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Abstract— We establish asymptotic and exponential stability
theorems for delay impulsive systems by employing Lyapunov
functionals with discontinuities. Our conditions have the prop-
erty that when specialized to linear delay impulsive systems, the
stability tests can be formulated as Linear Matrix Inequalities
(LMIs). Then we consider Networked Control Systems (NCSs)
consisting of an LTI process and a static feedback controller
connected through a communication network. Due to the shared
and unreliable channels, sampling intervals are uncertain and
variable. Moreover, samples may be dropped and experience
uncertain and variable delays before arriving at the destination.
We show that the resulting NCSs can be modeled by linear
delay impulsive systems and we provide conditions for stability
of the closed-loop in terms of LMIs. By solving these LMIs, one
can find a positive constant that determines an upper bound
between a sampling time and the subsequent input update time,
for which stability of the closed-loop system is guaranteed.

I. INTRODUCTION

Impulsive dynamical systems exhibit continuous evolu-

tions described by Ordinary Differential Equations (ODEs)

and instantaneous state jumps or impulses. Motivated by

systems with delay, we are interested in studying delay

impulsive systems. We establish stability, asymptotic stabil-

ity, and exponential stability theorems for delay impulsive

systems by employing functionals with discontinuities at a

countable set of times.

By defining the time lag space and other related concepts,

criteria for the uniform stability and uniform asymptotic

stability for Hybrid Dynamical Systems (HDSs) with time

delays are constructed in [1], [2] using Razumikhin’s The-

orem. The same authors apply these results to analyze the

stability of impulsive delay differential equations and nonlin-

ear sampled-data feedback control systems with time delay.

Michel et al. [3] presents Lyapunov-Krasovskii type stability

results and converse theorems for HDSs with time delay.

Based on Lyapunov-Krasovskii functionals, [4] analyzes a

class of HDSs consisting of delay differential equations with

discontinuities. The authors consider a unified framework

for a wide classes of HDSs and provide different types

of stability and converse theorems by employing a positive

definite discontinuous functional. If the functional is bounded

between discontinuities and “appropriately” decreases at the

point of discontinuities then one obtains an “appropriate”
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Fig. 1. NCSs with delay in the feedback loop where u(t) = x(sk), ∀t ∈
[sk + τk,sk+1 + τk+1)

notion of stability (such as uniform stability, asymptotic

stability or exponential stability).

A distinguishing feature of the stability conditions in this

paper is that, when specialized to linear impulsive systems,

the stability tests can be formulated as LMIs, which can

be solved efficiently. Another advantage of our results over

those in [4], [3] is that to verify the conditions in this

paper, one does not need to compute the solution of the

system between discontinuities: We only require a negative

derivative of the Lyapunov functional along the solution and

non-increase of the functional at the points of discontinuity.

As a special case of general delay impulsive systems,

we study linear delay impulsive systems such as the one in

Fig. 1, which can be expressed by

ẋ(t) = Ax(t)+ Bx(sk), tk ≤ t < tk+1, k ∈ N, (1)

where sk denotes the k-th sampling time and tk the so called

k-th input update time, which is the time instant at which the

k-th sample arrives to the destination. In particular, denoting

by τk the total delay that the k-th sample experiences in

the loop, then tk := sk + τk. Fig. 1 and equation (1) can be

viewed as modeling an NCS in which a linear process ẋ(t) =
Ax(t) + Buu(t) is in feedback with a static state-feedback

remote controller with gain K. This would correspond to

B := BuK in (1).

We introduce a new discontinuous Lyapunov functional to

establish the stability of (1) based on the theorems developed

here for general nonlinear time-varying delay impulsive sys-

tems. The Lyapunov functional is discontinuous at the input

update times, but a decrease is guaranteed by construction.

We provide an inequality that guarantees the decrease of the

Lyapunov functional between the discontinuities, from which

stability follows. This inequality is expressed as a set of

LMIs that can be solved numerically using software packages

such as MATLAB. By solving these LMIs, one can find a

positive constant that determines an upper bound between

the sampling time sk and the next input update time tk+1, for

which the stability of the closed-loop system is guaranteed

for given lower and upper bounds on the total delay τk.

When there is no delay, this upper bound corresponds to



the maximum sampling interval, which is often called τMAT I

in the NCS literature. We use the τMAT I terminology also

for the case when there are delays in the system, which

allows us to state our result in the form: the system (1)

is exponentially stable for any sampling-delay sequence

satisfying sk+1 + τk+1 − sk ≤ τMAT I and τmin ≤ τk ≤ τmax for

∀k ∈ N, where τmin, τmax, and τMAT I appears in our LMIs.

To reduce network traffic in NCSs, significant work has

been devoted to finding values for τMAT I that are not overly

conservative (see [5] and references therein). First we review

the related work in which there is no delay in the control

loop. In [6], τMAT I is computed for linear and nonlinear sys-

tems with Round-Robin (static) or Try-Once-Discard (TOD)

(dynamic) protocols. Nesic et al. [7], [8] study the input-

output stability properties of nonlinear NCSs based on a

small gain theorem to find τMAT I for NCSs. [9], [10], [11]

consider linear NCSs and formulate the problem of finding

τMAT I as LMIs. In the presence of variable delays in the

control loop [12], [13], [14] show that for a given lower

bound τmin on the delay in the control loop, stability can be

guaranteed for a less conservative τMAT I than in the absence

of the lower bound.

Our stability conditions depends both on the lower bound

τmin and on an upper bound τmax on the loop delay, which

can be estimated (perhaps conservatively) for most networks

[15]. Through an example we show that considering a finite

τmax can significantly reduce conservativeness. When the

delay in the feedback loop is small (τmin,τmax → 0), our

LMIs reduce to the ones presented in [11] which are less

conservative than those in [9], [10]. This observation shows

that the results in [11] are robust with respect to small delays.

In section II we present asymptotic and exponential stabil-

ity tests for time-varying nonlinear delay impulsive systems.

In section III we model NCSs as delay impulsive systems

and we apply the theorems from section II to compute τMAT I .

Section IV is devoted to conclusions and future work.

Notation: Given an interval I ⊂ R, B(I,Rn) denotes

the space of real functions from I to R
n with norm ‖φ‖ :=

supt∈I |φ(t)|, for all φ ∈B(I,Rn) where |.| denotes any one of

the equivalent norms in R
n. For a given signal x(·), xt denotes

the function xt : [−r,0] → R
n defined by xt(θ ) = x(t + θ ),

∀θ ∈ [−r,0] for some positive constant r. In addition, ẋ(t)
denotes the right-hand side derivative of x with respect to t,

i.e., ẋ(t) = limt′↑t
x(t′)−x(t)

t′−t
. A function α ∈ [0,∞) → [0,∞) is

of class K , and we write α ∈ K when α is continuous,

strictly increasing, and α(0) = 0. If α is also unbounded,

then we say it is of class K∞ and we write α ∈ K∞. A

(continuous) function β : [0,∞)× [0,∞) → [0,∞) is of class

K L , and we write β ∈ K L when, β (.,t) is of class K

for each fixed t ≥ 0 and β (s,t) decreases to 0 as t → ∞ for

each fixed s.

II. STABILITY OF DELAY IMPULSIVE SYSTEMS

Consider the following delay impulsive system

ẋ(t) = fk(x(t),t), tk ≤ t < tk+1, (2a)

x(tk) = gk(x(sk),tk), k ∈ N, (2b)

where fk and gk are locally Lipschitz functions [16] such that

fk(0,t) = 0,gk(0,t) = 0, ∀t ∈ R[0,∞). For a given sampling-

delay sequence {sk,τk : k ∈ N}, the sequence of input update

times {tk,k ∈ N} is defined as tk := sk + τk,k ∈ N. We call

the system (2) a delay impulsive system since the reset map

(2b) depends on the past value of state.

The sampling times {s0,s1,s2, · · · } and the input update

times {t0,t1,t2, · · · } form unbounded strictly increasing se-

quences. We allow the delays τk to grow larger than the

sampling intervals sk − sk−1, provided that the sequence of

input update times {t0,t1,t2, · · · } remains strictly increasing.

In essence, this means that if a sample gets to the destination

out of order (i.e., an old sample gets to the destination after

the most recent one), it should be dropped. Samples that do

not reach the destination because of communication faults, or

get dropped at the destination are simply not indexed, which

allow us to model the effect of packet dropouts in the NCSs

setting [10].

We can view (2) as an infinite dimensional system whose

state contains the past history of x(·) so that x(sk) can be

recovered from the state xtk in order to apply the reset map

in (2b). This allow us to apply Lyapunov-Krasovskii tools in

the analysis of (2). In this framework, it is straightforward

to analyze (2) even when the delays grows much larger than

the sampling intervals, which is not easy in methods based

on a discretization of (2) between update times [17], [18].

We assume that the impulse-delay sequences {sk,τk}
belong to a given set S and consider different stability

definitions for (2) over S :

(a) The system (2) is said to be Globally Uniformly Stable

(GUS) over S , if there exists some α ∈ K such that for

every {sk,τk} ∈S and every initial condition xt0 the solution

to (2) is globally defined and satisfies |x(t)| ≤α(‖xt0‖), ∀t ≥
t0.

(b) The system (2) is said to be Globally Asymptotically

Stable (GAS) over S , if in addition to the conditions in (a),

every solution converges to zero as t → ∞.

(c) The system (2) is said to be Globally Uniformly

Asymptotically Stable (GUAS) over S , if there exists some

β ∈ K L such that for every {sk,τk} ∈ S and every initial

condition xt0 the solution to (2) is globally defined and

satisfies |x(t)| ≤ β (‖xt0‖,t − t0), ∀t ≥ t0.

(d) The system (2) is said to be Globally Uniformly

Exponentially Stable (GUES) over S , when the function

β in (c) is of the form β (s,r) = ce−λ rs for some c,λ > 0.

Theorem 1: Suppose that there exist ψ1,ψ2 ∈ K∞, ψ3 ∈
K and a functional V : B([−r,0],Rn) × R[0,∞) → R[0,∞),

absolutely continuous between input update times, such that

ψ1(|φ(0)|) ≤V (φ ,t) ≤ ψ2(‖φ‖), ∀φ ∈ B(I,Rn), t ≥ 0, (3)

and, for every {sk,τk} ∈ S , any solution x to (2) is globally

defined and satisfies

dV (xt ,t)

dt
≤−ψ3(|x(t)|), tk ≤ t < tk+1, k ∈ N, (4)

V (xtk ,tk) ≤ lim
t↑tk

V (xt ,t), ∀k ∈ N. (5)



Then the system (2) is GUS over S . In addition, the

following statements hold:

(a) The system (2) is GUAS over S if there is a con-

stant hmin > 0 for which tk+1 − tk ≥ hmin, ∀k ∈ N for every

{sk,τk} ∈ S .

(b) The system (2) is UGES over S , when the functions

ψ1,ψ2 are of the following forms:

ψ1(|φ(0)|)) := c1|φ(0)|b, ψ2(‖φ‖) := c2‖φ‖b, (6)

and instead of (4), the following condition holds

dV (xt ,t)

dt
≤−c3‖xt‖

b, ∀tk ≤ t < tk+1, k ∈ N (7)

for some positive constants c1,c2,c3, and b.

(c) The system (2) is UGES over S , when the functions

ψ1,ψ3 are of the following forms:

ψ1(|φ(0)|) := d1|φ(0)|b, ψ3(|x(t)|) := d3|x(t)|
b,

and in (3) the upper bound ψ2(‖φ‖) is replaced by

d2|φ(0)|b + d̄2

∫ t

t−r
|φ(s)|bds,

for some positive constants d1,d2, d̄2,d3 and b. �

Items (b) and (c) in Theorem 1 both provide alternative

conditions to guarantee UGES over S . The former poses

milder conditions on the Lyapunov functional than the latter,

but it poses a more strict condition on the time derivative of

the functional. We shall see shortly that the latter statement

will lead to sufficient conditions in terms of LMIs for linear

impulsive systems.

Proof of Theorem 1. For every {sk,τk} ∈ S , we have
dV (xt ,t)

dt
≤ 0 for ∀t ∈ [tk,tk+1), k ∈ N, therefore

ψ1(|x(t)|) ≤V (xt ,t) ≤V (xtk ,tk), tk ≤ t < tk+1. (8)

Based on the conditions (4) and (5), we also have

V (xt−
k+1

,t−k+1) ≤V (xtk ,tk) ≤V (xt−
k
,t−k ), k ∈ N, (9)

Combining (8) and (9), we conclude that

ψ1(|x(t)|) ≤V (xt ,t) ≤V (xt−
k
,t−k ) ≤ ·· · ≤V (xt0 ,t0)

≤ ψ2(‖xt0‖). (10)

From (10), Lyapunov stability follows since |x(t)| ≤
α(‖xt0‖), ∀t ≥ t0 for α(.) := ψ−1

1 (ψ2(.)).
(a) for every ε > 0 let δ1 > 0 be such that ψ2(δ1)≤ψ1(ε).

Then ‖xt0‖ ≤ δ1 implies that |x(t)| < ε, t ≥ t0 because of

(10). For this δ1 and any η > 0, we show that there exists

a T = T (δ1,η) such that |x(t)| ≤ η for ∀t ≥ t0 + T . Choose

δ2 > 0 such that ψ2(δ2) ≤ ψ1(η) for t ≥ t0 + T . Then it

suffices to show that ‖xt0+T‖ < δ2 which implies |x(t)| <
η , ∀t ≥ 0. By contradiction we assume that such a T does

not exist therefore there exists a sequence ck,k ∈ N such that

‖xck
‖ > δ2. Each ck is in an interval [tki

,tki+1
) where tki

is a

subsequence of tk. Since tk+1 − tk ≥ hmin, ∀k ∈ N then either

ck − tki
≥ hmin

2
or tki+1

− ck ≥
hmin

2
. We define intervals

Ik :=

{

[ck −
δ2

2L1
,ck] if ck − tki

≥ hmin
2

[ck,ck + δ2
2L1

] if tki+1
− ck ≥

hmin
2

,

where L1 > max(L, δ2
hmin

) and | fk(x,t)| < L for ∀k ∈ N (since

fk is Lipshitz, there exists L > 0 such that | fk(x,t)|< L). By

construction, x(t) is continuous for any t ∈ Ik and we can

use the Mean Value Theorem. So for any t ∈ Ik there exists

a θ ∈ [0,1] such that

|x(t)| = |x(ck)+ ẋ(ck + θ (t − ck))(t − ck)| ≥ |x(ck)|

− |ẋ(ck + θ (t − ck))| (|t − ck|) ≥ δ2 −L
δ2

2L1

≥
δ2

2
.

Therefore
dV (xt ,t)

dt
≤ −ψ3(

δ2
2
) for any t ∈ Ik and otherwise

dV (xt ,t)
dt

≤ 0. By integration we have

V (xck
,ck) ≤V (xt0 ,t0)−ψ3

(δ2

2

) kδ2

2L1

,

but this would imply that V (xck
,ck) < 0 for a sufficiently

large k. By contradiction, we conclude that the system is

GUAS over S .

(b) Inequalities (3) with the choice of (6) and (7) implies

dV(xt ,t)

dt
≤−

c3

c2

V (xt ,t).

By the Comparison Lemma [16] we have V (xt ,t) ≤

V (xt0 ,t0)e
−

c3
c2

(t−t0)
. Hence

|x(t)| ≤
(V (xt ,t)

c1

)1/b

≤
(V (xt0 ,t0)e

−
c3
c2

(t−t0)

c1

)1/b

≤
(c2‖xt0‖

be
−c3
c2

(t−t0)

c1

)1/b

= (
c2

c1

)1/b‖xt0‖e
−

c3
c2b (t−t0)

.

Thus, the origin is GUES over S .

(c) Defining W (xt ,t) := eε(t−t0)V (xt ,t), we conclude that

dW (xt ,t)

dt
= εeε(t−t0)V (xt ,t)+ eε(t−t0) dV(xt ,t)

dt
≤

εeε(t−t0)
(

d2|x(t)|
b + d̄2

∫ t

t−r
|x(v)|bdv

)

−d3eε(t−t0)|x(t)|b.

(11)

By integration of (11), we have

W (xt ,t)−W(xt0 ,t0) ≤ εd2

∫ t

t0

eε(s−t0)|x(s)|bds

+ ε d̄2

∫ t

t0

∫ s

s−r
eε(s−t0)|x(v)|bdvds−d3

∫ t

t0

eε(s−t0)|x(s)|bds.

(12)

One can show that
∫ t

t0

∫ s

s−r
eε(s−t0)|x(v)|bdvds ≤

∫ t0

t0−r

∫ v+r

t0

eε(s−t0)|x(v)|bdsdv+

∫ t

t0

∫ v+r

v
eε(s−t0)|x(v)|bdsdv ≤ reεr

∫ t0

t0−r
|x(v)|bdv+

reεr

∫ t

t0

eε(v−t0)|x(v)|bdv. (13)

Combining (12), (13) and the fact that W (xt0 ,t0) ≤
d2|x(t0)|

b + d̄2

∫ t0
t0−r |x(s)|

bds we get

W (xt ,t) ≤ d2|x(t0)|
b + d̄2(1 + εreεr)

∫ t0

t0−r
|x(v)|bdv

+(ε d̄2reεr −d3)
∫ t

t0

eε(v−t0)|x(v)|bdv.



For small enough ε ,

W (xt ,t) ≤ d2|x(0)|b + d̄2(1 + εreεr)
∫ t0

t0−r
|x(v)|bdv. (14)

If (14) holds, there exists a d4 > 0 such that W (xt ,t) ≤
d4‖xt0‖

b or V (xt ,t) ≤ d4e−ε(t−t0)‖xt0‖
b and consequently

x(t) ≤ ( d4
d1

)1/be−
ε
b (t−t0)‖xt0‖ for every {sk,τk} ∈ S .

III. NCSS WITH VARIABLE SAMPLING AND DELAY

Consider an NCS consisting of an LTI process with state

space model of the form ẋ(t) = Ax(t)+ Buu(t), x ∈ R
n,u ∈

R
m and a state-feedback controller with constant gain K

connected through sample and hold blocks. At time sk, k ∈N

the process’s state, x(sk), is sent to the controller and the

control command Kx(sk) is sent back to the process to

be used as soon as it arrives, and until the next control

command update. The total delay in the control loop that the

k-th sample experiences is denoted by τk. To be consistent

with the results in [13], [14] and [12] we characterize the

admissible set of sampling-delay sequences {sk,τk} as

S := {(sk,τk) : sk+1 + τk+1 − sk ≤ τMAT I,

τmin ≤ τk ≤ τmax} .
(15)

The closed-loop NCS can be modeled by the following delay

impulsive system

ξ̇ (t) = Fξ (t), tk ≤ t < tk+1, (16a)

ξ (tk+1) =
[

x(t−
k+1

)

x(sk+1)

]

, k ∈ N, (16b)

where

F :=
[

A B
0 0

]

, ξ (t) :=
[

x(t)
z1(t)

]

, B := BuK,

tk := sk + τk, z1(t) := x(sk), tk ≤ t < tk+1.

Consider the Lyapunov functional

V := x′Px +

∫ t

t−ρ1

(ρ1max − t + s)ẋ′(s)R1ẋ(s)ds+

∫ t

t−ρ2

(ρ2max − t + s)ẋ′(s)R2ẋ(s)ds+

∫ t

t−τmin

(τmin − t + s)ẋ′(s)R3ẋ(s)ds+

∫ t−τmin

t−ρ1

(ρ1max − t + s)ẋ′(s)R4ẋ(s)ds+

(ρ1max − τmin)

∫ t

t−τmin

ẋ′(s)R4ẋ(s)ds+

∫ t

t−τmin

x′(s)Zx(s)ds+

(ρ1max −ρ1)(x− z2)
′X(x− z2), (17)

with P, ,X ,Z,Ri, i = 1, ..,4 positive definite matrices and

z2(t) := x(tk), ρ1(t) := t − sk, ρ2(t) := t − tk, tk ≤ t < tk+1,

ρ1max := sup
t≥0

ρ1(t), ρ2max := sup
t≥0

ρ2(t).

If the LMIs in the next theorem are feasible for given

βmax := τMAT I −τmin,τmin, and τmax, then there exists a d3 > 0

such that
dV (xt ,t)

dt
≤−d3|x(t)|

2. It is straightforward to show

that the Lyapunov functional (17) satisfies the remaining
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Fig. 2. τMAT I versus τmin for τmax equal to 0, .2, .4, .6,1 based on Theorem
2. The dashed line is the same as the one in Fig.3.

conditions in Theorem (1). Hence the NCS modeled by the

delay impulsive system (16) is UGES over S given by (15).

Theorem 2: The system (16) is GUES over S defined

by (15), provided that there exist positive definite matrices

P,X ,Z,Ri, i = 1, ..,4 and (not necessarily symmetric) matrices

Ni, i = 1, ..,4 that satisfy the following LMIs:
[

M1+βmax(M2+M3) τmaxN1 τminN3
∗ −τmaxR1 0
∗ ∗ −τminR3

]

< 0, (18a)







M1+βmaxM2 τmaxN1 τminN3 βmax(N1+N2) βmaxN4

∗ −τmaxR1 0 0 0
∗ ∗ −τminR3 0 0

∗ ∗ ∗ −βmax(R1+R2) 0

∗ ∗ ∗ ∗ −βmaxR4






< 0,

(18b)

where

M1 :=F̄ ′ [P 0 0 0 ]+

[

P
0
0
0

]

F̄ + τminF ′(R1 + R3)F−

[

I
0
−I
0

]

X

[

I
0
−I
0

]′

+

[

I
0
0
0

]

Z

[

I
0
0
0

]′

−

[

0
0
0
I

]

Z

[

0
0
0
I

]′

−N1 [ I −I 0 0 ]−

[

I
−I
0
0

]

N′
1 −N2 [ I 0 −I 0 ]−

[

I
0
−I
0

]

N′
2

−N3 [ I 0 0 −I ]−

[

I
0
0
−I

]

N′
3 −N4 [ 0 −I 0 I ]−

[

0
−I
0
I

]

N′
4,

M2 :=F̄ ′(R1 + R2 + R4)F̄ ,

M3 :=

[

I
0
−I
0

]

XF̄ + F̄ ′X [ I 0 −I 0 ] . (19)

with F̄ :=
[

A B 0 0
]

. �

Remark 1: When the delays are small, i.e., τmin,τmax → 0

the LMIs (18a) and (18b) are equivalent to

M1 + βmax(M2 + M3) < 0,

M1 + βmaxM2 + βmax(N1 + N2)(R1 + R2)
−1(N1 + N2)

′ < 0

(20)

(after using Schur Lemma). Making R3,R4,Z,N3,N4 → 0 and

N1 =
[

N11 N12 N13 0
]′

, N2 =
[

N21 N22 N23 0
]′

,

makes the last row and column of the LMIs in (20)

approach zero and we can omit them. After multi-

plying the LMIs in (1) by
[

I 0 0
0 I I

]

and its transpose
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Fig. 3. τMAT I versus τmin where τmax = τmin from [13] (’+’) and [14]
(’×’), the worse case where τmax = τMAT I (’∇’) and the best case where
τmax = τmin (’o’) from Theorem 2.

from the left and the right, respectively, choosing N =
[

N11 + N21 N12 + N13 + N22 + N23

]′
and R1 + R2 = R, we

obtain the LMIs in [11, Theorem 1]. So the results in [11]

are robust with respect to small delays, namely the results in

[11] still guarantee stability for arbitrary small delays. �

Example 1: Consider the state space process model [19]
[

ẋ1
ẋ2

]

=
[

0 1
0 −0.1

]

[ x1
x2

]+
[

0
0.1

]

u,

with state feedback gain K =− [3.75 11.5 ], for which we have

A =
[

0 1
0 −0.1

]

, B = −
[

0
0.1

]

× [3.75 11.5 ] .

By checking the condition eig(
[

I 0
I 0

]

eFh) < 0 on a tight grid

of h, we can show that the closed-loop system remains

stable for any constant sampling interval smaller than 1.7,

and becomes unstable for larger constant sampling intervals.

On the other hand, when the sampling interval approaches

zero, the system is described by a DDE and we can find the

maximum constant delay for which stability is guaranteed

by looking at the roots of the characteristic function det(sI−

A−Be−τ0s). We use the Pade approximation e−τ0s = 1−sτ0/2

1+sτ0/2

to compute the determinant polynomial and conclude by

the Routh-Hurwitz test that the system is stable for any

constant delay smaller than 1.36. Comparing these numbers

with the maximum variable sampling interval 1.1137 and

the maximum variable delay 1.0744 both obtained using

Theorem 2 (see below) reveals the conservativeness of our

method:

No-delay and variable sampling: When there is no de-

lay but the sampling intervals are variable, τMAT I determines

an upper bound on the variable sampling intervals sk+1 − sk

. The upper bound given by [9], [10], [13] (when τmin = 0)
is 0.8696 which is improved to 0.8871 in [14]. Theorem 2

and [11] gives the upper bound equal to 1.1137.

Variable-delay and sampling: Fig. 2 shows the value

of τMAT I obtained form Theorem 2, as a function of τmin

for different values of τmax. The dashed curves in Fig. 2 and

Fig. 3 are the same which are comprised of the largest τMAT I

for different values of τmax. Fig. 3 shows τMAT I with respect

to τmin where the results from [13], [14] are shown by +, ×

respectively. The values of τMAT I given by [12] lay between

the “+” and “×” in Fig. 3 and we do not show them. In

Theorem 2, τMAT I is a function of τmin and τmax. To be able

to compare our result to the others we consider two values

for τmax and we obtain τMAT I as a function of τmin based

on Theorem 2. Fist we consider τmax = τmin, which is the

case that the delay is constant and equal to the value of τmin.

The largest τMAT I for a given τmin provided by Theorem 2

is shown using an “o” in Fig. 3. The second case is when

τmax = τMAT I , which is the case where there can be very large

delays in the loop in comparison to the sampling intervals.

The largest τMAT I for a given τmin for this case provided

by Theorem 2 is shown using a “∇” in Fig. 3. One can

observe that when the delays in the control loop are small,

our method shows a good improvement in comparison to the

other results in the literature. �

IV. CONCLUSIONS AND FUTURE WORK

We established stability, asymptotic stability, and exponen-

tial stability theorems for delay impulsive systems. Our sta-

bility conditions have the property that when specialized to

linear impulsive systems, the stability tests can be formulated

as LMIs. Then we considered NCSs consisting of an LTI

process and a static feedback controller connected through

a communication network. Due to the shared, unreliable

channel that connects process and controller, the sampling

intervals and delays are uncertain and variable. We showed

that the resulting NCSs can be modeled by linear delay

impulsive systems. We provided conditions for the stability

of the closed-loop expressed in terms of LMIs. By solving

these LMIs, one can find a positive constant that determines

an upper bound between the sampling time and the next input

update time, for which stability of the closed-loop system is

guaranteed.

Although in this paper we focused on the stability prob-

lem, it is possible to derive LMI conditions which lead to

finding stabilizing static feedback gains (or H∞ design) [11].

We will extend our results to model more general NCSs such

as two-channel NCSs with dynamic feedback controllers.

APPENDIX

Proof of Theorem 2 . Along the trajectory of the system (2)

V̇ =2x′(t)P(Ax(t)+ Bz1)+ ρ1maxẋ′(t)R1ẋ(t)

−

∫ t

t−ρ1

ẋ′(s)R1ẋ(s)ds+ ρ2maxẋ′(t)R2ẋ(t)

−

∫ t

t−ρ2

ẋ′(s)R2ẋ(s)ds+ τminẋ′(t)R3ẋ(t)

−
∫ t

t−τmin

ẋ′(s)R3ẋ(s)ds

+(ρ1max− τmin)
(

ẋ′(t − τmin)R4ẋ(t − τmin)
)

−

∫ t−τmin

t−ρ1

ẋ′(s)R4ẋ(s)ds+(ρ1max − τmin)
(

ẋ′(t)R4ẋ(t)

− ẋ′(t − τmin)R4ẋ(t − τmin)
)

+ x′(t)Zx(t)

− x′(t − τmin)Zx(t − τmin)− (x(t)− z2)
′X(x(t)− z2)

+ 2(ρ1max−ρ1)(x− z2)
′X(Ax + Bz1). (21)



Defining ξ̄ (t) :=
[

x′(t) z′1 z′2 x′(t − τmin)
]′

, for any ma-

trices Ni, i = 1, ..,4 we have

2ξ̄ ′N1

[

I −I 0 0
]

ξ̄ + 2ξ̄ ′N2

[

I 0 −I 0
]

ξ̄

= 2ξ̄ ′(N1 + N2)
(

∫ t

t−ρ2

ẋ(s)ds
)

+ 2ξ̄ ′N1

(

∫ t−ρ2

t−ρ1

ẋ(s)ds
)

≤ ρ2ξ̄ ′(N1 + N2)(R1 + R2)
−1(N1 + N2)

′ξ̄

+

∫ t

t−ρ2

ẋ′(s)(R1 + R2)ẋ(s)ds

+(ρ1 −ρ2)ξ̄
′N1R−1

1 N′
1ξ̄ +

∫ t−ρ2

t−ρ1

ẋ′(s)R1ẋ(s)ds, (22)

2ξ̄ ′N3

[

I 0 0 −I
]

ξ̄ = 2ξ̄ ′N3

(

∫ t

t−τmin

ẋ(s)ds

)

≤ τminξ̄ ′N3R−1
3 N′

3ξ̄ +

∫ t

t−τmin

ẋ′(s)R3ẋ(s)ds, (23)

2ξ̄ ′N4

[

0 −I 0 I
]

ξ̄ = 2ξ̄ ′N4

(

∫ t−τmin

t−ρ1

ẋ(s)ds
)

≤ (ρ1 − τmin)ξ̄
′N4R−1

4 N′
4ξ̄ +

∫ t−τmin

t−ρ1

ẋ′(s)R4ẋ(s)ds, (24)

which relies on the fact that x(t)− z1(t) = x(t)− x(t −ρ1)
and x(t) − z2(t) = x(t) − x(t − ρ2). The matrix variables

N1,N2,N3,N4 represent degrees of freedom that can be

exploited to minimize conservativeness and we call them

slack matrices. Let us define β := ρ1 − τmin and βmax :=
ρ1max − τmin. Note that τmin ≤ ρ1 −ρ2 ≤ τmax and

ρ1max = sup
k

(sk+1 + τk+1 − sk + τk − τk) ≤ ρ2max + τmax,

ρ2max + τmin = sup
k

(sk+1 + τk+1 − sk − τk + τmin) ≤ ρ1max,

so we conclude that τmin ≤ ρ1max −ρ2max ≤ τmax, ρ2max ≤
βmax, and ρ2 ≤ β . After combining (21), (22),(23), and (24)

and replacing ρ2max,ρ2,ρ1 −ρ2 with βmax,β ,τmax we get

V̇ (ξ̄ ) ≤ ξ̄ ′
(

Ψ+ βmax(M2 + M3)+ β (M4 −M3)
)

ξ̄ , (25)

where

Ψ :=M1 + τmaxN1R−1
1 N′

1 + τminN3R−1
3 N′

3,

M4 :=(N1 + N2)(R1 + R2)
−1(N1 + N2)

′ + N4R−1
4 N′

4,

and M1,M2,M3 are defined in (19). The necessary and

sufficient condition to satisfy (25) is

M1 + τMAT I(M2 + M3) < 0, M1 + τMATI(M2 + M4) < 0 (26)

(the proof is similar to the proof of Theorem 1 of [11]). By

Schur complement, the matrix inequalities in (26), can be

written as the LMIs in Theorem 2. It is easy to show that

the Lyapunov functional satisfies the condition (3) with

ψ1(s) := d1s2, ψ2(‖φ‖) := d2|φ(0)|2 + d̄2

∫ t

t−r
|φ(s)|2ds,

for d1,d2, d̄2 > 0. If the LMIs in theorem 2 are feasible, then

there exists a d3 > 0 such that the condition (4) is satisfied

with ψ3(s) := d3s2 for d3 > 0. The condition (5) is guaranteed

by construction and consequently the system is GUES over

S .
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