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STABILITY OF CERTAIN FUNCTIONAL EQUATIONS
VIA A FIXED POINT OF CIRIC

Mohamed Akkouchi

Abstract

Let S be a non empty set. We prove the stability (in the sense of Ulam) of
the functional equation: f(t) = F(¢, f(¢(t))), where ¢ is a given function of S
into itself and F is a function satisfying a contraction of Cirié type ([5]). Our
analysis is based on the use of a fixed point theorem of Ciri¢ (see [5] and [4]).
In particular our result provides a generalization and a natural continuation
of a paper of Baker (see [3]).

1 Introduction and preliminaries

Problems of stability for functional equations have been considered by S.M. Ulam
in 1940 ([20]) and by Hyers ([9], [10]). One of the first results established in this
direction is the following result, due to Hyers ([9], [10]), that answered a question
of Ulam ([20]).

Theorem 1.1. Suppose that S is an additive semigroup, E is a Banach space,
f:S—E,§>0and

If(@+y) = flz) = fll <6 forallz,yels. (1.1)
Then there is a unique function a : S — E such that
alx +y) =a(z) +aly) foralz,yebs, (1.2)

and
|f(z) —a(z)|]| <6 forallxels, (1.3)
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This theorem says that the Cauchy functional equation is stable in the sense of
Heyers-Ulam.

Since the paper of Heyers, a large amount of papers and books were published
offering many kind of extensions and generalizations. Now, the research in the topic
is very extensive and a very rich background of results is build. (See the references).

In 1991, J. A. Baker ([3]) has studied the stability of the functional equation
F(t) = alt) + BWF(6(1), Torall t € 5, (1.4)

where S is a non empty set, o and 3 are given complex valued functions defined on
S such that sup,cg|6(t)] <1 and ¢ is a given mapping of S into itself.

Based on a variant of Banach fixed point theorem, Baker has proved the following
theorem.

Theorem 1.2. (Baker [3]) Suppose that S is a nonempty set; E is a real (or
complex) Banach space, ¢ : S — S, a:S—>E(:5S—R (orC),0<)\<1, and
|B()| < X for allt € S. Also suppose that g: S — E, § >0, and

lg(t) — [a(t) + B)g(d(E)I| <6 for allt € S. (1.5)
Then there is a unique function f : S — E such that
f(t) = a(t) + B(t) f(&(t)) (1.6)
and 5
1f@&)—g@®)| < T—x forallt € S, (1.7)

The aim of this paper is to extend the above result by proving a stability result
(in the sense of Heyers-Ulam) for the general functional equation

ft) = F(t, f(o(1), V€S,
where S is a nonempty set. This equation is extensively studied in [13].

Our study will be based on a fixed point result of Ciri¢ (see [5] and [4]). Let us
recall this result

Theorem 1.3. (C’iric’ [5]) Let (X,d) be a complete metric space, T : X — X a
mapping satisfying the condition

d(T(x), T(y)) < ar(w,y)d(z,y) + az(z,y)d(z, T(x)) + as(z, y)d(y, T(y))+

Fou(z,y)d(z, T(y)) + as(z, y)d(y, T(x)), (1.8)
for all z,y € X, where a; : X x X — [0,00), i = 1,2,...,5 and ¥2_,a;(z,y) < A
for each x,y € X and some X € [0,1).
Then T has a unique fized point in X.

This theorem was established in [5]. A new proof of this theorem is given by M.
Balaj and S. Muresan in [4].
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2 Results

To establish our results, we need two lemmas. The first lemma is proved in [4].

Lemma 2.1. ([4], Lemma 1). Let (X,d) be a complete metric space, Y a nonempty
closed bounded subset of X andT : Y — Y a mapping. PutYy =Y, Y] :=T(Yp),,
Yn :=T(Yn-1), - Iflim, o diam(Y,) = 0, then T has a unique fized point.

Let (X,d) be a metric space. For each a € X and € > 0, B(a,e€) means the
closed ball of radius € and center a.

Lemma 2.2. Let (X, d) be a metric space, T : X — X be a mapping satisfying the
condition of Theorem 1.3. Let a € X and let p be any number such that d(a,T(a)) <
p. Put

0(p) := m (2.1)
Then - -
T(B(a,0(p)) < Bla, 0(p)). (2:2)

Proof. Using the same technique of proofs as in Theorem 2 of Balaj and Muregan
[4], one can prove Lemma 2.2. O

To prove our main result, we need the following variant of Ciri¢ Theorem 1.3.

Theorem 2.1. Let (X,d) be a complete metric space and T : X — X be as in
Theorem 1.3. Let u € X be arbitrary and let § > 0 be any number such that

d(u, T(u)) < 6.
Then there exists a unique point p € X such that p =T (p). Moreover,

d(u,p) < 2+ X))

3 T (2.3)

Proof. Let u € X and § > 0 are such that d(u,T'(u)) < ¢. Let 6(5) be defined by
(2.1), that is,
(2+X)0
0(6) == AN

Then by Lemma 2.2, we have
T(B(u,0(5)) C B(u,0(d)).

As in the proof of Theorem 2 in [4], we take Yy = B(u,0(5)), Y, = T(Y,_1),
for n > 1. From (1.8) we get diam(Y,) < Adiam(Y,—1) and, since A € [0,1),
diam(Y,) — 0, as n — co. By Lemma 2.1 the restriction of T' to B(u,6(d)) has
a fixed point p € B(u, 0(5)). The uniqueness of the fixed point follows easily from
(1.8). This ends the proof. O
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Remark 2.1. From Theorem 2.1 it follows that the unique fixed point of T, say a,
satisfies the following condition:

ae () Bla.6(p(x)),

zeX

where p(z) := d(z,Tz) and 0(t) is defined as in (2.1). As a consequence, for all
x,y € X, we have

d(x,y) < d(z,a) + d(a,y) < 0(p(z)) +0(p(y))- (2.4)

The main result of this paper reads is the following theorem.

Theorem 2.2. Suppose S is a nonempty set, (X,d) is a complete metric space,
¢:S5— S, F:5x%xX — X a function satisfying the condition

d(F(t,x), F(t,y)) < on(z,y)d(z, y) + z(z, y)d(z, F(t, x) + as(z, y)d(y, F(t,y))

taq(z,y)d(z, F(t,y)) + as(x,y)d(y, F(t,z)), (2.5)

for all z,y € X, where a; : X x X — [0,00), i =1,2,...,5 and 2_,a;(z,y) < \.
Also suppose that for some g : S — X and some 6 > 0, we have

d(g(t), F(t,9(6()))) <6 VteS. (2.6)

Then there exists a unique function f:S — X such that

f)=F(@ f(o(t), VteS (2.7)
and
d(f(t),g(t)) < g( )) VteS. (2.8)

Proof. Let Y :={a: S — X | sup,cgd(a(t), g(t)) < oo}. Since g € Y, then Y # 0.
For a,b €Y, we set

doo(a,b) == Sup d(a(t),b(t)).

Then (Y,ds) is a metric space. Since (X,d) is complete, then (Y,ds) is also
complete. The convergence in Y with respect to ds, is the uniform convergence on

S.
Let Vs :={a €Y | dx(a,g) < 6(d)}. For a € Y5 define Ta: S — X by
(Ta)(t) := F(t,a(¢(t))) VteS.

Then, from computations similar to those of Lemma 2.2, and by using (2.4), one
can see that T maps Yy into Y.
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If u,v € Y5 then for all t € S, we have
d(Tu(t), To(t)) = d(F(t, u(8(1))), F(t, v(e(t))))
< ard(u(é(t)),v(9(t))) + aad(u(d(t)), F'(t, u(o(t)))) + asd(v(e(t)),

+asd(u(e(t)), F(t,0(6(t)))) + asd(v((t)), F (¢, u(¢(1))))-
(From (2.9), we get

RS
—~
~
S
=
-
=
~
=
=
=
=

Ao (T4, T) < 71 (1 0) o (1,0) + 21, 0) oo (1, T0) + 75 (t, ) (0, T)
+7y4 (1, v)doo (1, TV) + v5 (0, v)doo (v, Tu), (2.10)

where

Yi(u, v) := sup e (u(d(t)), v(4(t)))

tesS
for i = 1,2...,5. We have still the condition ¥?_;v;(u,v) < XA < 1. So all the
conditions of Theorem 2.1 are satisfied. Moreover, the condition (2.6) means that
doo(g,Tg) < 6. Hence, according to Theorem 2.1, there exists a unique element
f € Y5 such that f =T f and do(g,Tg) < 0(6). Therefore, the conditions (2.7) and
(2.8) hold. This ends the proof. O

Remark 2.2. One can observe that the mapping 6 involved in Theorem 2.2, has
the expression :

(i) 8(9) := & for the Banach’s contraction principle.

(ii) 6(0) := % for the Kannan’s fixed point theorem ([12]) (a1 = a4 = a5 =0

and az = a3 =a €[0,3)).

(iii) 0(9) := 1(711:?)2% for the Cirié-Reich-Rus fixed point theorem ([18]) (a1 =

as=a3=L0ay=a5=0,and a+ 28 € [0,1)).

(iv) 6(9) := (2499 for the Hardy and Rogers fixed point theorem (8) (o, g, s,

2—«
o, a5 are nonnegative constants such that a := 25:1 a; €10,1)).

We have the following consequence.

Theorem 2.3. Suppose that S is a nonempty set; E is a real (or complex) Banach
space, ¢+ S — S, a: S — FE, B:S — L(E) (L(E) is the Banach algebra of all
bounded linear operators on E) 0 < XA < 1, and |B(t)|| < A for allt € S. Also
suppose that g : S — E, § > 0, and

lg(t) = [a(t) + B(E)(g(@@)I <6 for allz,y € S. (211)
Then there is a unique function f :S — E such that
f(t) = alt) + B)(f(4(1))) (2.12)
and
@) —g@®)| < 9 for allt € S, (2.13)

1—A
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Proof. For all (t,z) € S x E, we set
F(t,z) = a(t) + B(t)(z).
Then we have
1E@t,x) = F(t,y)ll = [1B(t)(z =yl < [|BO) |z =yl < Mz —yll.
Thus, F' satisfies the condition (2.5) of Theorem 2.2 with
ar(z,y) =A, and «aj(z,y)=0, for j=234,5.

By Remark 2.2, we know that , in this case, the map 6 is given by 6(J) = %. B

application of Theorem 2.2, we obtain the required conclusions expressed in (2.12
and (2.13). This ends the proof.
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