
Z. P. Baiant 
Walter Murphy Professor of Civil 

Eng ineering and Material Science, 
Fellow ASME. 

Yuan-Neng Li 

Stability of Cohesive Crack 
Model: Part 11- Eigenvalue 
Analysis of Size Effect on 
Strength and Ductility of 
Structures 

Research Assistant Professor. 

Department of Civil Engineering, 
Northwestern University, 

Evanston, IL 60208 

The preceding paper is extended to the analysis of size effect on strength and ductility 
of structures. For the case of geometrically similar structures of different sizes, the 
criterion of stability limit is transformed to an eigenvalue problem for a homogeneous 
Fredholm integral equation, with the structure size as the eigenvalue. Under the 
assumption of a linear softening stress-displacement relation for the cohesive crack, 
the eigenvalue problem is linear. The maximum load of structure under load control, 
as well as the maximum deflection under displacement control (which characterizes 
ductility of the structure), can be solved explicitly in terms of the eigenfunction of 
the aforementioned integral equation. 

1 Introduction 

As explained in the preceding paper (BaZant and Li, 1995), 
the cohesive crack model is a nonlinear theory of fracture me­
chanics in which the condition of stability limit is expressed in 
terms of the singularity condition of the second variation of 
the energy potential with respect to cohesive stresses or crack­
opening displacements. Although the criterion of stability limit 
can also be formulated in terms of energy variation with respect 
to the crack length, the resulting equation is not very useful, 
since the energy release rate in the cohesive crack model de­
pends on the cohesive stresses or crack-opening displacements. 

For a given structure, the criterion of stability limit leads to 
a highly nonlinear equation for crack length. However, when a 
class of geometrically similar structures of different sizes is 
considered and the relative crack length is given, the criterion 
of stability limit can be treated as an equation for the structure 
size at which the stability limit occurs at the given relative crack 
length. In this manner, the criterion of the stability limit is 
transformed into an eigenvalue problem, with the structure size 
as the eigenvalue. In the special case of linear softening, the 
eigenvalue problem is linear. It can be solved independently 
of the solution of the cohesive crack model. Furthermore, the 
corresponding maximum value of the load or loading parameter 
can be expressed explicitly in terms of the eigenfunction. In 
this way, the size effect curve can be obtained readily, without 
having to calculate the load-deflection curves for structures of 
various sizes. 

The eigenvalue problem of the cohesive crack model was 
studied by Li and Hong (1992), Li and Liang (1993) and Li 
and BaZant (1993). However, only the peak-load solution was 
discussed in these previous papers. In the present paper, the 
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influence functions are used to formulate the condition of stabil­
ity limit of a structure with a cohesive crack in the form of a 
homogenous Fredholm integral equation. The peak load, as well 
as the maximum displacement (which corresponds to snap-back 
instability), is obtained. In addition, the cases of a structure 
loaded through a spring coupled in series (i.e., the case of a soft 
loading device) and a structure restrained by a spring coupled in 
parallel are analyzed. Finally, some computational techniques 
are discussed and a numerical example of the size effect curves 
for maximum deflection is given. 

2 Dimensionless Process Zone Equations 

We consider a two-dimensional structure of a unit thickness 
and introduce the following dimensionless variables: 
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where £0 =; EGfl f � = characteristic size of the process zone, 
f, = direct tensile strength of the material, and We = threshold 
value of the crack-opening displacement. All the notations from 
the preceding paper (BaZant and Li, 1994) are retained. To 
simplify notations in the following text, we will drop the bars, 
with the understanding that all the variables are dimensionless 
unless specified otherwise. 

For a generic elastic structure, the crack-opening displace­
ment w, the load-line displacement u, the load P, and the crack­
bridging stress (j must satisfy the compatibility equations: 

which represent the special case of Eqs. (11) and (10) or (14) 
of the preceding paper for Cf = 0; C'''' (�, e), cO'P (0, CPO'( 0, 
cPP are dimensionless compliance influence functions (Green's 
functions). The lower integration limit ao is the relative length 
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of the initial traction-free crack (notch); a is the total relative 
crack length which includes both the process zone (crack-bridg­
ing zone) and the stress-free crack. The problem can also be 
formulated as equilibrium conditions written in terms of stiff­
ness influence functions: 

Da(O = r RWW(�, �')w(�')de + RWU(�)u (4) 
ao 

DP = f a 
R"W(Ow(Od� + R""u. 

ao 
(5) 

These equations represent the special case of Eqs. (26) and 
(25). Equation (4) for prescribed load P ensues by solving u 
from Eq. (5) and SUbstituting it into Eq. (4). The dimensionless 
stiffness functions are here defined with a unit value of Young's 
modulus. 

In the cohesive crack model, the cohesive stress a is related 
to the crack-opening displacement w by the stress-displacement 
relation, which can be described by either of the following 
forms 

w '" g(a), a = f(w). (00, b) 

Substituting (6a) into (2), we obtain what we call the crack 
compatibility equation in terms of compliance functions: 

1 f
a 

- g[a(O] = - C'''''(�, �')a(e)d�' + C<TP(OP (7) D ao 

Substituting (6b) into (4), we obtain the crack equilibrium 
equation in terms of stiffness functions: 

Dj[w(O] = _fa 
RWW(�, �')w(�')de + RWU(�)u. 

ao 

(8) 

3 Peak-Load Solution by the Condition of Structural 

Stability Limit 

As established in Bazant and Li ( 1995), the singularity condi­
tion for the compliance formulation under load control can be 
expressed as the condition of finding a nonzero solution v(O 
of the following homogenous equation: 

D fa C"<T(�', Ov(e)de = -
dg[a(O] v(O. (9) 

ao da 
Since we are considering geometrically similar structures 

only, (9) can be regarded as an eigenvalue problem if the rela­
tive crack length a is given. The dimensionless quantity D 
plays the role of an eigenvalue. In the actual calculation, the 
singularity condition should be solved simultaneously with the 
basic equations to obtain the nominal strength as the maximum 
load parameter and the corresponding size for a given relative 
crack length. Calculation of size effect curves in this manner 
is very efficient. A discussion of the discrete form of the present 
formulation has been given by Li and Bafant (1994). 

In the following, we restrict attention to the case of linear 
softening, which is defined as 

w = g(a) = 1 - a, a = f(w) = 1 - w. (10) 

Since for linear softening dg/da = -1, the eigenvalue is no 
longer coupled with the basic equations of the cohesive crack. 
The eigenvalue problem can now be written as 

D r C"<T(�', Ov(�')de = v(O· (11) 
ao 

If the relative crack length is specified and geometrically similar 
structures are considered, Eq. (11) represents a linear homoge­
neous Fredholm integral equation (Tricomi, 1957) for function 
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v(�), with size D as the eigenvalue. The size D for which 
the given a corresponds to the maximum load is the largest 
eigenvalue of ( 11 ). This approach, proposed by Li and Bafant 
(1994), makes it possible to avoid solving the load-deflection 
curves for various sizes D. It represents an efficient method of 
calculating the size effect curve. 

The dimensionless crack compatibility equation can be writ­
ten as 

Multiplying this with the eigenfunction v(O and then inte­
grating with respect to �, we obtain 

[ [.!. - C<TP(OP]V(Od' = fa a(�) f a 
[8(� - �') 

ao D ao ao D 
- C"<T(�, �') ]V(e)d�'d�. (13) 

If the singularity condition is satisfied, then the applied load is 
at its maximum. This maximum value is found to be 

(14) 

An equivalent expression for the peak load was obtained by Li 
and Hong (1992), and by Li and Bazant (1994). The eigen­
value problem (11) and the peak load solution (14) provide a 
powerful set of equations for solving the size-effect curve of 
the cohesive crack model directly, without any need to solve 
the load-deflection curve from the basic equations. 

The solution can also be generalized to include the case of 
multiple (conservative) loads. They can vary arbitrarily but in 
such a manner that there is no crack closure. Then the relation 
among the load values at the stability limit of the structure is 
linear. For instance, when a beam is subjected to combined 
action of lateral load P and axial load N, as shown in Fig. 1, 
the crack compatibility equation can be written as 

I - a(�) = -fa C"<T(�, �')a(e)d�' D ao 

where the symbols are self-explanatory. Since the loading terms 
do not enter the criterion of stability limit, the equation for the 
structural stability limit remains the same. If the condition for 
the stability limit is satisfied, the relation between these two 
loads is found to be linear: 

P N 
-+-= 1 p* N* 

where the denominators, defined as 

r v(Od� 
p* 1 

--;;;;,..-
a..:. o ___ _ 

= 
D fa 

C<TP(Ov(Od� 
ao 

r v(Od� 
N* = :.!.. -=_a..;.. o ___ _ 

D J� C"N(Ov(Od� , 

(16) 

(17) 

represent the critical loads when P and N are applied to the 
structure separately. Equation (16) is the general interactiori 
relation when the structure fails by tensile fracture and the 
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softening stress-displacement law is linear. A relation of this 
type was also reported by Li, MUller, and Womer ( 1994) in a 
discrete (matrix) form. Generalization to an arbitrary number 
of applied loads is self-evident. 

When the stress-displacement relation for a cohesive crack 
is nonlinear, one can use an iterative succession of linear ap­
proximations representing tangents of the stress-displacement 
curve according to the preceding approximation (this approach 
was formulated for the maximum load in Li and BaZant, 1994). 

4 Solution of Maximum Deflection 

If the structure is loaded by controlled displacement (Le., 
with a rigid grip), the stability limit is reached when there is a 
snap back in the diagram of load P versus load-line displace­
ment u. The crack equilibrium equation for this case is Eq. (30) 
of the preceding paper which, in the case of linear softening, 
yields 

[l - w(O]D = -r RWW(�, �')w(e)de + RW"(Ou. (18) ao 
The dimensionless condition of stability limit may now be writ­
ten as 

5 Stability Limit of Structure Loaded Through a 

Spring 

If the device that controls loading (e.g., the testing machine) 
has finite compliance Cf, the device can be represented as a 
spring connected to the structure in series. In such a connection, 
the device and the structure share the same force. Denote as u 
the total deflection that is controlled, which is the sum of the 
deflection Us of the structure and the deflection of the device u 
- Us. Using (3), we can solve load P in terms of u as 

P = (Cpp + Cf)-l[� - f:' CPU(OU(Od�] (25) 

In the dimensionless form, the process zone equation is 

1 - u(O = -D r CUU(�, e)u(e)d�' ao 
where 

CUU(�, e) 
= C"U(�, �') - CUP(�)(Cpp + Cf)-ICPu(�,). (27) 

The form of the eigenvalue problem is the same as (23) except 
( 19) that the modified compliance function is defined by (27). The 

maximum deflection is found to be 

Since a is constant for geometrically similar structures, ( 19) is 
a linear homogeneous Fredholm integral equation for the un­
known cohesive stress v(O in the process zone. This represents 
an eigenvalue problem with 1/ D as the eigenvalue. Only the 
smallest eigenvalue 1/ D represents a stability limit. The maxi­
mum deflection, characterizing snap back, is found to be 

D f:' v(Od� 
u = r SW"v(Od� 

. 
ao 

(20) 

However, the maximum deflection can also be solved in terms 
of the compliance functions. To this end, we eliminate the load 
parameter P from (3) and (7) and obtain the following crack 
compatibility equation under displacement control: 

1 - u(O = - D f:' CUu(�, e)u(�')de + c��O u (21) 

where 

The corresponding eigenvalue problem now becomes 

v(O = D [ CUU(e, Ov(e)de. ao (23) 

This is equivalent to the eigenvalue problem (19) of stiffness 
formulation, because the modified compliance function is the 
inverse of the stiffness function R WW. The maximum deflection 
can be expressed as 

(24) 

The compliance formulation is of course equivalent to the stiff­
ness formulation. In a similar way, we can also express the 
maximum load in terms of the stiffness influence functions. The 
details will not be given because the derivation is analogous. 
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(28) 

This formula reduces to (24) when compliance Cf approaches 
zero. 

On the other hand, if the spring is connected to the structure 
in parallel, it shares the same deflection with the structure. 
Denote by P the total load applied to the structure-spring sys­
tem, which is the sum of the load Ps which acts on the structure 
and Sfu where Sf = lICf' Using (5) we can express u in terms 
of P as 

u = [f:' R"W(Ow(�)d� + DP }RUU + Rf)-l. (29) 

Substituting (29) into '(8), one obtains the following crack 
compatibility equation: 

1 - w(O = - .!.. fa RWW(�, e)w(�')d�' (30) D ao 
+ RW"(OP(R"" + Rf)-l 

where the modified stiffness function is defined as 

RWW(�, e) 
= RWW(�, �') - RW"(OR"W(e)(R"" + Rf)-l. (31) 

The eigenvalue problem is to find a nonzero eigenfunction 
satisfying 

The maximum total applied load can be calculated from the 
following equation: 

(33) 

Of course when the spring constant of the connected spring 
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approaches zero, (33) becomes the peak-load solution in the 
stiffness formulation without a spring. 

6 Numerical Implementation 

As a numerical example, a three-point bent fracture specimen 
(Fig. 1)  is analyzed. The finite element method is used to obtain 
the compliance functions in a discretized form (although other 
methods, such as the boundary element method, might also be 
suitable). The four-node finite element, which is the simplest, 
is chosen to discretize one half of the beam. To determine 
the nodal compliance matrix, the displacement solutions are 
obtained for one unit load applied successively at each node 
along the potential crack path or at the load point. 

Each column of matrix CUT represents nodal displacements 
on the crack line when a unit load is applied to one node in the 
process zone, cuP represents the nodal displacements in the 
process zone when a unit load is applied at the load point, and 
CPP represents the load-line displacement when a unit load is 
applied at the load point. During the calculation, the total rela­
tive crack length a is first taken to correspond to the node that 
is farthest from the crack mouth as allowed by the compliance 
matrix, and then cracks reaching successively to nodes closer 
and closer to the crack mouth are considered. In each case 
the nodal displacements that lie in the uncracked ligament are 
eliminated. In this way, the dependence of the compliance func­
tion on the crack length is reflected by the sizes of the compli­
ance matrices. 

Starting with Hillerborg ( 1 976), the zero-K condition has 
been approximated by the condition that the elastic stress ahead 
of the cohesive crack tip be equal to the tensile strength. So in 
our dimensionless definition, (J'tip = 1 .  In the space of continuous 
functions, this condition is mathematically equivalent to the 
condition that the stress intensity factor K at the crack tip be 
zero (Barenblatt, 1962). After discretization, however, these 
two conditions are equivalent only approximately. Thus the 
use of the condition (J'tip = 1 inevitably introduces additional 
numerical error into the discrete solution. But this small price 
is quite justifiable, because we do not need the corresponding 
stress intensity factors, which are not easy to calculate anyway. 

However, numerical results (Li and BaZant, 1994) show that, 
in order to obtain good accuracy for large ( dimensionless) struc­
tural sizes, it seems important to assume the cohesive stress to 
vary linearly from node to node in the process zone, rather 
than a piece-wise constant manner. The assumption of linear 
variation of cohesive stress between the nodes leads to a tridiag­
onal matrix connecting the nodal values of cohesive stresses to 
the cohesive nodal forces (in detail, see Li and BaZant, 1994). 
Numerically, the differences in the maximum load values calcu­
lated by the eigenvalue analysis and by the load-deflection 
curves are usually in the fifth or sixth digit for linear (or nearly 
linear) softening laws. 

7 Numerical Solution of the Maximum Deflection 

Numerical examples for the peak load solution using the 
eigenvalue approach have been given in previous papers (e.g., 
Li and Hong, 1992; Li and BaZant, 1 994). Therefore, we will 
discuss only the numerical solution of maximum deflection, 
which characterizes ductility of a structure. Although the maxi­
mum load solution and the maximum deflection solution are 

Fig. 1 Beam under combined lateral load and axial load 
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Fig.2 Dimensionless deflection for (a) ao '" 0 and (b) ao '" 0.2 

mathematically similar, there exists one important difference. 
For three-point-bent beams, the maximum load always exists, 
no matter how large the relative process zone length a - ao is, 
or how small the dimensionless size DI Lo is. However, for 
maximum deflections, the situation is different. As shown in 
Fig. 2, there is no maximum deflection if the relative length a 
of the cohesive crack is large enough. The smallest dimen­
sionless size D below which there is no snap back will be called 
the critical size of the structure. The critical size is a function 
of relative notch depth ao as well as the slendemess ratio (span­
to-depth ratio of the beam). 

The dependence of the critical size on the relative notch depth 
can also be seen in Fig. 2. Fig. 2 (a) gives the deflection for beams 
without a notch (ao = 0), and Fig. 2 (b) for beams with relative 
notch depth ao = 0.2. For ao = 0, the critical size is found to be 
approximately 0.43 and for ao = 0.2 approximately 1 .4. 

According to Eqs. (23) and (24), we can obtain the size 
effect curves for maximum deflection for any given relative 
length a of the cohesive crack. Figure 3 shows the size effect 
curves for different initial notch ratios. Note that, paradoxically, 
the curves extend even to the left of the critical sizes (dashed 
lines); these portions of the curves are of course physically 
meaningless since there exists no maximum deflection at all. 
The explanation is that these portions correspond to cases with 
negative (J', whereas our analytical expressions are valid only 
when the crack-opening displacement in the process zone is 
less than the crack-opening threshold We (at which the stress is 
reduced to zero). With careful observation, one finds that, when 
the condition of stability limit is satisfied, the critical size D is 
actually the size at which the crack-mouth-opening displace­
ment becomes equal to the threshold We' Above the critical size 
(i.e., on right portions of the curves in Fig. 3), the obtained 
maximum deflections are exactly what one would obtain if the 
load-deflection curve were solved by the conventional method, 
that is, by solving the basic equations step by step for each 
different cohesive crack lengths. 

10 

5 ' .. � 
ClO",O.O �-
"'0=0.1 � "'0 '" 0.2 

0.5 5 10 

Fig. 3 Size effect curve for maximum deflection 
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As a check, we select, from the size effect curve, a maximum 
deflection value with its corresponding relative crack length a 

and its dimensionless size D. Then we use this dimensionless 
size as the input and solve the process zone equation together 
with the crack-tip equation (a tip = I) for different crack lengths. 
In all the cases examined, the maximum deflection is found to 
be the same (within the numerical precision of the calculation) 
and to occur at the same relative crack length. 

8 Final Remarks and Conclusions 

The cohesive crack model can be effectively analyzed in 
terms of continuous influence functions. Under the assumption 
of a linear softening stress-displacement law, the criterion of 
stability limit, which has been analyzed by BaZant and Li 
(1995), becomes a linear eigenvalue problem when geometri­
cally similar structures are considered. The peak value of the 
load parameter can be determined by solving the eigenvalue 
problem. In this manner, the size effect of the cohesive crack 
model becomes intimately related to the solutions of the eigen­
value problem. There are some similarities between the eigen­
value problem studied here and the eigenvalue problem for 
the buckling load of a structure. Both eigenvalue problems are 
derived from the criterion of structural stability limit. Whereas, 
in the buckling problem, the eigenvalue is Euler's critical load, 
in the cohesive crack model the eigenvalue is the structure size 
for which the loading parameter is maximized at a given relative 
cohesive crack length. The maximum load or load parameter 
can be calculated from the eigenfunctions. The following con­
clusions can be drawn: 

When geometrically similar structures are considered, the 
criterion of stability limit becomes an eigenValue problem. The 
size for which a given relative crack length corresponds to either 
the maximum load or the maximum displacement is the first 
eigenvalue of a homogeneous Fredholm integral equation. The 
size effect curve can thus be calculated efficiently. 

2 If the softening stress-displacement law for the cohesive 
crack is linear, the eigenvalue problem becomes linearized and 
can be solved independently. The critical value of the loading 
parameter (either the maximum load or the maximum load-
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line deflection), can be determined through the eigenfunction 
obtained. 

3 Numerical examples of the solution of the maximum de­
flection as a function of the dimensionless beam depth demon­
strate that the maximum deflection solution ceases to be valid 
if the structure dimension (e.g., beam depth) becomes smaller 
than a certain critical value. This critical value is characterized 
by the condition that the crack opening at the stability limit 
reaches the threshold value at which the cohesive stress gets 
reduced to zero. 
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