
QUARTERLY OF APPLIED MATHEMATICS
VOLUME LXII, NUMBER 1
MARCH 2004, PAGES 163-179

STABILITY OF CONSTANT EQUILIBRIUM STATE
FOR DISSIPATIVE BALANCE LAWS SYSTEM WITH A CONVEX

ENTROPY

By

TOMMASO RUGGERI (Department of Mathematics and Research Center of Applied
Mathematics (C.I.R.A.M.), University of Bologna, Via Saragozza 8, 40123 Bologna, Italy)

DENIS SERRE (UMPA (UMR CNRS/ENS Lyon 5669) Ecole Normale Superieure de Lyon, 46,
allee d'ltalie, 69364 Lyon Cedex 07, France)

Abstract. For a one-dimensional system of dissipative balance laws endowed with a
convex entropy, we prove, under natural assumptions, that a constant equilibrium state
is asymptotically L2-stable under a zero-mass initial disturbance. The technique is based
on the construction of an appropriate Liapunov functional involving the entropy and a
so-called compensation term.

1. Introduction. Recently, nonequilibrium theories and, in particular, the Extended
Thermodynamics [16] have generated a new interest in quasi-linear hyperbolic systems
of balance laws with dissipation due to the presence of production terms (systems with
relaxation). On this subject, it is very important to find connections between properties
of the full system and the associated subsystem obtained when certain parameters (re-
laxation coefficients) are just equal to zero. Mathematical examples on this topic were
developed in the linear case by Whitham [21] and in the nonlinear case by Liu [14] and by
Chen, Levermore, and Liu [5]. The requirement that the system of balance laws satisfies
an entropy principle with a convex entropy density gives several strong restrictions. In
fact, as is well known, starting from the observation of Godunov [9], it was shown that the
entire system of balance laws can be put in a very special hyperbolic symmetric system
providing the introduction of main field variables [2], [17]. As was observed by Boillat
and Ruggeri [3], the main field also permits us to recognize that these nonequilibrium
systems have a structure of nesting theories. In fact, it is possible to define the principal
subsystems that are obtained by freezing some components of the main field that have the
properties that preserve the existence of a convex entropy law and the spectrum of the
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characteristic eigenvalues is contained into the one of the full system (sub-characteristic
conditions). A particular subsystem is the equilibrium one.

Our goal in this paper is to prove that, under natural assumptions, a constant equilib-
rium state of such balance laws is asymptotically L2-stable. Though the technique em-
ployed here may look rather classical, involving an "energy" (actually entropy) estimate,
plus a compensation term as introduced by Kawashima et al. [13] for other purposes, it
has the nice feature that it applies to weak entropy solutions. It is therefore valid in the
presence of shock waves. For some natural reason, due to the finite propagation velocity
of the support of a solution, it is natural to assume that the total mass of the conserved
components of the unknown vanish. Under this condition, we find a i"1/2 decay rate of
the L2-norm of the solution, though the decay could not be better than £-1/4 in general,
that is, when a non-zero mass is present at initial time. Though we were able to get rid
of this zero-mass assumption in the linear case, to the price of the loss of the decay rate,
we did not succeed in overcoming this restriction in the nonlinear case.

The plan is as follows. The next section recalls a few important facts about dissipative
balance laws endowed with a convex entropy. In particular, we emphasize the solution
of equilibrium subsystem. Then we turn to the analysis of the linear case, where we
construct an appropriate quadratic Liapunov function whose dissipation rate is positive
definite. In the last section, we deal with the more involved nonlinear case, where a few
additional ideas are needed. Our main result is Theorem 8.

We should mention here a companion paper [19], where the Instability is proved for
the Jin-Xin relation model (see [11]) in the presence of a positively invariant domain.
There, the linearity of the principal part allows a treatment by compensated compactness,
which yields a similar but weaker result, without the zero-mass assumption.

At last, we must emphasize our smallness hypothesis, which constrained not only the
data but the solution itself. We feel that this is reasonable, especially in the light of the
global existence of smooth solutions for small data, obtained recently by Hanouzet and
Natalini [10].

2. Balance laws, systems, entropy, and generators. Let us consider a general
hyperbolic system of N balance laws:

daFa(u) = F(u), (1)

where the densities F°, the fluxes Fl and the productions F are IR^-column vectors
depending on the space variables xl (i = 1,2,3) and the time t = x°, (a = 0,1,2,3; da —
d/dxa) through the field u = u(xa) G HiN.

Now we suppose, as is usual in the applications, that the system (1) satisfies an entropy
principle; i.e., there exists an entropy density h = h°(u) and an entropy flux hl(u) such
that for every solution of (1) we have a nonpositive-entropy production1 £(u):

daha = E < 0. (2)

thermodynamics, —h°, —hl, and —£ have the physical meaning of entropy density, entropy flux,
and entropy production, respectively. But, by mathematical tradition, it is common to use the word
convex entropy density instead of concave entropy density and improperly call entropy the negative
entropy.
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The compatibility between (1) and (2) implies the existence of a main field u' of
Lagrange multipliers such that

daha -E = u' ■ (daFa - F). (3)

As a consequence of this identity, we have

dha = u' ■ dFa, E = u'-F<0. (4)

As it has been well known since the pioneering papers of Godunov [9] and Friedrichs and
Lax [8], it is possible to show [2, 17] that, because of (4)i, there exist four potentials h'a:

h'a = u'■ Fa - ha, (5)

such that
dh'a

(6)
It follows that, upon selecting the main field as the field variables, the original system

(1) can be written with Hessian matrices in the symmetric form

provided that h = h° is a convex function of u = F° (or, equivalently, the Legendre
transform h! = h'° is a convex function of the dual field u'). This form is called canonical
by Dafermos [6].

3. Principal subsystems. We split the main field u! € into two parts: u! =
(v',w'),v' G Mm,uj' € RN~M (0 < M < N); and the system (7) with F = (/, 7r), reads

»«(^) =/(»>')■ W

(f^) = (9)
Given some assigned value w'^x01) of w' (in the usual case w'M — const.), Boillat and

Ruggeri [3] call a principal subsystem of (8) and (9) the system

9a (^7= /KX). (10)

By construction, the solutions of the principal subsystems satisfy also a supplementary
entropy law with convex density and the spectrum of the characteristic eigenvalues is
included in the spectrum of the full system (sub-characteristic conditions) [3].

4. Equilibrium subsystem. In examples from physics involving nonequilibrium
processes such as extended thermodynamics [16], M < N equations of (1) represent
conservation laws while the remaining ones contain productions responsible for the dis-
sipative mechanism. In this case, / = 0 in (8). Recalling that a thermodynamical
equilibrium state is such that the production of the entropy E in (2) vanishes and attains
its maximum value:

/ qy, \ ( d2T, \
Eli! = 0' WJE = 0' (aSwJ,, 'S "egative semi-definite, (11)
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it is easy to prove [4]:

Theorem 1. In an equilibrium state, under the assumption of dissipative productions,
i.e., if

dir ( dir \ ^ 1
0^ + | is negative definite, (12)

then the production vanishes and the main field components vanish except for the first
M ones. Thus

tt|e = 0, w'\e = 0. (13)

These results reveal another privilege of the main field. In fact, while the field of
densities u are in general all different from zero in equilibrium, the components of the
main field are all zero except for the first M ones. Therefore the infinite equilibrium
states are the ones belonging to the M-dimensional manifold

w'(v, w) = 0 (14)

as solution of the N — M equations (14) (we recall the global univalence between w
and w' from the concavity assumption), it is possible to write u>\e as function of v.
The principal system of M conservation law with w = w \e is the equilibrium principal
subsystem associated to the system (8) and (9).

Another important characteristic property of the equilibrium state is put in evidence
from the following theorem:

Theorem 2. In equilibrium the entropy density h is minimal; i.e.,

h > H\e Vm ̂  u\e,

where
h\E = h{v,w\E{v)).

The proof follows immediately, taking into account the convexity of h:

W = h\E - h + u'\e • {u - u\e) < 0 Vu^u\e, (15)

and therefore choosing
U ). (16)

wj Vw|£(v)/
The last term in (15) is null due to the fact that u'\e and u — u\e are orthogonal (see
(16) and (13)2) and therefore

W = h\s - h < 0 Vu 7^ u\E. (17)

In this manner we have confirmed that the entropy density reaches its minimum value
in the equilibrium state.

We would stress the fact that these results are a consequence not only of the convexity
of the entropy density but also of the dissipation condition (12). In the mathematical
literature there exist several definitions of dissipation. The one most used is due to
Dafermos [7].
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Now we consider the one-dimensional case and, taking into account (13), we assume,
without loss of generality, that n — —ffw'; i.e.:

rdth'v, +dxk'v, = 0
(dt/w + dxkw> = -g(v',w')w',

with D2h! > 0 and E := tw'g(v', w')w'.

5. The linear problem. In a first instance, we restrict to the linear case:
• h! is a positive definite quadratic form,
• k' is a quadratic form,
• g is a constant matrix.

Lemma 3. Without loss of generality, we may suppose that h = |(|i/|2 + |u/|2). Therefore
v = v'\ w = w', and the system rewrites

dtv + dx(K0v + Kiw) = 0,

dtw -I- dx(K^v + K2w) = -Gw,

where K0, K2 are symmetric, and twGw > 0 for w ^ 0.

Proof. We have

ti = ^v'Hqv' + tv'Hlw' + ^tw'H2w'

and

h'v, = H0v' + HlW'.

Since Ho > 0, we introduce the square root ho = \fHa and define y := h0v' + Hq lH\w' =

o:/in 1h',. Then we have

h' = \\V\2 + - HlHo1H1)w'.

By Schur's complement theorem (see, for instance, [20]), H2 — Hj Hq1Hi is positive.
Let hi be its square root, and define z := h\w'. Then

h = \{\y? + \z\2).

In variables w, z, the system still writes

dtV + dx (linear flux) = 0,

dtz + c?x(linear flux) = —gz.

Lastly, since h is an entropy of the problem, the fluxes must be given by a potential,
obviously a quadratic one. The general form of this potential is

^yKoy + lyKiz + ilzK2z.

□
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5.1. A necessary condition for stability. From now on, we consider a linear system in
its canonical form, as given in Lemma 3. We wish that finite energy data give rise to
asymptotic strong stability, that is

lim (|Mt)||j> + IHOHlO = 0.
t-—> oc

Lemma 4. Strong asymptotic stability needs that ker(Aj ) (which is R(Ki) ) does not
contain any eigenvector of Kq.

We shall call this property genuine coupling, and we shall use the acronym (GC).
Our motivation is that under (GC), a slight disturbance on the component w always
has an influence on the full component v. This property closely resembles Kawashima's
condition for hyperbolic-parabolic systems [12] and thus is often called Kawashima's
condition.

Proof. Let e € ker( A'/) satisfy

hoc = \e.

Let a : IK —► R be smooth and compactly supported. Then

w = 0 and v(x, t) := a(x — At)e

is a solution of finite energy, which does not decay to zero, except if e = 0. □
We now show by an energy method that (GC) is sufficient. For this, we assume that

the domain is either R or R/Z (the latter case concerns periodic data) and that

1v0(x)dx = 0. (18)

Obviously, Vq is given in L1 n L2 and Wq in L2. Condition (18) is restrictive only if the
domain is R, since in the periodic case we expect the stability towards the mean value
Of V().

From dtv + dx(Kov + K\w) = 0, we may introduce a potential p by

Px = v, Pt = ~(Kqv + K\ w).

We assume at last that p0 e L2. As we shall see, we have p(t) £ L2 for every t. Note
that the properties € L1, po € L2 follow from v() £ L2 in the periodic case.

We now use Liapunov functions. The first one is the entropy

d_
Jt I t](v, w)dx + I twGwdx = 0. (19)

where r/ = h = \{\y\2 + |w|2). Next, we choose

L(v, w,p) := id,|2 + K^l2) - pK\G ~1v: - pAv +

with A skew-symmetric, to be chosen. Note that the symmetric part in A is meaningless,
•Itsince lpSv equals dx(\ tpSp) for a symmetric matrix 5", and this term may be absorbed
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by the entropy flux. This is why there is no loss of generality in considering a skew-
symmetric A. Using the system, we obtain

dtL + dxM = -'wGw 4- etpK\w

+ el(K0v + KlW) ^KiG~1w + X-Av - p\

— etvK\G~1 (K± v + K2U}) — —etvA(Kov + K\w).

The terms tpKxw cancel, while t(Kov)p may be incorporated in dxM since Kq is sym-
metric. Hence there remains

dtL + dxM -I- Q(v, w) = 0,

where

Q = twGw - et(K0v + Kxw) (kxG^w + ]^Av^j

+ etvKiG~l (Kf v + K2V0) + -^vA^Kqv + K\w).

We shall apply several times the following obvious result.

Lemma 5. Let 50,91 be two quadratic forms on Kd, with the properties that qo is pos-
itive semi-definite and that the restriction of q\ to kerg0 is definite positive. Then the
quadratic form <70 + eq\ is definite positive for every small enough £ > 0.

With this lemma, L(v,w,p) is positive definite whenever e > 0 is small enough.
Likewise, Q(v, w) will be definite positive for small enough e > 0, provided the quadratic
form

q(v) —tvKoAv + tvKiG~1K^v

is positive definite.
We now invoke Theorem 9 in the Appendix. There exists a skew-symmetric A such

that AK0 — K0A be positive definite on ker(A"^), because this subspace does not contain
any eigenvector of Kq- Since besides

v -> tvKiG~1K'[v

is nonnegative, and is zero only on ker(Kj), A = aA is convenient for a > 0 small
enough, using again Lemma 5. Thus a positive definite q exists, and therefore it is
possible to have both L(v,w,p) and Q(v,w) positive definite.

Integrating the identity dtL + dxM + Q = 0, we therefore have

— J L(v,w,p)dx + J Q(v, w)dx = 0. (20)

Since L is positive definite, as well as Q, this implies that t —» f Q(v,w)dx is integrable
on K+. Therefore t —> f r](v,w)dx is integrable on R+. Since it is also nonincreasing
(from (19)), this implies that f rj(v,w)dx < est ■ t~1, and therefore

lim (v(t),w(t)) = (0,0) in L2(IR).
t—>00
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More precisely, with Q > u>r] and u> > 0, we have

J r](v(t), w(t))dx < J L(v0,w0,Po)dx. (21)

When the domain is R, we now consider the general case, where we only assume that
vq,wq e L2(R), but neither vq € Ll nor f vqdx = 0. Since the subspace

■n L'SJ,X = <y G L n L ; / ydx = 0

is dense in L2(R), there exists a sequence (vQl)mejy in X, which tends to vq in L2(R).
Let us also take W™ = wq. From the above analysis, we know that the corresponding
solutions (vm,wm) of the Cauchy problem satisfy

lim
t—> + 00

J r)(vm(t),wm{t))dx = 0.

On the other hand, because the problem is linear, we also know that

J rj(vm(t) — v(t), wm(t) — w(t))dx < J r](v™ — vq, 0)dx m^°°> 0.

Now, let e be a positive number, and let us choose m such that \\v™ — fo 112 < f • There
holds

\\(v(t) - vm{t), w(t) - wm(t))\\2 <

From above, there is a T such that

t>T^\\(vm(t),wm(t))\\2<e-.

We conclude that
t > T => ||(w(t),u;(<))||2 < e.

We have thus proved:

Theorem 6. Under condition (GC), the constant equilibria are strongly asymptotically
stable:

• if (vo,u>o) E L2(R), then

(v(t),w(t)) i^+00) (0,0) in L2(R),

• if (vo,wo) € L2(R/Z), then

(v(t),w(t)) t~>+00) (tj;0) in L2(R/Z),

where v stands for the average of vq over a period.

Remark 1. Condition (GC) also reads as follows: the matrix

v-(K o A'i
K~l Kf K2

does not have any eigenvector in block form (x, 0) T
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Obviously, a given system is usually not in the canonical form (that is with v' =
v,w' = w). To check (GC), we only have to verify that travelling waves are trivial. Here
is an example, taken from nonequilibrium gas dynamics in Lagrangian variables:

Tt-vx = 0,

vt + px = 0,

Pt + E2VX = -CLT - p,

where a > 0 (hyperbolicity of the subsystem) and E2 > a (dissipativeness). Travelling
waves which depend on x — ct satisfy

ct + v = 0, p = cv, E2v = cp, p + ar = 0.

The matrix of this system,
(c 1 0 \

0 c -1
M:= 0 £* -c

\a 0 1 /
always has rank 3, since 3x3 minors contain a(E2 — c2) and c(E2 — a), which cannot
vanish simultaneously. Hence we obtain r = v = p = 0.

Warning. The decay rate Jr](v(t),w(t))dx = 0{t~l) shown above is always true for
periodic data. However, when vo,wq £ L2{M), it strongly relies on the assumption that
vq g L1 and J vqcIx = 0. As a matter of fact, let us assume that i>o,wo are compactly
supported, say in [—I, I], and that m f vqdx is nonzero. Then, from mass conservation,
we have

J v(t)da< llfWIli
Also, v(t) is supported in [—I, —At,I + At], where A is the maximal wave velocity in the
full system. Using Cauchy-Schwarz, we therefore have

IK0l|a> (22)\J2 {I + At)
This shows that, though w' always belongs to I/2(MX x K^"), this is not the case for v

in general.
Mind also that the lower bound (22) is not sharp, in general. An asymptotic analysis

shows that v behaves as the solution of

dtv + dx(K0v + Kiw) = 0, dx(Kjv) = -Gw,

which is a diffusion equation. If vq £ Ll(R) and m / 0, then v(x,t) behaves as the sum
of diffusion waves

lXeSpKo)-

Thus ||v(£)||2 is of order i-1/4, while ||tw(t)||2 is of order t~3^4.
We remark that in the diffusion equation, written as

dtv + K0dxv = Dd2v, D=KiG~lKj,



172 TOMMASO RUGGERI and DENIS SERRE

the diffusion matrix D need not be positive definite, but only satisfies

tXDX > cst\Ki X\2.

Condition (GC) says that it is positive on the eigenvectors of A"o. Thus, in transient
times, the hyperbolic part dtv + Kq8xv separates the modes (this is a "polarization"
process). Then each mode a(x,t)r (with K$r = Ar) satisfies approximately the scalar
diffusion equation

dta + A dxa = ddxa,
with

d := trK1G~1K'fr/\r\2,
which is a strictly positive number since r does not belong to ker K± . More information
about incompletely parabolic diffusion equations may be found in the Memoir by Liu
and Zeng [15].

5.1.1. Dependence on the relaxation time t. Taking into account a relaxation time
t > 0, the system reads as

f dtv + dx(K0v + K\w) = 0,
\dtw + dx(K[ v + K2w) = - \Gw.

The previous calculations are valid with
1

r]T(v,w) = T)(v,w) = ^{\v\2 + |w|2),

d
dt

and

J rj{v, w)dx + — J twGwdx = 0,

LT(v, w,p) = L [v,w, -pJ , QT(v,w) = -Q(v,w).
t ) T

Hence, when vq e L1 n L2 and f vodx = 0, the estimate becomes

J rf(v(t),w(t))dx < est j J L ̂ vo,wo,^Po) dx,

which gives smallness only for times t beyond r_1.

6. The nonlinear case. Besides natural assumptions:
• strictly convex h' (or h as well),
• strict dissipation (<r > u>\w'\2 with u > 0),

we assume that the weak admissible solution u that we deal with takes values in a small
enough neighborhood U of the origin (without loss of generality, u = 0 is an equilibrium
of the system). We prove in this section that, if the mass at initial time vanishes, then
the solution converges to the equilibrium in L2 as time goes to infinity.

Comment. Such an existence result, global in time, has not been yet proved in full
generality. It could be attacked using Glimm's scheme or front tracking. We note,
however, that Amadori and Guerra have some intermediate result [1] when the dissipation
is stronger. For small and smooth data, estimates of derivatives up to the order 2 (order
1 + d/2 in space dimension d), in the same spirit as in the present paper, yield a global
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smooth and small solution [10]. Notice also that the smallness of weak solutions for
small data may be guaranteed by the presence of a small positively invariant domain.
This kind of maximum principle has been analysed in [18], in the context of the Jin-Xin
relaxation of a system of conservation laws:

dtv + dxw = 0, dtw + a2dxv = f(v) — w. (23)

When the equilibrium subsystem dtv + dxf(u) — 0 admits a convex compact positively
invariant domain K, and when

a > sup p(df(v)),
vex

(sub-characteristic condition), then (23) admits a compact positively invariant domain.
Under the same assumptions, it can be written in the canonical form (1) and is compatible
with an equality of the form (2). For such a system, the maximal principle guarantees
the existence and uniqueness of a global solution, because the principal part (the first
order terms in the system) is linear.

The context. The system is

Ft lc'. — (
-g{u')w'dth'u,+dxk'u, = [ = C,). (24)

= h',.

By definition

"=(»,

By assumption, h' is strictly convex, and its Legendre transform h is such that

h(u) > co\u\2

in U. Here and below, to denotes a positive constant. Additionally, a weak admissible
solution satisfies2

dth(u) + dxk(u) + S(w) < 0, (25)

where £(u) := tw'g(u')w' > to\w'\2 for small u', and k(u) := u' ■ k'u, — k'. Inequality (25)
is not sufficient to prove that ||u(£)||2 —> 0 as t —> +oo, because £ does not dominate
h. To go further, we assume that the initial data uq has compact support (therefore L2
implies L1) and that vq has zero-mass:

/
v0(x)dx = 0. (26)

Therefore the primitive

p0{x) = I v0(y)dy

has compact support and belongs to H1.

The inequality <, instead of equality, takes into account the possible shock waves.
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Thanks to hyperbolicity, the support of u{t) extends with finite velocity. Because u
stays in the compact set U, the waves velocities remain bounded. Thus there exists a
constant A such that

Supp u(t) c [—I — At, I + At]. (27)
Also, conservation of mass implies that

/
v{x, t)dx = 0,

so that
p{x, t) := I v(y, t)dy

J — OO

still has compact support in space. On the other hand, we have3

p(x, 0) = p0{x), px =v, pt = -k'v,.

A Liapunov function. We now look for a Liapunov function of the following form (we
follow the analysis of the linear case):

Le(u,p) = h(u) +e|i|p|2 - ^pAv -tpBu>^ , (28)

where A is skew-symmetric. Both matrices A and B are constant.

What is really important in formula (28) is that as a function of u, Le(-,p) is a linear
combination of conserved (v) or balanced (w) quantities, and of entropy h. Besides, the
nonlinear dependence on p is harmless since p is Lipschitz. Thus we can establish an
inequality for Ls, using (24) and (25). This reads

dtLe + dxMe + Qe < 0,

where

Me = k(u) — e \ -lpAk'v, + tpBk 4'}
v 2

and
Qe = £(u) + eVp^K, - Bgw') + (vBk'w, - twBTk'v, - 4vAk

As in the linear case, there is not a loss of generality to assume that h(u) ~ ||u|2 near
the origin, that is u' = u + 0(|u|2), or

u = u'+ 0(\u'\2).

With this in mind, we see that the leading terms in tp(k'v, — Bgw') are quadratic:

V(*w(0)u + k'v,w,(0)w - Bg(0)w).
Thus, our first choice will be

B = k?v,w,(0)g( 0)"1. (29)
The term

etpk'v,v,{0)v = ^dxCpk'v,v,(o)p)

is as usual incorporated to dxMe. Thus we can write instead

dtLe + dxMe + Q£ < e'p ■ N(u),

3Here we have normalized u = 0 <s> u' = 0, k' = 0(\u'\2).
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where N(u) — 0(|u|2) and

Qe = E(«) + e^vBk^, - twBTk'v, - 'vAk'^}.

Our next goal is to choose e > 0 in such a way that
1. Le(u,p) > u(\u\2 + \p\2),
2. Qe(u) > w|it]2,

in U x IRm and U respectively.
To do so, we use an argument analogous to Lemma 5. Actually, since both L and Q

have quadratic leading order terms at the origin, they will satisfy the desired inequalities
provided their quadratic parts do, and U is chosen small enough. The first inequality is
achieved for small e > 0, since h(u) > ui\u\2 and since the corrector

\\V? ~ \fpAv - tpBw,
when restricted to u = 0, is \p\2.

We argue similarly for Qe. Since u h-> (v,w') is a change of variable, the second
inequality will be satisfied by small e > 0, provided that the restriction R(v) of the
expression tvBk'w, — twBTk'v, — tvAk'v, to the equilibrium manifold {w' = 0} satisfies
R[y) > ui\v\2 for small v. However, this amounts to showing that Ro(v) > w|u|2, where
Rq is the Hessian of R at the origin.

But considering R0 means that we are back to the study of a linear problem. Thus, we
make our last, natural, hypothesis of "genuine coupling": the kernel of k'v,w,( 0) does not
contain any eigenvector of k'v,v,(0). Under this assumption, we know (see the linear case
analysis) that a skew-symmetric A exists, such that Rq is positive definite. Therefore we
have proved

Proposition 7. Under natural hypotheses
• strongly convex entropy,
• strict dissipativeness,
• genuine coupling,

there exist a compact neighborhood U of the origin and smooth functions L(u,p), M(u,p),
Q{u), N(u) such that

1. every admissible solution with compact support and zero-mass satisfies

dtL(u,p) + dxM(u,p) + Q(u) < p ■ N(u), (30)

2. for u G U and p G RA/, we have
• w(M2 + |p|2) < L(u,p) < fi(|u|2 + |p|2),
• \M(u,p)\ < ft(|u|2 + |p|2),
• w|w|2 < Q{u) < fi|w|2,
• |AT(u)| < 0|u|2,

for some positive constants 0 < u> < < +oo.

Uniform estimate. Let us assume now that a weak solution u(x,t) takes values in U
almost everywhere. We integrate (30) in the space variable and obtain

d
dt j Ldx + J Q(u)dx < ||p||oo J N(u)dx< ||u||i J N(u)dx. (31)
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Using Cauchy-Schwarz inequality, there comes

||u||i < \\u\\2y/2(l + At).

Considering now the equivalence of the functions ||«||2, Q(u), and h(u) in U, we derive
from (31) the inequality

3/2d
dt J L(u,p)dx + co J h(u)dx < + A t(^j h(u)dx*J , (32)

where 0 < w, fl < oo depend only on the compact set U, as well as A, while I is the
half-length of the support of the initial data. Let us denote by T the maximal time
during which the expression

l/2\
fly/T+Jiy(t) (with y(t) := (^j h(u)ds

remains smaller than j. Since y < y(0), because of (25), we already know that T is
larger than

2

T° A 1 ( (2S~2j/(0))
We make here the smallness assumption that To is positive, that is

ly{0)2 = IJ h(u(x,0))dx < . (33)

We now integrate (32) on (0, T) and receive

J y(t)2dt < ^ j L(u0,p0)dx.

Since y(t) > y(T) on (0,T), there follows that

y(T)2 < ^ J L(u0,p0)dx. (34)

Now reinforcing the smallness assumption (33) by

2A
UJ

j L{u0,p0)dx + ly(0)2 < ,

we find that the right-hand side in (34) is strictly less than (^)2(l + TA)-1, except if
T = +oo. Since T is maximal, this upper bound may not imply that fly/1 + TAy(T) <
u>/2 and hence we conclude that T = +oo. As a by-product we obtain

/•+o° 2 r
J y{t)2dt. < — J L(u0,p0)dx1

from which (using monotonicity) we infer

®(i) s G§ / L(u0,p0)dx
1/2

We summarize our results as follows.
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Theorem 8. Under the same assumptions as in Proposition 7, there exists a number
(5 > 0 such that, if the zero-mass initial data and the solution itself takes values in U,
and if

L(uo,po)dx + | Suppuo| j h(uo)dx < 5,

then the solution stabilizes:
\\u(t)\\2 = 0(r1/2).

Actually, one has
r+oo

/ ||u(t) W^dt < +00.
Jo

7. Appendix.

Theorem 9 (Kawashima et al. [13]). Let M be a real symmetric m x m matrix and n
be a subspace of Rm which does not contain any eigenvector of M. Then there exists
anmxm skew-symmetric matrix A, such that the restriction of the symmetric matrix
AM — MA to II is positive definite:

txAMx >0, Wx € II, x ^ 0.

Proof. We argue by induction on the number e of distinct eigenvalues of M. If e = 1,
then M = AIm, and hence II = {0}; there is nothing to prove.

If e > 2, we choose an eigenvalue A and define F = R(M — A), which is a strict
subspace, invariant by M. By the induction hypothesis, there exists an alternate bilinear
form a : F x F —> R, such that

a(x, Mx) >0, Vi e n n F, x / 0.

One then searches for an extension a of a to x Rm. Denoting by

x = X\ + Xp

the decomposition in Mm = ker(Af — A) © F, the bilinear form a will have read

a(x,y) = a(xF,yF) + ~{b{xx,yF) - b{yx,xF)},
£

where b : ker{M — A) x F —> R and £ are to be determined. Here above, b is bilinear and
e > 0 is small. Since (Mx)\ = \x\, we have

a(x, Mx) = a(xF, Mxp) -\—b(x\, (M — X)xF)-
£

By assumption, II fl ker(il/ — A) = {0}. Thus, let P be a subspace such that

ncP, Rm = P®ker(M- A).

Then P has an equation of the form

X\ = v(xF)

for some linear map v. Since M — A : F —> F is invertible, it has an inverse, which we
denote w. Then, choosing some scalar product on ker(Af — A), we define

b(x, y) = x ■ v(w(y)), x G ker(M — A), ye F.
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By definition we have
b(xa, (M - X)xF) = xx ■ v(xF).

If moreover x S II, then

b{xx, (M - A)a;F) = ||w(xF)||2 = ||xA||2.

This shows that the restriction to II of the quadratic form x —► ̂(xa, (M — X)xF) is
positive semi-definite, and vanishes only on II D F. Since, by the induction hypothesis,
that of x —> a(xF, MxF) is positive definite on II n F, a last application of Lemma 5
shows that there exists a small e > 0 such that the restriction of x —♦ a(x, Mx) to II is
positive definite.

At last, A is the matrix of a:
a(x,y) = txAy.

In some papers, Kawashima et al. [13] call such a matrix a compensating matrix. □
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