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STABILITY OF CERTAIN FUNCTIONAL EQUATIONS

VIA A FIXED POINT OF ĆIRIĆ

Mohamed Akkouchi

Abstract

Let S be a non empty set. We prove the stability (in the sense of Ulam) of
the functional equation: f(t) = F (t, f(φ(t))), where φ is a given function of S
into itself and F is a function satisfying a contraction of Ćirić type ([5]). Our
analysis is based on the use of a fixed point theorem of Ćirić (see [5] and [4]).
In particular our result provides a generalization and a natural continuation
of a paper of Baker (see [3]).

1 Introduction and preliminaries

Problems of stability for functional equations have been considered by S.M. Ulam
in 1940 ([20]) and by Hyers ([9], [10]). One of the first results established in this
direction is the following result, due to Hyers ([9], [10]), that answered a question
of Ulam ([20]).

Theorem 1.1. Suppose that S is an additive semigroup, E is a Banach space,
f : S → E, δ > 0 and

‖f(x + y)− f(x)− f(y)‖ ≤ δ for all x, y ∈ S. (1.1)

Then there is a unique function a : S → E such that

a(x + y) = a(x) + a(y) for all x, y ∈ S, (1.2)

and
‖f(x)− a(x)‖ ≤ δ for all x ∈ S, (1.3)
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This theorem says that the Cauchy functional equation is stable in the sense of
Heyers-Ulam.

Since the paper of Heyers, a large amount of papers and books were published
offering many kind of extensions and generalizations. Now, the research in the topic
is very extensive and a very rich background of results is build. (See the references).

In 1991, J. A. Baker ([3]) has studied the stability of the functional equation

f(t) = α(t) + β(t)f(φ(t)), for all t ∈ S, (1.4)

where S is a non empty set, α and β are given complex valued functions defined on
S such that supt∈S |β(t)| < 1 and φ is a given mapping of S into itself.

Based on a variant of Banach fixed point theorem, Baker has proved the following
theorem.

Theorem 1.2. (Baker [3]) Suppose that S is a nonempty set; E is a real (or
complex) Banach space, φ : S → S, α : S → E β : S → R (or C), 0 ≤ λ < 1, and
|β(t)| ≤ λ for all t ∈ S. Also suppose that g : S → E, δ > 0, and

‖g(t)− [α(t) + β(t)g(φ(t))]‖ ≤ δ for all t ∈ S. (1.5)

Then there is a unique function f : S → E such that

f(t) = α(t) + β(t)f(φ(t)) (1.6)

and
‖f(t)− g(t)‖ ≤ δ

1− λ
for all t ∈ S, (1.7)

The aim of this paper is to extend the above result by proving a stability result
(in the sense of Heyers-Ulam) for the general functional equation

f(t) = F (t, f(φ(t))), ∀t ∈ S,

where S is a nonempty set. This equation is extensively studied in [13].

Our study will be based on a fixed point result of Ćirić (see [5] and [4]). Let us
recall this result

Theorem 1.3. (Ćirić [5]) Let (X, d) be a complete metric space, T : X → X a
mapping satisfying the condition

d(T (x), T (y)) ≤ α1(x, y)d(x, y) + α2(x, y)d(x, T (x)) + α3(x, y)d(y, T (y))+

+α4(x, y)d(x, T (y)) + α5(x, y)d(y, T (x)), (1.8)

for all x, y ∈ X, where αi : X ×X → [0,∞), i = 1, 2, . . . , 5 and Σ5
i=1αi(x, y) ≤ λ

for each x, y ∈ X and some λ ∈ [0, 1).
Then T has a unique fixed point in X.

This theorem was established in [5]. A new proof of this theorem is given by M.
Balaj and S. Mureşan in [4].
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2 Results

To establish our results, we need two lemmas. The first lemma is proved in [4].

Lemma 2.1. ([4], Lemma 1). Let (X, d) be a complete metric space, Y a nonempty
closed bounded subset of X and T : Y → Y a mapping. Put Y0 := Y , Y1 := T (Y0),···,
Y n := T (Yn−1),· · ·.If limn→∞ diam(Yn) = 0, then T has a unique fixed point.

Let (X, d) be a metric space. For each a ∈ X and ε > 0, B(a, ε) means the
closed ball of radius ε and center a.

Lemma 2.2. Let (X, d) be a metric space, T : X → X be a mapping satisfying the
condition of Theorem 1.3. Let a ∈ X and let ρ be any number such that d(a, T (a)) ≤
ρ. Put

θ(ρ) :=
(2 + λ)ρ
2(1− λ)

. (2.1)

Then
T (B(a, θ(ρ)) ⊂ B(a, θ(ρ)). (2.2)

Proof. Using the same technique of proofs as in Theorem 2 of Balaj and Mureşan
[4], one can prove Lemma 2.2.

To prove our main result, we need the following variant of Ćirić Theorem 1.3.

Theorem 2.1. Let (X, d) be a complete metric space and T : X → X be as in
Theorem 1.3. Let u ∈ X be arbitrary and let δ > 0 be any number such that

d(u, T (u)) ≤ δ.

Then there exists a unique point p ∈ X such that p = T (p). Moreover,

d(u, p) ≤ (2 + λ)δ
2(1− λ)

. (2.3)

Proof. Let u ∈ X and δ > 0 are such that d(u, T (u)) ≤ δ. Let θ(δ) be defined by
(2.1), that is,

θ(δ) :=
(2 + λ)δ
2(1− λ)

.

Then by Lemma 2.2, we have

T (B(u, θ(δ)) ⊂ B(u, θ(δ)).

As in the proof of Theorem 2 in [4], we take Y0 = B(u, θ(δ)), Yn = T (Yn−1),
for n ≥ 1. From (1.8) we get diam(Yn) ≤ λdiam(Yn−1) and, since λ ∈ [0, 1),
diam(Yn) → 0, as n → ∞. By Lemma 2.1 the restriction of T to B(u, θ(δ)) has
a fixed point p ∈ B(u, θ(δ)). The uniqueness of the fixed point follows easily from
(1.8). This ends the proof.
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Remark 2.1. From Theorem 2.1 it follows that the unique fixed point of T, say a,
satisfies the following condition:

a ∈
⋂

x∈X

B(x, θ(ρ(x))),

where ρ(x) := d(x, Tx) and θ(t) is defined as in (2.1). As a consequence, for all
x, y ∈ X, we have

d(x, y) ≤ d(x, a) + d(a, y) ≤ θ(ρ(x)) + θ(ρ(y)). (2.4)

The main result of this paper reads is the following theorem.

Theorem 2.2. Suppose S is a nonempty set, (X, d) is a complete metric space,
φ : S → S, F : S ×X → X a function satisfying the condition

d(F (t, x), F (t, y)) ≤ α1(x, y)d(x, y) + α2(x, y)d(x, F (t, x)) + α3(x, y)d(y, F (t, y))

+α4(x, y)d(x, F (t, y)) + α5(x, y)d(y, F (t, x)), (2.5)

for all x, y ∈ X, where αi : X ×X → [0,∞), i = 1, 2, . . . , 5 and Σ5
i=1αi(x, y) ≤ λ.

Also suppose that for some g : S → X and some δ > 0, we have

d(g(t), F (t, g(φ(t)))) ≤ δ ∀t ∈ S. (2.6)

Then there exists a unique function f : S → X such that

f(t) = F (t, f(φ(t))), ∀t ∈ S (2.7)

and

d(f(t), g(t)) ≤ (2 + λ)δ
2(1− λ)

∀ t ∈ S. (2.8)

Proof. Let Y := {a : S → X | supt∈S d(a(t), g(t)) < ∞}. Since g ∈ Y, then Y 6= ∅.
For a, b ∈ Y , we set

d∞(a, b) := sup
t∈S

d(a(t), b(t)).

Then (Y, d∞) is a metric space. Since (X, d) is complete, then (Y, d∞) is also
complete. The convergence in Y with respect to d∞ is the uniform convergence on
S.

Let Yδ := {a ∈ Y | d∞(a, g) ≤ θ(δ)}. For a ∈ Yδ define Ta : S → X by

(Ta)(t) := F (t, a(φ(t))) ∀t ∈ S.

Then, from computations similar to those of Lemma 2.2, and by using (2.4), one
can see that T maps Yδ into Yδ.
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If u, v ∈ Yδ then for all t ∈ S, we have

d(Tu(t), T v(t)) = d(F (t, u(φ(t))), F (t, v(φ(t))))

≤ α1d(u(φ(t)), v(φ(t))) + α2d(u(φ(t)), F (t, u(φ(t)))) + α3d(v(φ(t)), F (t, v(φ(t))))

+α4d(u(φ(t)), F (t, v(φ(t)))) + α5d(v(φ(t)), F (t, u(φ(t)))). (2.9)

¿From (2.9), we get

d∞(Tu, Tv) ≤ γ1(u, v)d∞(u, v) + γ2(u, v)d∞(u, Tu) + γ3(u, v)d∞(v, Tv)

+γ4(u, v)d∞(u, Tv) + γ5(u, v)d∞(v, Tu), (2.10)

where
γi(u, v) := sup

t∈S
αi(u(φ(t)), v(φ(t)))

for i = 1, 2 . . . , 5. We have still the condition Σ5
i=1γi(u, v) ≤ λ < 1. So all the

conditions of Theorem 2.1 are satisfied. Moreover, the condition (2.6) means that
d∞(g, Tg) ≤ δ. Hence, according to Theorem 2.1, there exists a unique element
f ∈ Yδ such that f = Tf and d∞(g, Tg) ≤ θ(δ). Therefore, the conditions (2.7) and
(2.8) hold. This ends the proof.

Remark 2.2. One can observe that the mapping θ involved in Theorem 2.2, has
the expression :

(i) θ(δ) := δ
1−λ for the Banach’s contraction principle.

(ii) θ(δ) := (1+α)δ
1−2α for the Kannan’s fixed point theorem ([12]) (α1 = α4 = α5 = 0

and α2 = α3 = α ∈ [0, 1
2 )).

(iii) θ(δ) := (1+β)δ
1−α−2β for the Ćirić-Reich-Rus fixed point theorem ([18]) (α1 = α,

α2 = α3 = β α4 = α5 = 0, and α + 2β ∈ [0, 1)).

(iv) θ(δ) := (2+α)δ
2−α for the Hardy and Rogers fixed point theorem ([8]) (α1, α2, α3,

α4, α5 are nonnegative constants such that α :=
∑5

i=1 αi ∈ [0, 1)).

We have the following consequence.

Theorem 2.3. Suppose that S is a nonempty set; E is a real (or complex) Banach
space, φ : S → S, α : S → E, B : S → L(E) (L(E) is the Banach algebra of all
bounded linear operators on E) 0 ≤ λ < 1, and ‖B(t)‖ ≤ λ for all t ∈ S. Also
suppose that g : S → E, δ > 0, and

‖g(t)− [α(t) + B(t)(g(φ(t)))]‖ ≤ δ for all x, y ∈ S. (2.11)

Then there is a unique function f : S → E such that

f(t) = α(t) + B(t)(f(φ(t))) (2.12)

and
‖f(t)− g(t)‖ ≤ δ

1− λ
for all t ∈ S, (2.13)
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Proof. For all (t, x) ∈ S × E, we set

F (t, x) = α(t) + B(t)(x).

Then we have

‖F (t, x)− F (t, y)‖ = ‖B(t)(x− y)‖ ≤ ‖B(t)‖ ‖x− y‖ ≤ λ ‖x− y‖ .

Thus, F satisfies the condition (2.5) of Theorem 2.2 with

α1(x, y) = λ, and αj(x, y) = 0, for j = 2, 3, 4, 5.

By Remark 2.2, we know that , in this case, the map θ is given by θ(δ) = δ
1−λ . By

application of Theorem 2.2, we obtain the required conclusions expressed in (2.12)
and (2.13). This ends the proof.
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