γ (θ1) �= γ (θ2) holds for any two distinct critical points θ1, θ2 ∈ Sn.
(2) The open subset S∞(Sn, R+) is dense in C∞(Sn,R+).

Here, a critical point θ ∈ Sn is said to be non-degenerate if there exists a local
neighborhood (U, ϕ) such that θ ∈ U and the following expression holds for an integer i
(0 ≤ i ≤ n):

γ ◦ ϕ−1(x1, . . . , xn)= −x2
1 − · · · − x2

i + x2
i+1 + · · · x2

n.

The integer i given above is called the index of γ at the non-degenerate critical point θ .
Assertion (1) of Proposition 1 well explains reasons why we prefer stable functions rather

than general C∞ functions. First of all, by using the normal form of a stable function germ
γ : (Sn, θ)→ R+ at a critical point θ ∈ Sn given above, it is easy to investigate the local
differentiable type of a level set γ−1(γ (θ)) at θ ∈ Sn. This is an advantage of stable functions
because, in general, it is almost impossible to study it for a general C∞ function. Moreover,
by using the Morse inequalities [21], it is possible to study even restrictions on the global
differentiable types of stable functions. Thus, we want to perturb a given C∞ function γ to a
stable function γ̃ .

Assertion (2) of Proposition 1 asserts that any C∞ function γ : Sn → R+ can be
perturbed to a stable function γ̃ by a sufficiently small perturbation, and for any sufficiently
small ε > 0, any continuous mapping � : (−ε, ε)→ C∞(Sn, R+) such that �(0)= γ̃ and
any two t1, t2 ∈ (−ε, ε), there exist C∞ diffeomorphisms h : Sn → Sn and H : R+ → R+
such that the equality�(t2)=H ◦�(t1) ◦ h−1 holds.

The main purpose of this paper is to show the following.

THEOREM 1. The open subset S∞(Sn, R+) ∩ C∞
conv(S

n, R+) is dense in C∞
conv(S

n, R+).

Similar to assertion (2) of Proposition 1, Theorem 1 asserts that any C∞ convex
integrand γ : Sn → R+ can be perturbed to a stable convex integrand γ̃ by a sufficiently
small perturbation, and for any sufficiently small ε > 0, any continuous mapping � :
(−ε, ε)→ C∞

conv(S
n,R+) such that �(0)= γ̃ and any two t1, t2 ∈ (−ε, ε), there exist C∞

diffeomorphisms h : Sn → Sn andH : R+ → R+ such that the equality�(t2)=H ◦�(t1) ◦
h−1 holds. Then, for �(t) (∀t ∈ (−ε, ε)), detailed investigation from the differentiable
viewpoint is possible by applying assertion (1) of Proposition 1.

In Section 2, preliminaries for the proof of Theorem 1 are given. Theorem 1 is proved in
Section 3. Finally, in Section 4, several examples of stable convex integrands are given.
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2. Preliminaries

Let φ : Sn → R
n+1 be a C∞ embedding. Consider the family of functions F : Rn+1 × Sn →

R defined by
F(v, z)= 1

2‖φ(z)− v‖2.

Notice that F may be regarded as a mapping from R
n+1 to C∞(Sn, R) which maps each

v ∈ R
n+1 to the function fv(z)= F(v, z) ∈ C∞(Sn, R)= {g : Sn → R C∞}. The set of

values v for which fv(z) has a degenerate critical point, denoted by Caust(φ), is called the
Caustic of φ (for details on caustics, see for instance, [1, 2, 12, 13]). The set of values v for
which fv(z) has a multiple critical value forms the Symmetry set of φ, denoted by Sym(φ)
(for details on symmetry sets, see, for instance, [3–5]). By assertion (1) of Proposition 1,
these two sets Caust(φ) and Sym(φ) constitute the set of points v for which the function
fv ∈ C∞(Sn, R) is not stable.

PROPOSITION 2. Let φ : Sn → R
n+1 be a C∞ embedding. Then, Caust(φ) has Lebesgue

measure zero in R
n+1.

For the proof of Proposition 2, see [21, §6 ‘Manifolds in Euclidean space’].

PROPOSITION 3. Let φ : Sn → R
n+1 be a C∞ embedding. Then, Sym(φ) has Lebesgue

measure zero in R
n+1.

Proof. Since φ is an embedding, the complement of φ(Sn) constitutes two connected
components. Denote the bounded connected component by Vφ . Set M = φ(Sn). For each
θ ∈ Sn, consider the normal vector spaceNφ(θ)(M) toM at θ . Notice thatNφ(θ)(M) is a one-
dimensional vector space. Thus, we can uniquely specify the unit vector n(θ) of Nφ(θ)(M)
so that φ(θ)+ εn(θ) belongs to Vφ for any sufficiently small ε > 0. For any t ∈ R, let
φt : Sn → R

n+1 be the C∞ mapping defined by φt(θ)= φ(θ)+ tn(θ). The mapping φt is
called a wave front of φ (for details on wave fronts, see, for instance, [1, 2, 12, 13]). It is clear
that, by using wave fronts {φt }t∈R, the set Sym(φ) can be characterized as follows:

Sym(φ)=
⋃
t∈R

{φt(θ1)= φt(θ2) | θ1 �= θ2}.

By Proposition 2, the intersection Sym(φ) ∩ Caust(φ) is of Lebesgue measure zero.
Thus, in order to show Proposition 3, it is sufficient to show that Sym(φ) ∩ (Rn+1 −
Caust(φ)) is of Lebesgue measure zero. Take one point φt0(θ1)= φt0(θ2) of Sym(φ) ∩
(Rn+1 − Caust(φ)), where θ1, θ2 are two distinct points of Sn. Set x0 = φt0(θ1)= φt0(θ2),
and let U0 be a sufficiently small open neighborhood of x0. Notice that, since Caust(φ) is
compact, U0 may be chosen so that U0 ∩ Caust(φ)= ∅.

Let i be 1 or 2. For i, define the mapping (ti , θ̃i) : U0 → R × Sn as follows:

x = φti(x)(θ̃i(x)) (ti(x0)= t0, θ̃i(x0)= θi).

Notice that, since U0 ∩ Caust(φ)= ∅, both of the following are well-defined C∞
diffeomorphisms:

(t1, θ̃1) : U0 → (t1, θ̃1)(U0),

(t2, θ̃2) : U0 → (t2, θ̃2)(U0).

Set T = t1 − t2. Then, it is clear that Sym(φ) ∩ U0 = T −1(0).
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For any i = 1, 2, let ∇ti (x0) be the gradient vector of ti at x0. Since both t1, t2 are non-
singular functions, it follows that neither ∇t1(x0) nor ∇t2(x0) is the zero vector. Moreover,
from the construction, it is easily seen that even when ∇t1(x0) and ∇t2(x0) are linearly
dependent, ∇T (x0)= ∇t1(x0)− ∇t2(x0) is a non-zero vector. Therefore, taking a smaller
open neighborhood Ũ0 of x0 if necessary, it follows that T −1(0) ∩ Ũ0 is an n-dimensional
submanifold of Rn+1. Therefore, Proposition 3 follows. �

Propositions 2 and 3 clearly yield the following.

COROLLARY 1. Let φ : Sn → R
n+1 be a C∞ embedding. Then, the union Caust(φ) ∪

Sym(φ) is a subset of Lebesgue measure zero in R
n+1.

3. Proof of Theorem 1

Let γ : Sn → R+ be a C∞ convex integrand, and let V be a neighborhood of γ in
C∞

conv(S
n, R+). It is sufficient to show that V ∩ S∞(Sn, R+) �= ∅. In order to construct an

element of V ∩ S∞(Sn, R+), we consider the C∞ embedding φ : Sn → R
n+1 − {0} defined

as follows:

φ(θ)=
(
θ,

1
γ (−θ)

)
.

Let W be the convex hull of φ(Sn). Then, since γ is a convex integrand, it follows that

φ(Sn)= ∂W, (∗)

where ∂W stands for the boundary of W .
Next, for any v ∈ int(W), consider the parallel translation Tv : Rn+1 → R

n+1 defined by
Tv(x)= x − v, where int(W) means the set consisting of interior points of W . Moreover,
for any θ ∈ Sn, set Lθ = {(θ, r) ∈ R

n+1 − {0} | r ∈ R+} and for any v ∈ int(W), define
γ̃v : Sn → R+ as follows:

(θ, γ̃v(θ))= Tv(∂W) ∩ Lθ .
Notice that, by (∗) and v ∈ int(W), γ̃v is a well-defined function. Notice also that graph(γ̃v)=
Tv(∂W). By (∗) and v ∈ int(W) again, it follows that ‖φ(θ)− v‖> 0 for any θ ∈ Sn. Thus,
it follows that the mapping hv : Sn → Sn defined by

hv(θ)= φ(θ)− v

‖φ(θ)− v‖
is a C∞ diffeomorphism and the following holds:

(γ̃v ◦ hv)(θ)= ‖φ(θ)− v‖.
Let H : R+ → R+ be the C∞ diffeomorphism defined by H(X)= 1

2X
2. Then, we have the

following:
F(v, θ)= 1

2‖φ(θ)− v‖2 = (H ◦ γ̃v ◦ hv)(θ).
Hence, we have

Caust(φ)= {v : ∃θ : ∇(H ◦ γ̃v ◦ hv)(θ)= 0 and det(Hess(H ◦ γ̃v ◦ hv)(θ))= 0}
= {v : ∃θ : ∇(γ̃v ◦ hv)(θ)= 0 and det(Hess(γ̃v ◦ hv)(θ))= 0}
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and

Sym(φ)= {v : ∃θ1 �= θ2 : ∇(H ◦ γ̃v ◦ hv)(θ1)= ∇(H ◦ γ̃v ◦ hv)(θ2)= 0

and (H ◦ γ̃v ◦ hv)(θ1)= (H ◦ γ̃v ◦ hv)(θ2)}
= {v : ∃θ1 �= θ2 : ∇(γ̃v ◦ hv)(θ1)= ∇(γ̃v ◦ hv)(θ2)= 0

and (γ̃v ◦ hv)(θ1)= (γ̃v ◦ hv)(θ2)}.
For any r ∈ R+, letB(0, r) be the open disk with radius r centered at 0. Then, by Corollary 1,
for any sufficiently small ε > 0 there exists a point v ∈ B(0, ε) such that γ̃v ◦ hv is stable. This
implies that there exists a sequence {vn ∈ int(W)}n=1,2,... converging to the origin such that
γ̃vn is stable for any n ∈ N.

For any v ∈ int(W), define the convex integrand γv : Sn → R+ as follows:

γv(θ)= 1
γ̃v(−θ) .

Since Sn is compact, the mapping � : B(0, ε)→ C∞
conv(S

n, R+) defined by �(v)= γv is
continuous. Since γ0 = γ , it follows that if n is sufficiently large, then the convex integrand
γvn must be inside the given neighborhood V of γ .

4. Examples

4.1. Stable convex integrands with few critical points

Recall that for a given C∞ convex integrand γ : Sn → R+, φ : Sn → R
n+1 is the C∞

embedding defined by

φ(θ)= inv
(
θ,

1
γ (−θ)

)
with respect to the polar coordinate expression.

Suppose that φ is parameterized as follows with respect to the Euclidean coordinate
expression:

φ(cos t, sin t)= (a cos t + c, b sin t + d),

where a, b ∈ R+ and c, d ∈ R. In the case where a = b, the image φ(S1) is the circle centered
at (c, d) with radius a = b. In this case, the caustic of φ and the symmetry set of φ are exactly
the same set, that is, the center of the circle {(c, d)}. Thus, it is clear that the givenC∞ convex
integrand γ is stable if and only if (c, d) �= (0, 0). Notice that in the case (c, d) �= (0, 0), the
number of normals to φ passing through (0, 0) is two. Thus, in this case, the stable convex
integrand γ has exactly two critical points (one gives the minimum of γ and another gives
the maximum of γ ).

Next, suppose that a > b. In this case, the image φ(S1) is an ellipse. It is not difficult to
see that Caust(φ) and Sym(φ) are expressed as follows (for instance, refer to [4, p. 13]):

Caust(φ)=
{(

a2 − b2

a
cos3 t + c,

b2 − a2

b
sin3 t + d

) ∣∣∣∣ 0 ≤ t < 2π
}
,

Sym(φ)=
{
(s, d)

∣∣∣∣ b2 − a2

a
< s <

a2 − b2

a

} ⋃{
(c, s)

∣∣∣∣ b2 − a2

b
< s <

a2 − b2

b

}
.
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FIGURE 1. Left: the convex integrand γ is not stable though all critical points of γ are non-degenerate.
Right: the convex integrand γ is stable.

In Figure 1, (c, d) is (0, 0) for the left ellipse φ(S1) while for the right ellipse, (c, d)
is a point such that cd �= 0 and c2 + d2 is sufficiently small. For each ellipse φ(S1) in
Figure 1, Caust(φ), Sym(φ) and graph(γ ) are depicted as well. It is easily checked that,
in the case (c, d)= (0, 0), the number of normals to φ passing through (0, 0) is four: namely
the normals at t = 0, 1

2π, π,
3
2π . And, in the same case, it is not difficult to check that all

(1, 0), (0, 1), (−1, 0), (0,−1) ∈ S1 are non-degenerate critical points of γ . Therefore, by
using the following proposition called the Morse lemma with parameters, it is concluded that
even in the case where (c, d) is a point such that cd �= 0 and c2 + d2 is sufficiently small, the
number of critical points of γ is exactly four.

PROPOSITION 4. (Morse lemma with parameters [4, p. 97]) Let F : (Rn × R
r , 0)→ R be

a C∞ function-germ, where we use coordinates xi in R
n and uj in R

r , and 0 here
stands for all xi and uj equal to 0. Suppose that ∂F/∂xi(0)= 0 for all i and that the
matrix (∂2F/∂xi∂xj (0)) is non-singular. (Thus F0, defined by F0(x)= F(x, 0), is a Morse
function.) Then there is a map-germ ψ : (Rn × R

r , 0)→ (Rn, 0) with:
(1) the matrix (∂ψi/∂xj ) non-singular, so that x �→ ψ(x, u) is a germ of C∞

diffeomorphism for u= 0 and therefore for all u close to 0;
(2) F(ψ(x, u), u)= F(0, 0)+ ∑n

i=1 εix
2
i + h(u), where each εi is ±1 and h : (Rr , 0)→

(R, 0) is a C∞ function-germ.

4.2. Stable convex integrands with many critical points

In this subsection, an example is given of a stable convex integrand with ten critical points.
By this example and Subsection 4.1, it is easily seen that for any positive integer k there exists
a stable convex integrand γ : S1 → R+ with 2k critical points.

In Figure 2, each outer curve is given by a C∞ embedding φ and each inner curve is
the graph of the C∞ convex integrand γ . Since the image φ(S1) of the left-hand side is
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FIGURE 2. Left: the convex integrand γ is not stable though all ten critical points of γ are non-
degenerate. Right: the convex integrand γ is stable and has exactly ten critical points.

symmetric about the origin (0, 0) with respect to the rotation by angle 2
5π , it follows that

(0, 0) is inside Sym(φ). Thus, the left-hand side γ is not stable. It is not difficult to construct
a C∞ embedding φ so that in the left-hand side case, the number of normals to φ passing
through (0, 0) is exactly ten and the origin (0, 0) is not contained in Caust(φ). Thus, the
ten normals passing through (0, 0) correspond to non-degenerate critical points of γ . On the
other hand, in the right-hand side, the image φ(S1) of the left-hand side is translated slightly
so that the origin (0, 0) lies outside Caust(φ) ∪ Sym(φ). Thus, the right-hand side γ is stable.
And, by using the Morse lemma with parameters (Proposition 4), we can conclude that also
in the right-hand side case, the number of non-degenerate critical points of γ is exactly ten.

4.3. Restrictions on global differentiable types of stable convex integrands

As the title of this subsection shows, in Subsection 4.3, restrictions on global differentiable
types of stable convex integrands are investigated.

Suppose that n= 1. Then, as in Subsection 4.2, for any positive integer k there exists a
stable convex integrand γ such that the number of non-degenerate critical points is 2k. In this
case, there must exist exactly k critical points with index 0 and also exactly k critical points
with index 1.

Next, suppose that 2 ≤ n. The restrictions in the case n= 1 obtained above suggest the
following question.

Question 1. Let k be a positive integer. Then, is there any stable convex integrand γ which
has k non-degenerate critical points with index 0 and k non-degenerate critical points with
index n?

LEMMA 1. Let n be an integer satisfying n≥ 2. Let γ : Sn → R+ be a convex integrand with
only non-degenerate critical points such that the index of γ at any critical point is zero or n.
Then, γ has only two critical points: the index is zero at one point and it is n at another point.
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FIGURE 3. A horse saddle as the graph of a height function h. The height function h has a non-
degenerate critical point of index 1 at the saddle point.

Lemma 1 may be proved by using the Morse inequalities as follows.

Proof. For any non-negative integer λ, denote by Cλ the number of non-degenerate critical
points with index λ and by Rλ the λth Betti number of Sn. Set

Sλ = Rλ − Rλ−1 + · · · ± R0.

Then, the following inequalities, called the Morse inequalities, hold [21]:

Sλ ≤ Cλ − Cλ−1 + · · · ± C0. (iλ)

The inequality (i0) implies 1 ≤ C0. Since n≥ 2, the inequality (i1) implies 0 − 1 ≤ 0 − C0,
which is equivalent to C0 ≤ 1. Thus, we have C0 = 1. In the case λ > n, the inequalities
(iλ), (iλ+1) imply the following:

n∑
λ=0
(−1)λRλ =

n∑
λ=0
(−1)λCλ.

By using this equality, it is easily seen that Cn = 1, and thus the proof of Lemma 1 is
complete. �

Lemma 1 gives a restriction on the global differentiable types of stable convex integrands.
In fact, Lemma 1 answers Question 1 negatively except for k = 1. In the case that k = 1, it is
easily seen that a small translation of the unit sphere Sn gives a concrete example of a stable
convex integrand γ such that C0 = Cn = 1 and C1 = · · · = Cn−1 = 0.

Lemma 1 asserts thatC1 + · · · + Cn−1 = 0 must implyC0 = Cn = 1. It seems that stable
convex integrands satisfying C0 = Cn = 1 are very special. Hence, for most stable convex
integrands, it seems that C1 + · · · + Cn−1 must be positive. However, since inv(graph(γ ))
is the boundary of a convex body for any convex integrand γ , it follows that a horse saddle
shape (see Figure 3) never appears as a local shape of inv(graph(γ )). Thus, the following
question naturally arises.

Question 2. Are there stable convex integrands γ satisfying C1 + · · · + Cn−1 > 0?

Figure 4 gives an affirmative answer to Question 2. On the boundary of ‘GOISHI’, there
is the circle consisting of points at which the absolute value of the difference of two principal
curvatures attains the maximum. Suppose that the origin of R3 is inside the intersection of
‘GOISHI’ and the plane containing this circle, and is outside the caustic of the boundary of
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FIGURE 4. The boundary of ‘GOISHI’ which is a stone used in the game of ‘GO’.

‘GOISHI’. Suppose, moreover, that the origin of R3 is different from the center of the circle.
Consider the sphere centered at the origin with radius r where r is the distance between
the origin and the unique nearest point of the circle from the origin. Then, the set-germ
of the intersection of the sphere and the boundary of ‘GOISHI’ at the nearest point is C∞
diffeomorphic to the set-germ of the intersection of the horse saddle and the plane at the
saddle point given in Figure 3.

By Figure 4, it is natural to ask the following.

Question 3. Suppose that n≥ 2. Let k be a non-negative integer and let γ : Sn → R+ be a
stable convex integrand such that

C1 + · · · + Cn−1 = k.

Then, are there restrictions on global differentiable types of γ ?

Question 3 seems to be open except for k = 0. In the authors’ opinion, Question 3 seems
to be interesting.

Acknowledgement. The authors would like to thank the reviewer for appropriate comments.
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