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Stability of Core-Annular Flow with Very Small Viscosity Ratio

Abstract

It is known that the stability problem for core-annular flow of very viscous crude oil and water is singular,
the water annulus appears to be inviscid with boundary layers at the pipe wall and at the interface. In the
present paper, this singular problem is treated by the method of matched asymptotic expansions using €
= m/Ra as a small parameter. There are two cases of instability corresponding to different positions of
the critical point in the annulus. One case is when the critical point is far away from the interface, the

other is when the critical point is close to the interface within a distance of order €'3.In both cases, the
equations for the eigenvalues are derived, and the explicit forms for the neutral curves are given. The
stability problem is also treated by the modified finite element code used by Hu and Joseph [J. Fluid
Mech. 205, 359 ( 1989); Phys. Fluids A 1, 1659 ( 1989)], taking into account the boundary layers at the
pipe wall and at the interface. The results of the two methods agree where they overlap, but the finite
element technique goes further.
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Stability of core-annular flow with a small viscosity ratio

Howard H. Hu, Thomas S. Lundgren, and Daniel D. Joseph
Department of Aerospace Engineering and Mechanics, University of Minnesota,
Minneapolis, Minnesota 55455

(Received 15 March 1990; accepted 24 July 1990)

It is known that the stability problem for core-annular flow of very viscous crude oil and water
is singular, the water annulus appears to be inviscid with boundary layers at the pipe wall and
at the interface. In the present paper, this singular problem is treated by the method of
matched asymptotic expansions using € = m/Ra as a small parameter. There are two cases of
instability corresponding to different positions of the critical point in the annulus. One case is

when the critical point is far away from the interface, the other is when the critical point is
close to the interface within a distance of order €'/>. In both cases, the equations for the
eigenvalues are derived, and the explicit forms for the neutral curves are given. The stability
problem is also treated by the modified finite element code used by Hu and Joseph [J. Fluid
Mech. 205, 359 (1989); Phys. Fluids A 1, 1659 (1989)], taking into account the boundary
layers at the pipe wall and at the interface. The results of the two methods agree where they

overlap, but the finite element technique goes further.

I. INTRODUCTION

There is a strong tendency for two fluids to arrange
themselves so that the low-viscosity constituent is in the re-
gion of high shear.! This gives rise to a kind of gift of nature
in which the lubricated flows are stable, and it opens up very
interesting possibilities for technological applications in
which one fluid is used to lubricate another.

One possible application is lubricated pipelining, the
transportation of very viscous crude oils along with an im-
miscible lubricating liquid, usually water. Experiments to
examine this possibility have been carried out by Russell and
Charles,” Russell, Hodgson, and Govier,> Charles, Govier,
and Hodgson,* Charles and Lilleleht,” and Bai, Chen, and
Joseph.® '

Various arrangements of oil and water occur in the
aforementioned experiments. This type of nonuniqueness is
typical of flowing bicomponent fluids. The arrangements
that appear in horizontal pipes are (a) stratified flow with
heavy fluid below; (b) concentric oil in water (core-annular
flow); (c) water drops in oil; (d) oil drops (bubbles) in
water (these include large bubbles and slugs of oil lubricated
by water).

The first theoretical stability study of core-annular flow
when the core is more viscous was given by Joseph, Renardy,
and Renardy.” They neglected density differences and sur-
face tension and found that lubricated transport was stable if
the water fraction was not too great. This was followed by a
numerical study of Preziosi, Chen, and Joseph® in which all
effects except gravity were considered using a pseudospec-
tral method. They compared their analysis with the experi-
ments of Charles, Govier, and Hodgson,* and found many
points of agreement between theory and experiment. Hu and
Joseph® studied the situation when the pipe wall is hydro-
phobic. They developed an efficient finite element code that
worked well even when the ratio of viscosities of water to oil
is small. They also computed various terms that arise in the
global balance of energy of a small disturbance, which al-
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lowed them to identify different sources of instability.

There are significant reserves of heavy viscous crude oils
in the world, with viscosity as high as 1000 P at room tem-
perature. Thus in actual applications, the ratio of viscosities
of water to oil is usually extremely small, say 10~°. All the
studies mentioned above were for larger ratios. For very
small ratios the stability problem is singular, the water annu-
lus is nearly inviscid with boundary layers at the pipe wall
and at the interface. In this situation direct numerical meth-
ods, for example pseudospectral method, do not give reliable
results unless special attention is paid to these boundary lay-
ers. In the present paper we treat this singular problem by
the method of matched asymptotic expansions and by the
modified finite element code used by Hu and Joseph,>'® tak-
ing into account of the boundary layers at the pipe wall and
at the interface between the water and oil.

Il. FORMULATION OF THE PROBLEM

Two liquids are flowing down a circular pipe of inner
radius R, . The core is occupied by liquid 1 and the annulus
by liquid 2. The interface between liquids is » = R(8,x,1),
where (r,0,x) are cylindrical coordinates and ¢ is time. Let
U = (u,,uq,u, ) be velocity, p be pressure, u; and u, be vis-
cosities of liquid 1 and liquid 2, and the densities of two
liquids are the same p, = p, = p.

The basic flow is a steady, fully developed core-annular
flow driven by a constant pressure gradient. The location of
the interface for this basic flow is at r = R, a constant. The
velocity profile is parabolic in both core and annulus with a
jump in slope at the interface due to the discontinuity of the
viscosities of two liquids.

We scale length with the interface radius R, velocity
with the centerline velocity of the basic flow W, pressure
with p W3 and time with R, /W, This leads to the following
dimensionless parameters:

a=R,/R,, theradius ratio,
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m=p,/ 1, the viscosity ratio,

R=pW,R,/1,, the Reynolds number based
> on the core liquid,
J=TpR, /112, the interfacial tension
parameter based on liquid 2,
where T'is the coefficient

of interfacial tension

between two liquids.

The form of the basic flow is

U=[0,0,W(r)], (1)
where
1—mr¥/(@®+m—1), 0<r<l,
Wi =
) {(az—rz)/(az-{-m— D, I<r<a. 2)

We assume that the disturbances (u,v,w) of velocities, p
of pressure, and § of the interface radius are axisymmetric

and proportional to exp[ia(x — ct) ], where a is the dimen-_

sionless wave number, Re{c(a)} is the dimensionless veloc-
ity of the disturbance of wave number a in the x direction,
and Im{ac} is the growth rate of the same disturbances. In
our previous works we verified that axisymmetric distur-
bances are most dangerous.
7 After eliminating the axial velocity disturbance w and
pressure p, the linearized equation for velocity disturbance
in the r direction is

Lo eto b
X(D2+_1_D_l2_az)ul =0, for 0<r<19 (3)
r r

(D2+ 1 D—i—a)u2 —i(W—c¢)
Ra r r

X(D2+lp__12._a2)u2=0, for 1<r<a, (4)
r r

where D = d /dr. The boundary and interfacial conditions
are

= Du, =0, at the pipe wall r=a, (5)
u,,Du, ,D*u, arebounded at the origin r=0, (6)

and at the interface r = 1,

Uy =u,, (7
2
Mu _(__a__.tl__c)(Du] _Du2)=0,
—14m a@—14+m
(8)
(D*+D—-1+4+a>)u;, —m(D*+D—1+a*u, =0,
(€)]
[D’+2D%*— B3a*+ 1)D+ (1 —a?) ]y,
—m[D?*+2D*— (3a* + )D + (1 — a®) ]u,
—im L a(l - a’) u,. (10)

R (&> —1)/(@®—1+m)—c
For further details of these equations, see Preziosi, Chen,
and Joseph.?
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Therefore the problem is to solve the eigensystem of or-
dinary differential equations (3) and (4) subject to the con-
ditions (5)—(10), when viscosity ratio m—0, say, very vis-
cous crude oil core being lubricated by water. After
examining Eq. (4) we choose

€ =m/Ra (11)

as a small parameter, and use a matched asymptotic pertur-
bation scheme to solve the problem.

As mor €0, Eq. (3) is regular, and we can get a uni-
formly valid asymptotic expansion for u, in the core region.
On the other hand, Eq. (4) is singular, since € is the coeffi-
cient for the term that has the highest derivative. We there-
fore argue that within most of the annulus the viscous force

nnrfpcpnndlna to the first term is much less |mnnﬁanf than

the inertial force corresponding to the second term and may
be neglected. In some regions, however, the viscous force
may be of the same order of magnitude as the inertial force.
These regions are the viscous boundary layer at the pipe wall
where the no-slip boundary condition is required, the vis-
cous boundary layer at the interface where the interfacial
conditions are prescribed, and the critical layer where the
velocity of the disturbance is the same as the velocity W(r,)
of the basic flow, Re{c} = W(r.). The asymptotic expan-
sions are different depending on the location of the critical
point r = r.. We treat two cases: (a) the critical point is far
away from the interface; and (b) the critical point is close to
the interface, within a distance of order €!/3, as indicated in
Fig. 1. This method of analysis is a standard procedure, and
is employed in studying the large aR limit for unidirectional
shear flows with boundaries (e.g., plane Poiseuille flow of a
single fluid), see Drazin and Reid.!

lil. CASE I: THE CRITICAL POINT IS FAR AWAY FROM
THE INTERFACE

In this situation, an appropriate expansion for the eigen-
value ¢ is

c~ Y e"Hre,.
n=0

In the present study, only two terms of the expansion are
computed, that is,

12 12
b Ql T £ T T nz |£ —r
Q21 r=re Q22
r=0 r=1 : r=a
(a). Case [
Q21 Q22
1
. o gl Q2 (3 s r
v LI ] ¥ k] L
I'=Ic
r=0 r=| r=a
(b). Case I

FIG. 1. Two cases considered. (a) The critical point r = r, is far away from

the interface. (b) The critical point is close to the interface, within a dis-

tance of order €'/>.
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c~cy + €%, + O(e). (12)
The basic flow (2) can be expanded in terms of € as
1+ O(e), 0<r«l,
W(r) = { ) ’ ) (13)
(@*—=r?)/(a*—1) 4+ 0(e), I1<r«a.

A. In the core 4

In the core {, as indicated in Fig. 1(a), the velocity #,
is expanded as
u, (r) =u{®(r) + €u{" (r) + O(e). (14)

After substituting (12), (13), and (14) into Eq. (3), and
collecting the coefficients for €® and €'/? terms in the equa-
tion, we have two equations for z{®(r) and u{"(r):

(D2+—1~D———K2)(DZ+—D-—1-—a2)ug°> =0,
r r? r r?
(15)
(D2+ip—i—Kz)(1)2+lp—i—a2)u§”
r r? / r r?
= —iRac, (D2 +lD—i2— az)ufo’, (16)
r r
where
K=a’+iRa(l —c,). 17

Since the critical point is away from the interface, or ¢, #1,
we have K #£a?.

The solutions to Egs. (15) and (16) with the conditions
that the solutions are bounded at the origin are

u§°’(r) =A, I, (kr) + A, I, (ar), (18)
u{V(r) = — (iRac, /2x) A, rl, (xr)
+ B, I, (kr) + B,, 1, (ar), (19)

where I, (+) and I, () are the modified Bessel function of
the first kind with order 1 and O, respectively, 4,,, 4,5, By,
and B,, are arbitrary constants to be determined by the in-
terfacial conditions later. It is interesting to see that here as
m—0, the basic flow in the core becomes uniform, and Eqgs.
(15) and (16) can be easily integrated in terms of the Bessel
functions rather than the more difficult Kummer functions
that are used by Papageorgiou, Maldarelli, and Rums-
chitzki'? in integrating the core equation for general m.

B. The form of the solution in the annulus £,
The outer expansion for velocity u, in 2, is

u, (1) =u®(r) + €u{V(r) + O(¢), in 0,. (20)

After substituting the expansion into Eq. (4), we find that
ui® (r) and u{" (r) satisfy

(DZ_,__I_IJ__Ii._ag)u2 =0, j= 0,1. 21
r r
Thus the solutions are
us®(r) 21_:12111 (ar) + 4, K, (ar), (22)
u{"(r) = B, I, (ar) + By, K, (ar), (23)

where K, (*) is the modified Bessel function of the second
kind with order 1, and the 4’s and B’s are arbitrary con-
stants.

1947 Phys. Fluids A, Vol. 2, No. 11, November 1990

We noticed that the solution to the outer Orr-Sommer-
feld equation (4) is not singular at the critical point 7 = 7,
for this case since (W'/r)’ is zero (compares to the Eq.
31.16 of Drazin and Reid!! ), thus the outer expansion (20)
is smooth at r,, and there is no need for a critical layer in this
case as indicated in Fig. 1(a).

C. The form of the solution in the boundary layer at the
pipe wall 2,, _
-t can be easily verified that the proper choice of scaling

for this wall boundary layer (2,, is €'/?, the inner coordinate
in the boundary layer is therefore introduced as

n=(a—r)/e" (24)

The inner expansion for the velocity in this layer takes the
form

u, (r) = €%ulD () + euly () + O(e“) (25)

Here since the basic flow is of order €'/? in this layer, the
order of the leading term in expansion (25) is taken to be ¢'/2
too.

By changing to the new variable in Eq. (4), and using
the expansion (25), we obtain two equations for u{ and

D
uly,

D3uld +icoD2usP =0, (26)

D‘,‘,ug’—f-icoDzug’——-D u§2’+1[ D, u{y

+( e n—c,)Dzuég’] @7

a—1

- where D, stands for d /dn. The boundary condition (6)

transforms to
uiP(0) =D uéo)(O) =u$P(0) = D,,u;;’(()) = (28)
As - o0, 4 (1), uly () are required to match the outer
expansion (20) as r—a.
The solution to (26) satisfying (28) and the matching
requirements is
up' () =42 —pyp—1), (29)
where 4 {¥ is a constant to be determined by the matching,

and p = + ./ — ic, with a negative real part.
Similarly, after substituting (29) into (27) we find the
solution

2
Co

2ap

C, S
- (—° + clp) %(n(e"’% D
a 2p

SO =B —py = 1) +id ]

2 a
S (e —1 _a
P ( ))+2p(az-—1)

x (e =L s+ 3) + 2 @ 1)
p 4
(30)

where B {? is another constant to be determined by match-
ing with the outer solution.
The constants 4 {* and B {» are determined by match-
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ing the inner expansion (25) with the outer expansion (20),
which can be done either by introducing an intermediate
layer where both expansions are valid as used in Kevorkian
and Cole,"? or simply by a Van Dyke procedure.'* Note that
since the outer expansion (20) is a continuous function at
r = a, we can represent it by a Taylor series around r = q.
The matching gives the following relations:

u”(a) =0, @D
Du”(a) =4 Pp, (32)
uP(a)= — A4, (33)
. iA? (¢ .
Du{"(a) =BPp + 232 (—ag+c,p+ azjl)'
(34)
In (32) and (33) 4 {* can be eliminated giving
Dui®(a) = —us"(a)p. (35)

D. The form of the solution in the boundary layer at the
interface Q,,

Following the procedure used in Sec. III C, an inner
coordinate is defined:

E= (r— 1)/~
The inner expansion for the velocity u, takes the form
uy (r) = ui? (§) + €%uiP(£) + eufy (&) + 0(e7).
(37)

Here we find it necessary to carry out the expansion to the
third term.
At the leading order €°,

Diuly —i(1 —c)Djuly =0,

(36)

(38)
with boundary conditions at £ = 0 [derived from the interfa-
cial condition (7)—(10)]:
usy’ (0) = u‘°’(1),
D, u§y(0) =
Diufy(0) = (l/]Ra)(DZ +D—1+a)u{¥(1),
D;ui?(0) =
The solution to this order is a constant
uP (&) =4 =u"(1).
The third boundary condition in (39) requires
(D*4+D—1+4+a)Hui”(1)=0.
At the next order €2 we have
Duly —i(1 —co)Diuy
= —2D}ulY + i{(1 — ¢co)Dyusy
—[2£/(@—1) + ¢, ]D;ufd}. (42)

The right-hand side of the equation is zero after substituting
{9 into the equation. The boundary conditions at £ = 0 are

Uz
usP (0) =u{"(1), -

(39)

(40)

- (41)

2 1
a—1
Du(0) = (1/Ra)(D*+ D —

u5 (0) = Du{¥(1) — u{”(1),

14+ a®)ui’ (1),
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Du§Y(0) = (1/Ra) [D* +2D?
— B2+ 1)D+ 1 —a*1ui®(1).
The solution is
ul}(§) = B{" + B{VE + B{Ve%, (44)

where ¢ = +./i(1 —¢,) has a negative real part and the
constants satisfy

(43)

B}”+B§”=u§"(1), (45)

B +gB$ = Dul®(1) - —>———u®(1), (46)
a — —Co

Rag?B$" = (D*+ D — 1 + a®)ui"(1), (47)

Rag’B{" = [D*+2D%— (3’ + DD+ 1 —a?1u{®(1).

(48)

A similar derivation was carried out to order €'. The equa-
tion and boundary conditions are lengthy, so only the final
result is presented here. We found that

i(1—¢y)
2¢*
X[B§" = (1+a")A4{ 1§ —iB5”

xlZtad (g—l) e — BV
24 q

X )

where D{", D{V, and D" are constants, and D {"’ can be
determined by boundary conditions as

c 2 1
D“’=B“’(l _ ! + )_
2 =5 l—c " @—D(l—cy))  Rag

3>+ 1+ Rag®)D + 1 —a?}]
2
(@ —1)(1—¢)

x(ui”(l)+——1 2 ui“’(l)).
0

uf(§) = D{P + D{Vf + D Ve

(49)

X[D?*+2D?—

Xu{P(1) —

(50)
Again the matching with the outer e;{pansion (20) as
r— 1 gives the relations:

uP (1) =4 =u(1), (51)
Duf® (1) = BV, (52)
uV(1) =B, (33)
DuP(1) =DV, (54)

E. The secular equations

At the zeroth order, we group four equations, Egs. (31), .
(41), (51), and (46), with BS" and B{" eliminated with
(48) and (52), and write them explicitly using the proper-
ties of the Bessel functions

A, I, (aa) + A, K, (aa) =0,
K+ a?)Ap I, (k) +2a°4,,1,(a) =0,
Ay (a) + A4, K, (@) = A4, 1, (k) + A, 1, (a),

Hu, Lundgren, and Joseph 1948



a[d, I (a) +4,K] (a)] — (1/Rag®){4,, [ 3a® — )
Xul{ (k) — (18 —a® ), (k)] + A4, [22°T 1 () ]}
2
(@—1)(1 —cp)

= [kd, I (k) + ad T ()] —

X [An ], (0) + 401, (@)].

Nonzero solutions 4y, , 4,,, 4,,, and 4,, of this set of linear
equations can be obtained only if the secular equation
formed from the determinant of the coefficients is satisfied.
This gives

i1 oy
XaZ + (Kz—az)(—2a2+ a’f“i‘i):o, (55)
 where
_ K (aa)]{{(a) —I,(aa)X | (a) (56)

" I, (@)K, (aa) — I, (aa)K, (a)

At the next order, the equations used to derive the secu-
lar equation are (35), (45) with B {" eliminated using (53),
(47), and (54) with D" given by (50); the B{" in these
equations is given by (48). After tedious manipulation of
these equations and using (55) to cancel some terms, the
final result is simply

¢, = — (i/Ra)(F/G), 57
where
F= (12 — a?)? Y[Ki(a) —K,(0)Z]

2[7 Kl (aa)
+£((x’ _3a) (e —at) 2
q . 2a

_ («*—a*) 1i(a)

2a I (a)
~(x2—a2)+—’]“—(l8—3a2)),
a(a®—1)
G = _(1+K2—a2 IO(K))KZ—~aZZ
2 I,(x) 2a
+K2+a21§(a){1 K2+a210(K))
20 I, (a)\ 2k I (k)
_ iR it —a? I, (k)
a(a*—1) 2« I, ()
e 3( — a?) IO(K)—H,
2k I, (k)
1 I (x)
H= K2 =3k —— + (12— &?
_az(( a)KI,(;c)+( a’)
Ii(a)
+ (K + a?)a = )
* 'Ix(a)

Y={aa[I, (a)K, (aa) — I, (aa)K, (a) ]}~

In the nonlinear equation (55) the eigenvalue ¢, is em-
bedded in x> = a® + iRa (1 — ¢, ). Inspection of (55) and
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(57) shows that there are three parameters in the equations,
the radius ratio a, the dimensionless wave number a, and the
Reynolds number R. The expansion (12) shows that the
eigenvalue depends also on the viscosity ratio m. It is inter-
esting to notice that up to this order the interfacial tension
parameter J does not come into play.

One obvious solution to the Eq. (55) is &* = a?, but
since ¢, # 1 by the assumption in this section, this solution is
rejected. Given a, a, and R the nonlinear equation (55) is
solved numerically using IMSL subroutine ZANLYT and
checked on the Macintosh II with software Mathematica.
We found that there is only one root of x* (or ¢,) to this
equation in the range of interest. After obtaining x> we can
easily calculate ¢, from (57), and eigenvalue ¢ from

c=c, + (Vm/Ra)c,. (58)

The neutral curves are computed by fixing ¢ and m, and

- searching the (a, R) plane for the line on which the growth

rate of disturbances Im{ac} = 0. Figure 2 present the neu-
tral curves obtained in this case, for radius ratioa = 1.5 and
viscosity ratiom = 10~ 3,10~ and 10~ >. The region to the
right of these curves is stable, and to the left is unstable, We
noticed that these neutral curves are almost parallel straight
lines in the log-log plot with a shift for different viscosity
ratios m, and they seem to fit the relation
a, = const*(mR)'>. We also noticed that the neutral
curves exist at relatively small wave number, or for long
waves. Thus we carried out an asymptotic analysis of the
secular equations (55) and (57) for small @, under the con-
dition that ym/Re is still a small parameter. In this case the
eigenvalue ¢ can be expressed as

1000 ey

Unstable

FIG. 2. Neutral curves for the case I in which the critical point is far away
from the interface. The radius ratio is @ = 1.5 and the viscosity ratio
m = 1072 10"* and 10~ °. The region to the right of the neutral curves is
stable, and to the left is unstable. An asymptotic analysis for small a and
small Jym/Ra leads to a formula for the neutral curve
a, =0.6057[ (mR)"*/(a> — 1)*], or @, = 0.4176(mR)"” in the present
case. This formula almost exactly fits the curves in the figure.
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_ a—1 _ da(@®—-1)
a’ Ra’
mo 2 14i
Ra ¥ (@—1) J_1
The neutral curve is determined by Im{c} = 0, that is,
2/3 173 173
- (ﬁ) (_<r_nlL_ _ 0.6057 (MR

3 a—1)"3 (a* = 1) :

(60)

Equation (60) gives the lines presented in Fig. 2 almost ex-
actly. '

c

39

<

IV. CASE II: THE CRITICAL POINT IS CLOSE TO THE
INTERFACE

In this section, we consider the case where the critical
point is at a distance of order €'° from the interface, as
shown in Fig. 1(b). Unlike the previous case where the pres-
ence of the critical layer can be totally ignored, the critical
layer in this case does play an important role.

We consider the expansion

c=1+€%%, + (61)

where ¢, = | and ¢, is the first-order correction.

An analysis similar to the one carried out in Sec. III is
used to get the solutions in the core {1,, in the outer region of
annulus Q, and in the wall boundary layer 2,,. Only one
term of the expansion is computed. The results are listed
below

u, (r) =u{"(r) + 0(¢"?), in Q,,

uO(r) = A,, I, (ar) + A, (ar); (62)
u, (r) =u$¥(r) + 0(€”?), in Q,,
w?(r) = 4, I, (ar) + 4, K, (ar); (63)
u, (r) =€[uy () + 0(e?)], inQy,

(64)

ufy () = AP —py —1].

The matching of the wall boundary inner expansion (64) as
7= (a—r)/e"*- «» with the outer expansion (63) as
r—a~ gives the equation

u{”(a) =0. (65)

Inside the critical layer £2,, near the interface, we intro-
duce an inner variable

z=(r—1)/€"", (66)
and take a one term expansion for velocity

u, (r) = uf(z) + 0(e'?). (67)
Equation (4) at the leading order reduces to

D3uld +i[c, +22/(a* — 1) |D 2P =0. (68)

The interfacial conditions (7)-(10),atr =1 (orz = 0), be-
come

uY(0) =u{V(1), (69)
¢, D,uP(0) = [2/(a* — 1) 1u{V (1), (70)
0=[D*+D—-1+a1u®(1), (71)
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RaD3u{Y(0) = [D?+2D?
- (3a®+ DD+ 1—a?Juf(1).
(72)
Consider an equation of the form

2z )w:O,
1

a —

2
——‘fiz? + x(c, +

which is solvable with Airy functions

. 2 1/3 c ;
Al[ —(az— 1) (z+7'(a2— 1))e9] ’

where 6 = 7/6, 57/6, or — /2. If we require that @ should
be matched with some outer expansion as z— co, the solution
must tend to some finite value as z— oo . This limits the only
possible solution to the value § = 57/6. Therefore the gen-

‘eral solution of (68) has a form similar to the one for plane
‘shear flow computed by Hooper and Boyd,'>'¢

UP(2) =4V + 4z + 4y (2), (73)
where v "
zd J*ZAI 2 173
z) = r4 —
v =[ o[ aif-(25)
x(z + 52‘- (- 1))e"51'/6]dz; (74)

The boundary conditions (69), (70), and (72) require that

A" +A4x(0) =u®(D),
o [450 + ALY (0] = [2/(a2 — D] (D),
RaA gl)xm(())
=[D*+2D*— 3a’+ DD+ 1 —a*1u{V(1). (77)

The matching of this inner with the outer expansion (63)
requires that

AV =0, (78)

AN =ul®(1). (79)
Equation (76) with 4 {" =0 and 4 {" eliminated by (77)
may be written as

2Ra  y"(0)
(@— 1, x'(0)

(75)
(76)

[41]; (@) + 4 Ly ()]

= —2a°[A, I (a) + 4,1, (2)]. (80)
This, together with Eq. (71) written as
A,,20°1 (a) + A 2a[1 (a) + al,(@)] =0, (81)

leads to the secular equation
2 _ I?
1XO _a@-h (1+a2——a2 ‘2’(“)). (82)
¢ x'(0) R Ii(a)
If we define a constant E independent of the unknown ¢,

2 — I3 (a)
E:l-—ig.(a__}l(l.*. 2_a2 ° )’ (83)
R ’ Ii(a)

and use

i (az___ 1)2/3e_h‘_/6¢._l
2 2

(84)
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as the new variable, we may use the properties of Airy func-
tion to write the secular equation (82) in a very simple form

J.m (z+ Ex)Ai(x +2)dz=0. (85)
0

It is very interesting to notice that the unknown x in the
equation depends only on E, a combination of three param-
eters: a, a, and R. Therefore in the computation of neutral
curve, we only need to find one neutral point at E = E, and
x = x, which satisfies Im{c, } = 0. Then, using (83) we can
extend this point to a whole curve on (a,R) plane valid for
different values of a. The equation for this neutral curve is

2 2
R, —;a=D a(l +a®—a? IO(G)).
1-E I3 (@)

We also note that although the total eigenvalue ¢ depends on
the viscosity ratic m, the necutral curve on which
Im{c} = Im{c, } = 0 is independent of m.

The Airy functions of complex argument was computed
using an algorithm developed by Schulten, Anderson, and
Gordon,'” and the integration in (85) was transformed into
interval {0,1] and integrated numerically using an adaptive
scheme given by Robinson,'® which was modified to handle
the complex valued functions. The equation solver is subrou-
tine ZANLYT on IMSL. And the results are again checked on
Macintosh II with software Mathematica. In solving the
nonlinear equation (85), we only choose the root ¢, that has
a negative real part since the velocity of the disturbance
equals to the basic flow velocity at the critical point which is
always less than 1, and pick up the root with the largest
imaginary part, or the most unstable mode with the largest
growth rate.

We find numerically that E, = 1 + 0.425/; thus the neu-
tral curves are totally given by

<

500

100

14

FIG. 3. Neutral curve for case II in which the critical point is close to the
interface, when the radius ratio a = 1.5. The region to the right of the neu-
tral curves is unstable, and to the left is stable. It is given by the equation
R, =0294(a*— a{ — 1 -+ P[I}(a)/ T} ()]}
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R, =0294(¢’ — Da{ — 1 - > + &[T} (a) /I3 () ] }.
(86)

In Fig. 3 we have plotted (86) for a = 1.5. The region to the
right of the neutral curve is unstable, and the region to the
left is stable. Thus the short waves (disturbances with large
wave number @) are unstable, since the effect of interfacial
tension is suppressed in the present study. If the effect of
interfacial tension is to be included [we need to make some
assumptions about the magnitude of the combination
(m’aJ /R) in the Eq. (10)], we expect io have anoiher
branch of neutral curve which stabilizes the short waves.

V.NUMERICAL COMPUTATION TAKING INTO
ACCOUNT THE INTERFACIAL AND BOUNDARY
LAYERS

The finite element code for linear stabilitv comnutation

he finite element code for linear ity computation
of core-annular flow given in Hu and Joseph®'® is here
modified to take into account the effects of the boundary
layers near the pipe wall and near the interface between two
liquids. '

In the core region 0<r<1, since the equation is regular,
we use ten uniform elements in the code. While in the annu-
lus 1<r<a, we first divide the annulus into eight equal inter-
vals, then in the first interval (closest to the interface) and in
the last interval (closest to the pipe wall), we generate ele-
ments whose size increases gradually with a magnification
rate of 2. The size of the smallest element is kept less than

1000 g
*
-
100 3 hd
R
10k
Stable
1f .
1 s+ m=0.001 v
o m=0.0001
«  m=0.00001
1 PEERYE T | s azasaml A s azssal s assasnl sz sansml A AAAL
10 10° 10* 1003 10?2 10! 10°

a

FIG. 4. Comparison of neutral curves corresponding to case I obtained by
the matched asymptotic expansions (solid lines) with that obtained by the
modified finite element code (dots). The radius ratio a = 1.5, surface ten-
sion parameter J =0 and viscosity ratio m = 10~3, 10—, and 10~°. The
agreement is good at one end of the curves with large a. At the other end, the
finite element code predicts another branch of neutral curve, while the
method of matched asymptotic expansions method fails since m/Ra is no
longer a small parameter when « or R is extremely small.
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0.1Ym/Ra, thus the number of the elements used in the pro-
gram varies automatically according to the values of m, R,
and a. This modified code is compatible with the old ones.

We made comparisons for the results obtained using this
modified finite element code with those obtained by the
matched asymptotic expansions method. Figure 4 shows the
comparison of neutral curves at relatively small a, corre-
sponding to case I in which the critical point is far away from
the interface or the velocity of disturbances is not close to
one. We sée a very good agreement at one end of the curves.
At the other end, the finite element code predicts another
branch of neutral curve, while the matched asymptotic ex-
pansions method fails since y/m/Ra is no longer a small pa-
rameter when a or R is extremely small. The long wave
(small wave number ) analysis given by Preziosi, Chen,
and Joseph® shows that the core-annular flow is always sta-
ble as -0 when interfacial tension is neglected, as con-
firmed by the finite element computation.

Figure 5 presents the comparison of neutral curves cor-
responding to the second case in which the critical point is
. near the interface or the velocity of disturbances is close to
one. We observe an increasingly better agreement as m 0.
Figure 6 combines the neutral curves in Figs. 4 and 5 giving
an overall view of the neutral curves in the (a,R) plane.

Figure 7 demonstrates the changes of the neutral curves
in the (a,R) plane as m increases when J is not zero
(a=1.25and J= 1000). The numerical solutions shown in
Fig. 7(a) for m = 0.001 is similar to the neutral curves in
Fig. 6, except that in Fig. 7(a) there exists an extra branch
for @ > 1 at small R, which corresponds to the stabilizing

500
s  m=0.001
o m=0.0001
a0 F + m=0.00001
R .
[ .
300 I
[ Stable
L
a
200 |
&
100 I
a
Unstable
0 1 Y 1 )] ] PR L

FIG. 5. Comparison of neutral curves corresponding to case II obtained by
the matched asymptotic expansions [solid line given by Eq. (86) ] with that
obtained by the modified finite element code (dots). The radius ratio
a= 1.5, surface tension parameter J =0 and viscosity ratio m = 10>,
10 %, and 10 7. The agreement is increasingly better as m—0.
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FIG. 6. Combination of Figs. 4 and 5. This gives an overall view of the
neutral curves for both case I and case II.

effects of the interfacial tension for short waves. Since the
effect of interfacial tension scales according to parameter
J* = TpR, /1> = Jm?, as m increases the influence of the
interfacial tension increases quickly. In Fig. 7(b)
(m =0.01), the extra branch gets connected with the
branch corresponding to the case II in asymptotic analysis
and forms another U-shape branch at large a. At the left-
hand side corner the small unstable bubble is caused by the
capillary instability due to the interfacial tension. When
m = 0.1, Fig. 7(c¢), the interfacial tension further stabilizes
the short waves (pushs up the U-shape branch at large a)
and destabilizes the long waves (blows the bubble at the left-
hand side corner). If the J is large enough, the U branch at
large a can be pushed out of sight. Then the U-shaped
branch at small a and the bubble at the left-hand side corner
are the familar upper and lower branches of neutral curves
displayed in Preziosi, Chen, and Joseph® for finite but small
m.

Vi. GROWTH RATE AND WAVE VELOCITY

We know that Im{ac} is the growth rate and Re{c} is
the wave velocity for small disturbances. The two modes of
instability corresponding to case I and case II have different
growth rates. For R = 100, a = 1.5, and m = 0.001, 0.0001,
and 0.000 01, the growth rate for both modes are plotted in
Fig. 8. The results are obtained using the method of matched
asymptotic expansions. This figure shows that the growth
rate for mode I, corresponding to case I, is small and positive
at small a, it reaches a maximum at a about 0.1, which varies
for different m, then decreases rapidly as « increases. The
growth rate for mode I1, corresponding to case 11, has a peak
at @ = 12.1 which is independent of m, and decays to zero at
both ends of small and large a. Except at small a, the growth
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FIG. 7. Changes of the neutral curves as the viscosity ratio m increases. The
radius ratio g = 1.25, surface tension parameter J= 1000 and (a)
m = 0.001; (b) m = 0.01; (c) m = 0.1. Here U and Sindicate unstable and
stable regions, respectively.
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FIG. 8. Growth rates Im{ac} versus wave number a for two modes of insta-
bility when R = 100, a = 1.5 and m = 0.001, 0.0001, 0.000 01. A is the
growth rate for mode I corresponding to case I and O is the growth rate for
mode II corresponding to case I1. Except at small @ where the growth rate of
mode I is slightly positive and the growth rate of mode II is negative, the
growth rate of mode Il is much larger than that of mode I. The maximum
growth rate occurs on the curve for mode II at @ = 12.1, and tends to zero
(neutrally stable) as m tends to zero.

rate of mode II is much larger than that of mode I. Combin-
ing these two modes of instability the maximum growth rate
for the whole range of @ occurs on the curve for mode II at
a = 12.1. This maximum growth rate tends to zero (neutral-
ly stable) as m tends to zero because the growth rate is pro-
portion to m'”* as shown in expansion (61).

The energy analysis described in Hu and Joseph® using
the finite element code shows that for the second mode of
instability the B, term due to the difference of viscosity and
interfacial friction is dominant in the energy balance. The
comparison with experiments in Hu and Joseph® shows that
this type of instability leads interfacial waves.

The wave velocities for the same parameter as in Fig. 8
at the maximum growth rates are 0.9961, 0.9982, 0.9991 for
m = 0.001, 0.0001, and 0.000 01, respectively. The expan-
sion (61) also shows that the interfacial wave tends to be
stationary, the wave velocity is equal to the velocity of the
core, as m tends to zero.

VIi. CONCLUSIONS

(a) As the ratio of viscosities of water to oil 72 tends to
zero (€ = m/Ra as a small parameter), the equation that
governs the linear stability of the core-annular flow is regu-
lar in the core of oil; and is singular in the annulus of water
with boundary layers near the pipe wall and the interface,
and with a critical layer whose position is not predetermined.

(b) According to the position of the critical point in
annulus, there are two modes of instability. One is when the
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critical point is far away from the interface, or the velocity of
the disturbance is much less than one, corresponding to case
1. The other is when the critical point is close to the interface
within a distance of order €', corresponding to case II.

(¢) In case I, the eigenvalue ¢ is determined by (55) and

(57). For small values of a and ym/Ra the eigenvalue can
be expressed explicitly by Eq. (59), and the neutral curve by
Eq. (60). In case 11, the eigenvalue ¢ can be determined by
solving the nonlinear equation (85), while the neutral curve
is simply given by Eq. (86) explicitly.

(d) The finite element code with more elements intro-
duced by an adaptive method in the boundary layers near the
pipe wall and the interface works well for the cases of small
viscosity ratio, and agrees well with the results obtained by
the matched asymptotic expansions method where the two
coincide. The finite element method has no limitation and
gives good results globally in parameter space.

(e) The instability of the core-annular flow, when the
viscosity ratio m is small, leads to an interfacial wave with
wave velocity slightly less than the velocity of the interface.
As m tends to zero, the interfacial wave tends to a standing
wave convected-with the velocity of the flow at the interface
and the maximum growth rate tends to zero; we get a neu-
trally stable standing wave in a coordinate system moving
with velocity of the interface.
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