
Stability of Difference
Approximations of Dissipative Type for

Mixed Initial-Boundary Value Problems. I*

By Stanley Osher

Abstract. H. 0. Kreiss, [2], has recently extended the stability theory of differ-

ence approximations to include the hyperbolic system

ut = A ux ,       0 ^ x, t,

with A a diagonal matrix. Appropriate boundary and initial conditions are given.

The amplification matrix Q(£) need not be diagonal. However, he required that

|Q(£)| ^ 1- We use certain results in matrix theory and Wiener-Hopf factorization

to replace this restrictive assumption by certain reasonable assumptions on ac-

curacy of Q(£) and smoothness of an associated positive-definite symmetric matrix.

This technique will be important in half-space problems in many space variables

since for such problems the amplification matrix will certainly not be diagonal. |

1. Introduction. The purpose of this paper is to replace the restrictive Assump-

tion 4 of Kreiss [2] by assumptions on the accuracy of the difference approximation

and the smoothness of an associated positive-definite symmetric matrix. We shall

use the notation in [2] throughout. Equation numbers surrounded by parentheses

will refer to [2], those with only a right-hand parenthesis refer to this paper.

This technique may be used for multidimensional problems if we assume

appropriate analogous hypotheses.

The basic assumption and theorems which we shall use are the following :

I. Theorem (Osher [1]). Let L be a bounded linear operator on a Hubert space 77.

Let P be an orthogonal projection on H. Assume

1.1) ||(7 - P)L\\ =S 1.

1.2) \\L(I - P)\\ S 1.
1.3) There exists a sequence of nonnegative numbers ja„} suchthat ^^Loßr. = a < <»

and \\PL"P\\ ^ anfor n = 0, 1, 2, • • •.
Then

1.4) ||7>|! S (1 + a2)112 for all n = 0, 1, 2,

II. Theorem (Kreiss [5]). Let (1.6) have order of accuracy 2s — 1 with respect

to (1.1). Let assumptions (1), (2), and (3) of [2] be valid. Then there exists a positive-

definite Hermitian matrix 3C(ei{) such that

1.5) c~lI ^ 3C(e,f) ^ ci

for some constant c > 0 independent of £. Furthermore, the matrix
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1.6) A(e«) =  £ AsT*"

satisfies

1.7) A*(e<£)5C(ei?)A(eiS) á 3e(e<4) .

III. Assumption. Let 3C(e<£) have a finite Fourier expansion

1.8) 3C(ei{) =   ¿3C/'{y.
y—«

(We think that such an 3C can be obtained if the A¡ are symmetric. However, we

have not yet proven this, and in fact we expect that there are probably more general

conditions which may be used.)

IV. Theorem (Gohberg and Krein [4]). Let 3C(eif) have the above properties.

Then we may write

1.9) 3C(ei{) = B*(eii)B(eii)    (B* is the conjugate transpose of B)

where

1.10) B(eil)=Y,Bjeili,
3=0

and

1.11) det [B(x)] ji 0   for \x\ g 1.

We may now state our Main Theorem.

Main Theorem. The approximation to the initial-boundary value problem is

stable if:
1.12) The assumptions (1), (2), (3), are fulfilled and (4) is replaced by letting 1.6)

have order of accuracy 2s — 1 with respect to 1.1) and requiring that 3C(ei£) satisfy

Assumption III. (We may sometimes make a change of variables so that the accuracy

assumption becomes valid, see [5].)

1.13) Zo = 1 is not a generalized eigenvalue of q.

1.14) q has no eigenvalues z0, with \z0\ > 1, zo ^ 1.

2. Renorming the Hubert Space. Kreiss uses the Hilbert space 77, which is the

space of all grid-functions a>„ defined for v > — r which fulfill the boundary condi-

tions and for which

2.1) N|2 = ¿ |^|2/i < » .

The Fourier transform space Ê of functions of the form

2.2) <&(«**) =  ¿co*"*
r—l

is isometrically isomorphic to 77.

Let us consider the Hilbert space H(-X,x) of grid-functions co„ defined for

— co < v < oo which fulfill the boundary conditions and for which
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2.3) £  |o>„|2/i < oo .
V=—00

We also consider its Fourier transform space H(-X¡x).

On 7?(-.o,»), we define the orthogonal projection

2.4) PA £ «**«) =    £   co,e"s.

Let

2.5) P+#c^...> = Ö

define the space G, and consider its inverse Fourier transform space G. However, on

G, we shall use a new equivalent norm which we define as

2.6) ||û||* = (Bù, Bû)1'2

where 7?(ei£) is defined in Theorem II, and

2.7) (/, g) = f ¿ //(fc, ei()$(Kleide ,

where a denotes the complex conjugate of a. From [4], we know that

2.8) û = Bû

defines a bounded, linear, invertible operator on G. Hence, it follows that 3 kB',

kB" > 0 with

2.9) kB'(w, Û>)112 g ||o||B ú kB"(ô>, Û,)112.

Thus, the renormed space Gb is equivalent to G. We shall obtain stability on the

space Gb.

3. The Operators T and S. The initial-boundary approximation differs from

3.1) w¿(t + k)= £ AvEvWj(t) ,       j= -r+ 1, -r + 2, ■■■ ,
ji=max(—r, 1—/— r)

where Ewj = Wj+i, by a boundary perturbation

V

uj(t + k) =   -£ AvEvUj(t)
3.2) *=l-j~r

S

+ £ Cpjup(t + k) ,   for   j = -r + 1, -r + 2, • • -, 0 ;

and

U,(í + fc)  = 0 , j =  1, 2,  • • • .

Equation 3.1) defines a Toeplitz operator T on GB (and T on GB). Equation (3.2)

defines a finite-dimensional operator S (and S). We have thus shown that proving

stability of the initial-boundary approximation is equivalent to bounding

3.3) \\(f+S)n\\B^k,       n = 0,1,2, •••

for k independent of n.
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4. Orthogonal Projections on GB. We claim that the set of vectors

4.1) {/rV{)/V'£} = *./(«"), v - 1, 2, • • -, n, j = -r + 1, -r + 2, - -. ,

where /„ is the pth unit n vector, form a complete orthonormal set on GB. Suppose

for all v, j

4.2) (v, Qri)B = 0 <=> (Bv, fveiji) =0<^Bv = 0=*v = 0.

This proves completeness. Orthonormality also follows simply. Thus, any element

on Gb may be written as

4.3) v(ei() = £    £    (BO, jV',f)0,y(e<{) .
>—l   J.-r+l

We define the orthogonal projector on GB

4.4) (7 - P)fl = £   £   (Bv, Uin)Me<() ,
_i y=jv+i

where JV > 0 is defined below.

The following lemma is basic to this work.

IV. Lemma. Let N = max(¿, s + p, p — r). Then

(1) \\(I - P)(f + S)\\B ^ 1 ,

(2) \\(T + S)(I - P)\\B ^ 1 .

Proof. We shall show that the difference operator T + S acting on the space

(7 — P)GB and the restriction (I — P) (t + S)Gb both behave like the associated

pure initial-value problems A(ei()(I — P)GB and (7 — P) A(ei()GB. We then use

1.7) to prove the Lemma.

More precisely, we claim for any w(ei() in GB that

4.5) (7 - P)S = S(I - P) = 0,
4.6) (7 - P)fw = (7 - P)A(eit)w(ei*), and

4.7) f(I - P)w = A(e*)(I - P)w(e^).
We know that B(e'i)Sw(eii) has a finite Fourier expansion because of 1.10):

4.8) B(eil)Sw(eil) =    £   v¿em.
y=-7-+i

Furthermore, S annihilates all vectors

4.9) 0(ei{) =     £    vfiiji.
j—s+p+l

The range and support of S both lie in the support of P, i.e., near the boundary,

and thus 4.5) is valid.

Next we notice that

4.10) A(eii)(I - P)w(e{i)

is the same as

T(I - P)w(e^)

because the range of A (ei£) (7 — P) is contained in GB. Thus
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411)      ||f (7 - P)w\\B = P(el£)(7 - P)H,\\B è HI - P)M\b    (by 1.7))

è Ma.

Finally, we see that the jth Fourier coefficient of

4.12) BP+A(eil)i)(eii)

and

4.13) BA(ei()6(eii)

are equal for j ^ t — r + 1 because of 1.10). Thus,

4U) HU - P)fv\\B = ||(7 - P)A(eii)v(eii)\\B

Ú \\A(eil)v(eil)\\B H \\v\\B    (by 1.7)) .

This, along with 4.11), yields

4.15) \\(I-P)T\\b^1,

\\f(I -P)\\bÚ1.    Q.E.D.

Hence, in order to prove stability, we need only verify condition (3) of Theorem

I for \\P(f + SY P\\B.

5. Proof of Main Theorem. Kreiss has shown in [2] that if the hypotheses of our

Main Theorem are valid, then (T + S — z)~l exists for |z| è 1, z 9* 1. Moreover, let

5.1) HeiS) = (f+S- zl)-1w(eil)

where v¡ = £r=-r+i k]p(z)w,. He has also shown that each kjv(z) is analytic in some

region |z| ^ 1 — p, p > 0, and that for any 5 > 0, there is an e > 0, with e < p

such that

5.2) |||M«)||| é c'(e)(l + I)1*"'1    forallzwith \z\ ^ 1 - e,

and c' > 0 independent of ô, j, v and z.\\    \\ denotes the norm of an n X» matrix.

We shall use these results to show that P(T + S — «7)_1P is a uniformly

bounded, analytic operator for \z\ a: 1 — e. It then follows that

5.3) \\P(f + S)nP\\B ^ c"(l - e/2)n

and we have stability. We shall consider

...     BP(T + S - zI^PB^v
5.4;

=    £    £ fj4B[t + S - zir'B-1 £    £    (v, Uii()f,eij\ fkeip) .
p=-r+I k=l \ 7-=l  y=_r+l /

Hence, for analyticity, it is sufficient that

5-5) £    £   (b[T + S - ¿r'TT1 £    £   Uiji, fkeipi)
t-l P=— r+l   \ 77=1 p=— r+1 /

be analytic.

Define the matrices Bffl by
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5.6) B-\eii) = ESw'e**.
k=0

From the properties of B, and the Cauchy integral formula, it is clear that there

is an estimate

5-7) 11 |fifex)| 11 g c'"(l - 8o)k   for 5o > 0, c'" > 0, and all k .

We must show that

5.8) £ fc,>(z)BfcS0,    îor -r + 1 ^ vo ̂  N, -r + 1 ^ j ^ N
'='0

converges uniformly for |z| > 1 — e> 1 — p, e > 0.

In 5.2), take 8 = 80 of 5.7). Then

, a, £ \\k3;(z)Biy-,J ^ c'(e) £ (1 + 5„) U~V'(1 - So)-»
o.y^ v=t'Q v=vo

^ c"/8o     if \z\ è 1 - € .

Thus the sum is the uniform limit of analytic matrices and is hence analytic.

Q.E.D.
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