Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Filomat **25:2** (2011), 121–127 DOI: 10.2298/FIL1102121A

STABILITY OF CERTAIN FUNCTIONAL EQUATIONS VIA A FIXED POINT OF ĆIRIĆ

Mohamed Akkouchi

Abstract

Let S be a non empty set. We prove the stability (in the sense of Ulam) of the functional equation: $f(t) = F(t, f(\phi(t)))$, where ϕ is a given function of S into itself and F is a function satisfying a contraction of Ćirić type ([5]). Our analysis is based on the use of a fixed point theorem of Ćirić (see [5] and [4]). In particular our result provides a generalization and a natural continuation of a paper of Baker (see [3]).

1 Introduction and preliminaries

Problems of stability for functional equations have been considered by S.M. Ulam in 1940 ([20]) and by Hyers ([9], [10]). One of the first results established in this direction is the following result, due to Hyers ([9], [10]), that answered a question of Ulam ([20]).

Theorem 1.1. Suppose that S is an additive semigroup, E is a Banach space, $f: S \to E, \delta > 0$ and

$$\|f(x+y) - f(x) - f(y)\| \le \delta \quad \text{for all } x, y \in S.$$

$$(1.1)$$

Then there is a unique function $a: S \to E$ such that

$$a(x+y) = a(x) + a(y) \quad \text{for all } x, y \in S, \tag{1.2}$$

and

$$||f(x) - a(x)|| \le \delta \quad for \ all \ x \in S,$$
(1.3)

²⁰¹⁰ Mathematics Subject Classifications. 39B10, 26D20, 39B70, 47H10.

Key words and Phrases. Functional equations, Čirič's fixed point theorem, Stability (in the Sense of Ulam).

Received: Required

Communicated by (name of the Editor, required) Thanks, if apply

This theorem says that the Cauchy functional equation is stable in the sense of Heyers-Ulam.

Since the paper of Heyers, a large amount of papers and books were published offering many kind of extensions and generalizations. Now, the research in the topic is very extensive and a very rich background of results is build. (See the references).

In 1991, J. A. Baker ([3]) has studied the stability of the functional equation

$$f(t) = \alpha(t) + \beta(t)f(\phi(t)), \quad \text{for all } t \in S, \tag{1.4}$$

where S is a non empty set, α and β are given complex valued functions defined on S such that $\sup_{t \in S} |\beta(t)| < 1$ and ϕ is a given mapping of S into itself.

Based on a variant of Banach fixed point theorem, Baker has proved the following theorem.

Theorem 1.2. (Baker [3]) Suppose that S is a nonempty set; E is a real (or complex) Banach space, $\phi : S \to S$, $\alpha : S \to E \ \beta : S \to \mathbb{R}$ (or \mathbb{C}), $0 \le \lambda < 1$, and $|\beta(t)| \le \lambda$ for all $t \in S$. Also suppose that $g : S \to E, \delta > 0$, and

$$\|g(t) - [\alpha(t) + \beta(t)g(\phi(t))]\| \le \delta \quad \text{for all } t \in S.$$

$$(1.5)$$

Then there is a unique function $f: S \to E$ such that

$$f(t) = \alpha(t) + \beta(t)f(\phi(t))$$
(1.6)

and

$$\|f(t) - g(t)\| \le \frac{\delta}{1 - \lambda} \quad \text{for all } t \in S, \tag{1.7}$$

The aim of this paper is to extend the above result by proving a stability result (in the sense of Heyers-Ulam) for the general functional equation

$$f(t) = F(t, f(\phi(t))), \quad \forall t \in S,$$

where S is a nonempty set. This equation is extensively studied in [13].

Our study will be based on a fixed point result of Ćirić (see [5] and [4]). Let us recall this result

Theorem 1.3. (*Ćirić* [5]) Let (X, d) be a complete metric space, $T : X \to X$ a mapping satisfying the condition

$$d(T(x), T(y)) \le \alpha_1(x, y)d(x, y) + \alpha_2(x, y)d(x, T(x)) + \alpha_3(x, y)d(y, T(y)) + \alpha_3(x,$$

$$+\alpha_4(x,y)d(x,T(y)) + \alpha_5(x,y)d(y,T(x)),$$
(1.8)

for all $x, y \in X$, where $\alpha_i : X \times X \to [0, \infty)$, i = 1, 2, ..., 5 and $\sum_{i=1}^5 \alpha_i(x, y) \leq \lambda$ for each $x, y \in X$ and some $\lambda \in [0, 1)$.

Then T has a unique fixed point in X.

This theorem was established in [5]. A new proof of this theorem is given by M. Balaj and S. Mureşan in [4].

Stability of certain functional equations

2 Results

To establish our results, we need two lemmas. The first lemma is proved in [4].

Lemma 2.1. ([4], Lemma 1). Let (X, d) be a complete metric space, Y a nonempty closed bounded subset of X and $T: Y \to Y$ a mapping. Put $Y_0 := Y, Y_1 := T(Y_0), \cdots$, $Yn := \overline{T(Y_{n-1})}, \cdots$. If $\lim_{n\to\infty} diam(Y_n) = 0$, then T has a unique fixed point.

Let (X, d) be a metric space. For each $a \in X$ and $\epsilon > 0$, $\overline{B}(a, \epsilon)$ means the closed ball of radius ϵ and center a.

Lemma 2.2. Let (X, d) be a metric space, $T : X \to X$ be a mapping satisfying the condition of Theorem 1.3. Let $a \in X$ and let ρ be any number such that $d(a, T(a)) \leq \rho$. Put

$$\theta(\rho) := \frac{(2+\lambda)\rho}{2(1-\lambda)}.$$
(2.1)

Then

$$T(\overline{B}(a,\theta(\rho)) \subset \overline{B}(a,\theta(\rho)).$$
(2.2)

Proof. Using the same technique of proofs as in Theorem 2 of Balaj and Mureşan [4], one can prove Lemma 2.2. \Box

To prove our main result, we need the following variant of Ćirić Theorem 1.3.

Theorem 2.1. Let (X,d) be a complete metric space and $T : X \to X$ be as in Theorem 1.3. Let $u \in X$ be arbitrary and let $\delta > 0$ be any number such that

$$d(u, T(u)) \le \delta.$$

Then there exists a unique point $p \in X$ such that p = T(p). Moreover,

$$d(u,p) \le \frac{(2+\lambda)\delta}{2(1-\lambda)}.$$
(2.3)

Proof. Let $u \in X$ and $\delta > 0$ are such that $d(u, T(u)) \leq \delta$. Let $\theta(\delta)$ be defined by (2.1), that is,

$$\theta(\delta) := \frac{(2+\lambda)\delta}{2(1-\lambda)}.$$

Then by Lemma 2.2, we have

$$T(\overline{B}(u,\theta(\delta)) \subset \overline{B}(u,\theta(\delta)).$$

As in the proof of Theorem 2 in [4], we take $Y_0 = \overline{B}(u, \theta(\delta)), Y_n = \overline{T(Y_{n-1})},$ for $n \geq 1$. From (1.8) we get $diam(Y_n) \leq \lambda diam(Y_{n-1})$ and, since $\lambda \in [0, 1),$ $diam(Y_n) \to 0$, as $n \to \infty$. By Lemma 2.1 the restriction of T to $\overline{B}(u, \theta(\delta))$ has a fixed point $p \in \overline{B}(u, \theta(\delta))$. The uniqueness of the fixed point follows easily from (1.8). This ends the proof. **Remark 2.1.** From Theorem 2.1 it follows that the unique fixed point of T, say a, satisfies the following condition:

$$a \in \bigcap_{x \in X} \overline{B}(x, \theta(\rho(x))),$$

where $\rho(x) := d(x, Tx)$ and $\theta(t)$ is defined as in (2.1). As a consequence, for all $x, y \in X$, we have

$$d(x,y) \le d(x,a) + d(a,y) \le \theta(\rho(x)) + \theta(\rho(y)).$$

$$(2.4)$$

The main result of this paper reads is the following theorem.

Theorem 2.2. Suppose S is a nonempty set, (X,d) is a complete metric space, $\phi: S \to S, F: S \times X \to X$ a function satisfying the condition

$$d(F(t,x),F(t,y)) \le \alpha_1(x,y)d(x,y) + \alpha_2(x,y)d(x,F(t,x)) + \alpha_3(x,y)d(y,F(t,y))$$

$$+\alpha_4(x,y)d(x,F(t,y)) + \alpha_5(x,y)d(y,F(t,x)),$$
(2.5)

for all $x, y \in X$, where $\alpha_i : X \times X \to [0, \infty)$, i = 1, 2, ..., 5 and $\sum_{i=1}^5 \alpha_i(x, y) \leq \lambda$. Also suppose that for some $g : S \to X$ and some $\delta > 0$, we have

$$d(g(t), F(t, g(\phi(t)))) \le \delta \quad \forall t \in S.$$
(2.6)

Then there exists a unique function $f: S \to X$ such that

$$f(t) = F(t, f(\phi(t))), \quad \forall t \in S$$
(2.7)

and

$$d(f(t), g(t)) \le \frac{(2+\lambda)\delta}{2(1-\lambda)} \quad \forall t \in S.$$
(2.8)

Proof. Let $Y := \{a : S \to X \mid \sup_{t \in S} d(a(t), g(t)) < \infty\}$. Since $g \in Y$, then $Y \neq \emptyset$. For $a, b \in Y$, we set

$$d_{\infty}(a,b) := \sup_{t \in S} d(a(t), b(t)).$$

Then (Y, d_{∞}) is a metric space. Since (X, d) is complete, then (Y, d_{∞}) is also complete. The convergence in Y with respect to d_{∞} is the uniform convergence on S.

Let
$$Y_{\delta} := \{a \in Y \mid d_{\infty}(a,g) \leq \theta(\delta)\}$$
. For $a \in Y_{\delta}$ define $Ta : S \to X$ by
 $(Ta)(t) := F(t, a(\phi(t))) \quad \forall t \in S.$

Then, from computations similar to those of Lemma 2.2, and by using (2.4), one can see that T maps Y_{δ} into Y_{δ} .

Stability of certain functional equations

If $u, v \in Y_{\delta}$ then for all $t \in S$, we have

$$d(Tu(t), Tv(t)) = d(F(t, u(\phi(t))), F(t, v(\phi(t))))$$

$$\leq \alpha_1 d(u(\phi(t)), v(\phi(t))) + \alpha_2 d(u(\phi(t)), F(t, u(\phi(t)))) + \alpha_3 d(v(\phi(t)), F(t, v(\phi(t))))$$

$$+ \alpha_4 d(u(\phi(t)), F(t, v(\phi(t)))) + \alpha_5 d(v(\phi(t)), F(t, u(\phi(t)))).$$
(2.9)

From (2.9), we get

$$d_{\infty}(Tu, Tv) \leq \gamma_{1}(u, v)d_{\infty}(u, v) + \gamma_{2}(u, v)d_{\infty}(u, Tu) + \gamma_{3}(u, v)d_{\infty}(v, Tv) + \gamma_{4}(u, v)d_{\infty}(u, Tv) + \gamma_{5}(u, v)d_{\infty}(v, Tu),$$
(2.10)

where

$$\gamma_i(u,v) := \sup_{t \in S} \alpha_i(u(\phi(t)), v(\phi(t)))$$

for i = 1, 2, ..., 5. We have still the condition $\sum_{i=1}^{5} \gamma_i(u, v) \leq \lambda < 1$. So all the conditions of Theorem 2.1 are satisfied. Moreover, the condition (2.6) means that $d_{\infty}(g, Tg) \leq \delta$. Hence, according to Theorem 2.1, there exists a unique element $f \in Y_{\delta}$ such that f = Tf and $d_{\infty}(g, Tg) \leq \theta(\delta)$. Therefore, the conditions (2.7) and (2.8) hold. This ends the proof.

Remark 2.2. One can observe that the mapping θ involved in Theorem 2.2, has the expression :

(i) $\theta(\delta) := \frac{\delta}{1-\lambda}$ for the Banach's contraction principle.

(ii) $\theta(\delta) := \frac{(1+\alpha)\delta}{1-2\alpha}$ for the Kannan's fixed point theorem ([12]) ($\alpha_1 = \alpha_4 = \alpha_5 = 0$ and $\alpha_2 = \alpha_3 = \alpha \in [0, \frac{1}{2})$).

(iii) $\theta(\delta) := \frac{(1+\beta)\delta}{1-\alpha-2\beta}$ for the Ćirić-Reich-Rus fixed point theorem ([18]) ($\alpha_1 = \alpha$, $\alpha_2 = \alpha_3 = \beta \ \alpha_4 = \alpha_5 = 0$, and $\alpha + 2\beta \in [0, 1)$).

(iv) $\theta(\delta) := \frac{(2+\alpha)\delta}{2-\alpha}$ for the Hardy and Rogers fixed point theorem ([8]) $(\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5$ are nonnegative constants such that $\alpha := \sum_{i=1}^5 \alpha_i \in [0, 1)$).

We have the following consequence.

Theorem 2.3. Suppose that S is a nonempty set; E is a real (or complex) Banach space, $\phi : S \to S$, $\alpha : S \to E$, $B : S \to \mathcal{L}(E)$ ($\mathcal{L}(E)$ is the Banach algebra of all bounded linear operators on E) $0 \leq \lambda < 1$, and $||B(t)|| \leq \lambda$ for all $t \in S$. Also suppose that $g : S \to E$, $\delta > 0$, and

$$\|g(t) - [\alpha(t) + B(t)(g(\phi(t)))]\| \le \delta \quad \text{for all } x, y \in S.$$

$$(2.11)$$

Then there is a unique function $f: S \to E$ such that

$$f(t) = \alpha(t) + B(t)(f(\phi(t)))$$
(2.12)

and

$$\|f(t) - g(t)\| \le \frac{\delta}{1 - \lambda} \quad \text{for all } t \in S,$$
(2.13)

Proof. For all $(t, x) \in S \times E$, we set

$$F(t, x) = \alpha(t) + B(t)(x).$$

Then we have

$$||F(t,x) - F(t,y)|| = ||B(t)(x-y)|| \le ||B(t)|| ||x-y|| \le \lambda ||x-y||.$$

Thus, F satisfies the condition (2.5) of Theorem 2.2 with

$$\alpha_1(x,y) = \lambda$$
, and $\alpha_j(x,y) = 0$, for $j = 2, 3, 4, 5$.

By Remark 2.2, we know that , in this case, the map θ is given by $\theta(\delta) = \frac{\delta}{1-\lambda}$. By application of Theorem 2.2, we obtain the required conclusions expressed in (2.12) and (2.13). This ends the proof.

Acknowledgments

The author thanks very much the referee for his valuable and useful comments and suggestions.

References

- M. Akkouchi and E. Elqorachi, On Hyers-Ulam stability of cauchy and Wilson equations, Georgiam Math. J., 11 (1) (2004), 69-82.
- [2] M. Akkouchi and E. Elqorachi, On Hyers-Ulam stability of the generalized Cauchy and Wilson equations, Publicationes Mathematicae, 66 (3-4) (3) (2005).
- [3] J. A. Baker, The stability of certain functional equations, Proc. Amer. Math. Soc., 112 (3) (1991), 729-732.
- [4] M. Balaj and S. Mureşan, A note on a Cirić fixed point theorem, Fixed Point Theory, Volume 4, No. 2, 2003, 237-240.
- [5] L. B. Cirić, Generalized contractions and fixed-point theorems, Publ. L'Inst. Math., 12, 26 (1971), 19-26.
- [6] L. B. Cirić, On a family of contractive maps and fixed points, Publ. L'Inst. Math., 17 (1974), 45-51.
- [7] G. Darbo, Punti uniti in transformazioni a codomenio noncompacto, Rend. Sem. Mat. Univ. Padova, 24 (1955), 84-92.
- [8] G. Hardy, T. Rogers, A generalization of a fixed point theorem of Reich, Canad. Math. Bull. 16 (1973), 201-206.
- [9] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941) 222-224.

- [10] D. H. Hyers, The stability of homomorphisms and related topics, Global Analysis- Analysis on manifold (T. M. Rassias ed.), Teubner-Texte zur Mathematik, band 57, Teubner Verlagsgesellschaftt, Leipsig, 1983, pp. 140-153.
- [11] D. H. Hyers, G. Isac, TH. M. Rassias, Stability of Functional Equation in Several Variables, Rirkhäuser, Basel, 1998.
- [12] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60 (1968), 71-76.
- [13] M. Kuczma, Functional equations in a single variable, Monographs math., vol. 46, PWN, Warszawa, 1968.
- [14] C. Park, Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras, Bull. Sci. Math. 132 (2008) 87-96.
- [15] TH. M. Rassias, The problem of S. M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000) 352-378.
- [16] TH. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000) 264-284.
- [17] TH. M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Academic, Dordrecht, Boston and London, 2003.
- [18] I. A. Rus, *Metrical fixed point theorems*, University of Cluj-Napoca, Department of Mathematics, 1979.
- [19] I.A. Rus, Generalized contractions, Presa Universitară Clujeană, 2001.
- [20] S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ., New York, 1960.

Department of Mathematics, Faculty of Sciences-Semlalia, University Cadi Ayyad, Av. Prince My. Abdellah, B.P. 2390. Marrakech - MAROC (Morocco). *E-mail*: akkouchimo@yahoo.fr