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Abstract
Study Design.—Nonlinear systems analyses of trunk kinematics were performed to estimate
control of dynamic stability during repetitive flexion and extension movements.

Objective.—Determine whether movement pace and movement direction of dynamic trunk flexion
and extension influence control of local dynamic stability.

Summary of Background Data.—Spinal stability has been previously characterizedz in static,
but not in dynamic movements. Biomechanical models make inferences about static spinal stability,
but existing analyses provide limited insight into stability of dynamic movement. Stability during
dynamic movements can be estimated from Lyapunov analyses of empirical data.

Methods.—There were 20 healthy subjects who performed repetitive trunk flexion and extension
movements at 20 and 40 cycles per minute. Maximum Lyapunov exponents describing the expansion
of the kinematic state-space were calculated from the measured trunk kinematics to estimate stability
of the dynamic system.

Results.—The complexity of torso movement dynamics required at least 5 embedded dimensions,
which suggests that stability components of lumbar lordosis may be empirically measurable in
addition to global stability of trunk dynamics. Repeated trajectories from fast paced movements
diverged more quickly than slower movement, indicating that local dynamic stability is limited in
fast movements. Movements in the midsagittal plane showed higher multidimensional kinematic
divergence than asymmetric movements.

Conclusion.—Nonlinear dynamic systems analyses were successfully applied to empirically
measured data, which were used to characterize the neuromuscular control of stability during
repetitive dynamic trunk movements. Movement pace and movement direction influenced the control
of spinal stability. These stability assessment techniques are recommended for improved workplace
design and the clinical assessment of spinal stability in patients with low back pain.
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Neuromuscular control of spinal stability has been characterized in static, but not in dynamic
movement tasks. Stability is defined as the ability to maintain intervertebral and global torso
equilibrium, despite the presence of small mechanical disturbances and/or small neuromuscular
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control errors. Research indicates that 3 subsystems contribute to spinal stability.1 One is the
passive contributions from the spinal ligaments, discs, and bone. The second is the steady-state
active muscle recruitment contribution to spinal stability. Third is the neural feedback system
that includes active and voluntary responses. Biomechanical models describe how factors,
including muscle recruitment, spinal posture, and external load, contribute to the potential
energy of the musculoskeletal system,2-4 which is important because static stability is achieved
when the equilibrium posture of the spine is also a state of minimum potential energy.5

Although these models have been applied to data collected during movement tasks,6,7 they
ignore the role of kinetic energy. Therefore, when investigating the stability of dynamic
movements, existing models are limited by 2 factors. First, existing models do not yet account
for the energy of movement dynamics. Second, they ignore the role of the time-dependent
dynamic neural feedback for the control of spinal stability. Empirical estimates of stability are
an alternative to biomechanical modeling and may contribute valuable insight regarding control
of spinal stability during dynamic movement tasks.

Stability can be estimated from the time-dependent behavior of kinematic variance. Empirical
estimates of torso stability have been recorded while subjects maintained steady-state seated
balance on a wobbly chair.8 The equilibrium state during that study was a zerovelocity, upright
seated posture. However, small biomechanical or neuromotor disturbances continuously
perturb the system, causing kinematic variance. Consequently, torso posture and velocity were
rarely identical to the equilibrium state.9 The neuromuscular controller maintains postural
stability by actively working to return the disturbed posture toward the equilibrium state.10
Therefore, stability can be observed when the measured kinematics appears to be attracted
toward the posture of static equilibrium.11 A similar approach can be applied to record
stabilizing control of dynamic movements.

During repetitive dynamic trunk flexion-extension movements, it is reasonable to assume that
the kinematics of each cycle could be similar to every other cycle (i.e., the target trajectory).
12 Kinematic variance about this target trajectory is the manifestation of stochastic
disturbances and control errors during the movement process. At any given time, the
multidimensional kinematic variance can be represented as an n-dimensional sphere, where
the volume of the sphere describes the magnitude of the kinematic dispersion, and n is the
number of state variables.13 Measurable state variables include the trunk angles and velocities
in each recorded dimension. Neuromuscular response to the kinematic perturbations will cause
the movement dynamics to be attracted toward the target trajectory.

Therefore, as time (t) progresses, the n-dimensional sphere of kinematic variance evolves into
an ellipsoid, whose principle axes contract (or expand) at rates described by Lyapunov
exponents.14 One Lyapunov exponent exists for every movement dimension, which can be
arranged in order of most rapidly expanding to most rapidly contracting, λ>1 > λ2> ... >λn. A
system is stable when the sum of these exponents is negative (i.e., the rate of contraction is
higher than the rate of expansion). It is noteworthy that it is necessary to quantify the time-
dependent behavior of kinematic variability when investigating stability. However, calculation
of the full Lyapunov spectrum from experimental data is exceedingly difficult. These
calculations may be simplified greatly by realizing that 2 randomly selected initial trajectories
should diverge, on average, at a rate determined by the largest Lyapunov exponent, λMax.14
Calculation of λMax is relatively easy and can be used to investigate the role of movement
dynamics in neuromuscular control of spinal stability.

The goal of this study was to implement Lyapunov analyses to assess stabilizing control during
dynamic trunk movement. These analyses were used to test whether movement rate and
direction affect stability. Epidemiologic data suggest that the risk of low back injury is related
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to the dynamic movement rate during repetitive trunk flexion tasks.15,16 Therefore, we
hypothesized that during repetitive trunk flexion-extension movement, dynamic stability may
decrease with an increased pace of cyclic movement. Existing evidence further suggests that
the risk of low back injury is increased when trunk movements include nonsagittal movement
components.17 Thus, we also hypothesized that movements in the midsagittal plane may be
more stable than asymmetric movement trajectories (i.e., movements that include components
in both the sagittal and transverse planes).

Methods
Experimental Procedures. There were 20 subjects who performed repetitive dynamic trunk
flexion and extension movements. Subjects included 8 males and 12 females, with no
selfreported history of low back pain (Table 1). Participants provided informed consent
approved by the Virginia Tech institutional review board before participation in the study.

The experiment required subjects to perform continuously repeated trunk flexion and extension
movements (Figure 1). They were required to touch targets with their hands held together.
Targets were located at pre-specified locations similar to methods described by Thomas et
al.18 One target was placed at shoulder height in the anterior sagittal midline so that the target
could be reached when standing upright with the arms horizontally extended. A second target
was placed in the sagittal midline, 50 cm anterior to the knee. Subjects were required to touch
the upper target followed by the lower target and continuously repeat this motion throughout
the duration of each experimental trial. Asymmetric trials were recorded in which the upper
target was moved to the right and the lower target to the left to induce a nominal 45° axial
rotation of the torso at the upper and lower targets. Movements during these trials thus included
torso flexion and left twist.

Separate trials were conducted in which the targets were placed to require flexion and right
twist. Each target was touched synchronous with a periodic tone from a metronome to establish
the movement pace, 20 and 40 cycles per minute. To ensure 30 movement cycles per trial, the
slow paced trials were 90 seconds in duration, while the fast paced trials were 45 seconds in
duration. Although all movement cycles of each trial were recorded, only the middle 15 cycles
were analyzed to ensure steady-state movement behavior. Subjects were allowed to practice
the movements until they were comfortable with the movement trajectory and movement pace
before data collection of each trial. Experimental conditions were presented in randomized
order, with at least 2 minutes rest between trials.

Upper-body kinematic data were recorded from electromagnetic motion sensors that were
secured by double-sided tape over the vertebral processes of the T10 and S1 (Ascension
Technology Corp., Burlington, VT). Trunk angles were computed by 3-dimensional Euler
rotation matrices recorded from the T10 sensor, with respect to the S1 sensor at a sample rate
of 100 Hz. Following data collection, the kinematic data were filtered with a 10 Hz, low-pass,
second-order Butterworth filter in preparation for calculation of dynamic stability. The number
of data samples per cycle can influence the estimate of stability.19 Therefore, the data were
resampled in software to obtain 4500 data samples per 15 movement cycles. It is noteworthy
that this process provides a mean value of 300 samples per cycle on average, but cycle-to-cycle
variability in movement duration was retained. Expansion of kinematic variability in 1
dimension may be compensated by contraction in another dimension. Thus, stability analyses
were performed on the Euclidean norm (i.e., square root of the sum of squares) of the 3 trunk
angles recorded at each time.

Calculating Dynamic Stability. Local dynamic stability of the trunk flexion-extension
movement was computed from the maximum finite-time Lyapunov exponent, λMax. Complex
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dynamic systems must be represented with a higher number of dimensions than simple systems.
However, the recorded data were 1-dimensional, time-series, column vectors, x(t), representing
the Euclidean norm of the trunk angles. One typical method of creating an n-dimensional state-
space from scalar data is by method of delays,

where x(t) is the original scalar data of trunk movement, n is the number of reconstruction
dimensions, and Td is a constant time delay (Figure 2). This embeds information related to
finite-difference estimation of velocity, acceleration, etc. Several methods exist for calculation
of the reconstruction delay, Td. These methods include time delays estimated from the Average
Mutual Information function,20 the time it takes for the autocorrelation function to decrease
to a pre-specified fraction of its initial value,21 and time delays that maximize the space filled
by the n-dimensional reconstructed signal.19

There is no consensus on which method provides optimal results. To ensure that all trials were
analyzed similarly, a constant Td of 30 samples (10% of the length of the average cycle) was
used for all trials based on autocorrelation assessment described previously. The number of
reconstruction dimensions was determined from a Global False Nearest Neighbors
analyses14 and revealed that an embedding dimension of n = 5 was appropriate for the analyzed
data. False nearest neighbors are defined as sets of points that are very close to each other at
dimension n = k, but not at n = k + 1. This method incrementally increases n until the number
of false nearest-neighbors approaches zero.

Maximum finite-time Lyapunov exponents were calculated from the distance, di(t), between
nearest neighbors in the reconstructed state-space, Y(t). Nearest neighbors were found by
selecting data points from separate cycles that are closest to each other in the reconstructed
state-space (Figure 2). If repeated movement cycles were kinematically identical, then an
illustration of the trajectories would plot each cycle on top of the others. In this condition, the
distance between nearest neighbors, di(t), would be zero for all pairs of nearest neighbors, i.
However, in the empirically measured data, the distance between nearest neighbors, di(t), was
more than zero. Therefore, there are clearly kinematic disturbances and/or chaotic behaviors
observable in the data. The distance between all nearest neighbors was tracked forward in time,
t. Because the growth in the least stable dimension quickly dominates expansion of the n-
dimensional sphere of kinematic variance, randomly selected initial trajectories should diverge,
on average, at a rate determined by the largest Lyapunov exponent, λMax.14 Therefore, the
maximum Lyapunov exponent, λMax, was approximated as the slope of the linear best-fit line
created by the equation,

where represents the average logarithm of displacement, di(t), for all pairs of nearest
neighbors, i, throughout a time span, t = 0 to t = 1 cycles (Figure 3). Stability is thereby
calculated as λMax, which is the rate of divergence of initially neighboring trajectories.

Statistical analyses were performed to determine the effect of movement pace and asymmetry
on the neuromuscular control of dynamic stability. Preliminary analyses revealed no significant
differences in λMax during asymmetric right-to-left versus left-to-right trials for the number of
subjects studies (P = 0.437, F = 0.617). Therefore, data from the 2 asymmetric conditions were
pooled for statistical analyses. Independent variables of movement pace (slow, fast) and
asymmetry (midsagittal, asymmetric) were treated as within-subject effects in a 2-factor

Granata and England Page 4

Spine (Phila Pa 1976). Author manuscript; available in PMC 2006 November 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



repeated measures analysis of variance. Analyses were performed using commercial software
(Statsoft, Inc., Tulsa OK) using a significance level of α < 0.05.

Results
Maximum finite-time Lyapunov exponents, λMax, were calculated to estimate the
neuromuscular control of stability during repeated dynamic trunk flexion-extension
movements (Figure 4). A significant main effect for movement pace (P < 0.001, F[1,19] =
929.9) was observed. Mean values during repetitive trunk movement at 20 cycles per minute
were λMax = 0.397 (standard deviation [SD] 0.062), whereas when moving at 40 cycles per
minute λMax = 0.846 (SD 0.098). Recall that larger values of λMax represent more rapidly
diverging dynamics and are considered less stable. Results suggest the value of the λMax during
the fast trials were more than twice the level recorded during slow dynamic movement.
However, it would be incorrect to infer from this that the slow movement was twice as stable
unless the complete Lyapunov spectrum was computed. Nonetheless, it can be concluded that
the neuromuscular control of dynamic stability declined significantly with increased movement
rate.

A significant main effect for movement asymmetry was observed (P < 0.001, F[1,19] = 28.5).
Sagittally symmetric movements were associated with higher λMax than asymmetric trials,
mean 0.665 (SD 0.256) and mean 0.579 (SD 0.218), respectively. A pace-byasymmetry
interaction (P < 0.018, F[1,19] = 6.69) revealed that the difference between slow and fast
conditions was attenuated in the asymmetric movement (Figure 4). Nonetheless, the difference
between slow and fast movements was statistically significant (P < 0.001) in both symmetric
and asymmetric movement conditions.

Discussion
Musculoskeletal low back injuries are often associated with dynamic trunk flexion.15 Studies
show that movement velocity influences torso muscle recruitment and cocontraction, thereby
contributing to higher spinal load during fast paced lifting movements than during slow
movements.22 It is unclear why cocontraction might be increased during fast movement.
However, static23,24 and quasi-static25 analyses of lifting exertions suggest that cocontraction
may be recruited, in part, to augment spinal stability. Reduced spinal stability combined with
increased spinal compression may contribute to the risk associated with dynamic trunk flexion.
Although spinal stability has been estimated in static conditions,4 we are unaware of any
previous studies to quantify the neuromuscular control of stability during dynamic trunk
movements. Therefore, the goal of this study was to determine whether the rate of movement
influences stability during dynamic trunk flexion and extension tasks.

Neuromuscular control of stability declined with movement pace. Several factors may
contribute this behavior. First, momentum increases with movement velocity, thereby requiring
more neuromuscular effort to control and attenuate kinematic disturbances. Second, torso
muscle activity and cocontraction increase with trunk velocity and acceleration.26,27
Modulation of muscle forces when muscle activity is high requires the recruitment of large
motor units, thereby limiting finemotor control during fast paced movements. Finally, fast
dynamic movements reduce the allowable time for neuromuscular corrections, which suggests
increased delay in the active recruitment and neural feedback relative to the movement
trajectory. Feedback delay is well recognized as a destabilizing factor in control systems.28
The Fitt law of motor control29 suggests that higher kinematic errors may be expected when
movement pace is fast. Therefore, it is not surprising that neuro-control of dynamic stability
was compromised during the fast dynamic movement tasks.
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Movements in the midsagittal plane were less stable than when moving in a combined sagittal
and twist trajectory. This contradicted our second hypothesis but may not be surprising when
one considers the neuromuscular control of these tasks. Published surface electromyogram
measurements suggest higher recruitment and coactivation of the internal and external oblique
muscle groups during asymmetric tasks.30,31 This recruitment is necessary to control the
asymmetric tasks, whereas activation of these muscles is less critical when moving in the
midsagittal plane. Todorov and Jordan32 showed that an optimal movement strategy may allow
variability in redundant, task-irrelevant dimensions (e.g., kinematic variability in the transverse
plane during midsagittal movement). Simultaneous movement in both the sagittal and
transverse planes imposed constraints, increased control was required, as documented by
smaller values of λMax.

Further research is necessary to investigate how asymmetric trajectories influence the control
of dynamic movement. Specifically, the asymmetric movement in our protocol resulted in
movements that crossed the midsagittal plane (i.e., each movement included rotation from left
twist to right twist postures and vice versa). Moreover, the movement tasks did not require
handling of an external load. Representation of epidemiologic results should investigate
stability when the movement is confined to the left half-plane or right half-plane and with a
load in the hands. Nonetheless, results show that neuromuscular control patterns associated
with asymmetric movement trajectories significantly influence dynamic stability.

Understanding the meaning of the λMax coefficient is important when interpreting the results.
During static postural tasks, the neuromuscular response to a kinematic perturbation will cause
the system to return toward the equilibrium state.10 Likewise, during dynamic torso flexion
and extension tasks, the stabilizing neuromuscular control system will cause the movement
dynamics to be attracted toward the target movement trajectory. Recall that the existence of
an attractor trajectory representing a globally stable system is guaranteed when the sum of the
complete spectrum of Lyapunov exponents is negative (i.e., the rate of kinematic error
contraction is higher than the rate of expansion).

Clearly, in our study, the torso was stable for all experimental conditions because there were
no unbounded movements or injuries. Therefore, we conclude that the sum of exponents was
negative. However, the goal of the study was to determine whether specific dynamic movement
conditions were more or less stable than others. The maximum Lyapunov exponent, λMax,
characterizes the maximum time rate of expansion for the n-dimensional sphere that describes
kinematic variability. In other words, this value represents the least stable aspect of the
movement dynamics.14

Consequently, it was logical to investigate the maximum Lyapunov exponent, λMax, because
it provides insight into the dynamic behavior of the musculoskeletal system, and it is
mathematically feasible to estimate this coefficient from empirical data. We hope to pursue
further studies that will attempt to estimate the full Lyapunov spectrum to provide more insight
into the neuromuscular control of the spine. Moreover, future studies should investigate the
nature of the maximum Lyapunov exponent, λMax, in individual subjects. It represents local
instability in a particular direction, thereby providing potential insight into the weakest control
direction. It may be useful to identify which kinematic dimensions are well controlled and
which are poorly controlled in individual patients for optimized prophylactic intervention or
for design of individual-specific injury rehabilitation.

An additional interesting result was the reconstruction dimension n = 5. The reconstruction
dimension provides insight into the complexity of the neuromuscular dynamics. Recall that
the kinematics was represented as a 1-dimensional Euclidean norm vector of the trunk angles.
Nonetheless, analyses revealed that the data must include at least 5 reconstructed dimensions
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to represent adequately the dynamic system. We would not have been surprised with n = 3
when one recognizes that the trunk moved in 3 dimensions. A value of at least n = 3 is predicted
by Takens’ theorem.33 However, the requirement of larger values (n = 5) suggests that
multidimensional spinal curvature may have contributed to the results, which may indicate that
the analyses were sensitive to effects from spinal lordosis movement in addition to the global
trunk dynamics. Previous studies indicate that neuromuscular deficits in patients with low back
pain are revealed most effectively in complex dynamic tasks.34 Whether the complexity of
neuromuscular control changes with movement task design, and whether it is related to injury
and efficacy of rehabilitation should be investigated in future research.

Conclusions
Nonlinear dynamic systems analyses were applied to empirically recorded repetitive dynamic
trunk movements. These analyses characterize the neuromuscular control of stability during
dynamic movements. Results show that both movement pace and movement asymmetry
influence the control of spinal stability. Continued development of these stability assessment
techniques are recommended for improved workplace design and clinical assessment of spinal
stability in patients with low back pain.

Key Points

• Nonlinear dynamic systems analyses can be used to quantify neuromuscular control of
spinal stability of repetitive dynamic torso flexion movements.

• Lyapunov exponents from measured trunk kinematics show that stability declines with
the rate of flexion-extension movement and is influenced by movement asymmetry.

• Embedding dimensions higher than expected show that the movement dynamics in the
trunk are more complex than previously considered.
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Figure 1.
Experimental setup of the targeted movement task.
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Figure 2.
Example of a reconstructed movement trajectory with n = 3 state-space dimensions. Although
the movement data were analyzed with n = 5, 3 embedding dimension is the largest that can
be illustrated.
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Figure 3.
Typical plot of the state-space expansion with time. The dashed line represents the best-fit line
between t = 0:1 cycles (with a cycle length of approximately 1.5 seconds for this trial). The
slope of this best-fit line was used to represent the state-space expansion, i.e. local dynamic
stability of the task.
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Figure 4.
λMax values were greater during fast paced movement trials than slow paced cyclic movement.
Values were also greater during asymmetric movement tasks than during sagittal midplane
movements. Larger values of λMax represent more chaotic, i.e. less stable, movement dynamics.
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Table 1
Subject Demographics and Anthropometry

Subjects

Male Female

No. 8 12

Mean age (SD) 23.8 ys (2.3) 21.5 ys (2.6)

Mean height (SD)* 183.5 cm (3.8) 164.5 cm (5.3)

Mean body mass (SD)* 83.9 kg (12.8) 61.2 kg (7.5)

SD indicates standard deviation.

*
Significant difference between genders.
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