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Abstract: Elastomeric isolation bearings are required to be stable at high shear strains, which occur during strong earthquakes. Hence
rigorous determination of the critical axial load during design is important. Currently, the critical load is determined using the small
displacement Haringx theory and modified to account for large shear strains by an approximate correction factor. The objective of this
study is to experimentally determine the effect of horizontal displacement or shear strain on critical load and to study the validity of the
approximate correction factor. Experiments were conducted on a series of elastomeric bearings with low shape factors. Test procedure al
test results are presented in detail. It is shown that the critical load decreases with increasing horizontal displacement or shear strain. It
also shown that substantial critical load capacity exists at a horizontal displacement equal to the width of the bearing and is not zero, a
predicted by the correction factor. It is further shown that the approximate formula is not conservative at smaller displacements and overly
conservative at larger displacements. The critical loads obtained from experiments are compared with results from finite element analyse
and nonlinear analytical solutions; the comparisons indicate that the effect of large horizontal displacements on the critical load can be
reliably predicted.
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Introduction (Buckle and Kelly 1986; Koh and Kelly 1986an be used to
establish the effective shear rigidity and effective flexural rigidity.
An elastomeric isolation bearing consists of a number of rubber

layers and steel shims, bonded in alternating layers, to produce a (CAJer=GA(Ilr) )
vertically stiff but horizontally flexible isolator. This flexibility (EDeg=E1(I/1)) ®)
lengthens the fundamental period of the isolated building and
reduces the seismic forces in the superstructure. But this reducWherel =combined height of the rubber layers and steel plates,
tion may be accompanied by large horizontal displacements in the€xcluding the top and bottom platels;=total thickness of all
isolators, which, together with their lateral flexibility, may lead to rubber layers-t (t=rubber layer thicknegsA=bonded rubber
significant reduction in their critical axial loa@uckle and Kelly ~ area; and =moment of inertia of the bearing about the axis of
1986; Koh and Kelly 1986; Buckle and Liu 1994; Nagarajaiah bending,
and Ferrell 1999

The design approach used currently to compute the critical
load, P, at small displacements is to use Haringx's theory where Ey=elastic modulus of rubber, which is approximately

E,=Eq(1+0.7425?) )

(1948, 1949ap equal to four times the shear modul@,andS, the shape factor,
(GAY 5 is defined as
eff E
cro:T[ 1+4m—1 (1) _ loaded area of rubber layer .
" force-free area of rubber layer )
where Pe=m2(El) /1% (GAS)=effective shear rigidity and

(El) ¢ is the effective flexural rigidityE is the bending modulus; Currently, the effect of large horizontal displacements is ac-

and G is the shear modulus of rubber. The following relations counted for approximately by reducing the value of the critical
load, P, using a correction factor equal to the ratio of effective
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whereP=axial load;K} = horizontal stiffness at zero axial load,
andK,,=modified horizontal stiffness.

(107)

rubber layers
5 — steel shims end plotE\
1 0777, /\ 7

The experimental study presented in this paper involves tests 7
on elastomeric bearings in order to investigate the variation of .
critical load with horizontal displacement or shear strain. Test ~4a
procedure and test results are presented in detail. The validity of l % 7) % 7 % )
the approximate result in Ed6) is evaluated. Comparisons of
experimental results with ADINA finite element analysis results 100 series 200 series 300 series

of Liu et al. (personal communication, 20Dare presented. In a
companion paper, Nagarajaiah and Fer(@®99 developed a
nonlinear analytical model and verified it using the experimental
results presented in this study. The comparisons with the results
of the nonlinear analytical model are also presented.

Bearings Tested

The multilayer elastomeric bearings tested consist of natural rub-
ber layers and steel shims bonded in alternating layers as shown
in Fig. 1(a). A total of 12 bearings were tested. Nine of the square
bearings were five in. by five in. (127 mx127 mm) in plan.
Three of the square bearings were ten in. by ten in. (254 mm

(@)

(400 series) (500 series) (600 series)

Test Direction — |

[Actuotor (o]

Reaction Frame ——

X 254 mm) in plan. Bearing properties are shown in Table 1 and
Fig. 1(a); the 10 in. bearing properties are shown in parentheses.
All bearings had bolted connections at the top and bottom to
prevent overturning. The rubber layer thickness was varied in
order to study bearings with different shape factors. This thick-
ness is typically less than 0.5 i(12.7 mn); However, four of the
bearing series tested 00, 200, 400, and 5QChad layer thick-
nesses greater than or equal to 0.5(&2.7 mn), to study the
effect of low shape factor or increased slenderness. The 300 series
and 600 series of bearings had 0.25 (.35 mm rubber layer
thickness. The rubber shear modul@s,was estimated to be 0.2
ksi (1.38 MPa at 0% shear strain and 0.136 K6.938 MPa at
100% shear strairiNagarajaiah and Ferrell 1999The rubber
cover was 0.125 in(3.18 mm) thick for all bearings. The steel
shim thickness was varied in order to maintain the same overall
height. All bearings tested had 1 i(25.4 mn) thick end plates.

(b)

Test Setup

The elastomeric bearings were tested using the uniaxial single
bearing test facility at the Earthquake Engineering Research Cen-,

Fig. 1. (a) Details of elastomeric bearings testéb); uniaxial single
bearing test rig; andc) 10 in. bearing displaced to 0.6B in test rig

ter at the Univ. of California at Berkeleysee Figs. (a and b].
The test setup permitted simultaneous application of vertical and

horizontal loads. The two vertical actuators on either side of the Test Procedure
bearingSee Fig. b)] generated the vertical load. During testing,
the load in each actuator was adjusted to maintain the requiredrifteen channels were used to record and monitor data collected
vertical load taking into account the overturning moment in the at a sampling frequency of 50 Hz. The test sequence involved five
bearings and the increasing inclination of actuatfnem the ver- cycles of scrag test, five cycles of shear test 1, monotonic stability
tical) as the horizontal displacement increases. A similar correc- test, and five cycles of shear test 2. The testing procedure is sum-
tion was also necessary to the horizontal actuator with increasingmarized below. For a predetermined shear displacemertfor
shear displacements. example, 0.2B, B-width of the square bearifnghe following

The test was run with the horizontal actuator under displace- sequence of tests were performed:

ment control and the vertical actuator under force control, i.e., the 1.
horizontal displacement was held at a specified value while the
vertical load was increased until critical load conditions occurred.
For the purpose of this experiment, a bearing was considered to2.
be in critical state when the horizontal force became zero or nega-
tive. Horizontal forces and vertical displacements were therefore
monitored throughout the test. This protocol assured the safety of3.
the test system as critical conditions were approached.
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Scrag testCyclic tes}

 Constant axial loadP =P, applied,

* Five cycles of shear displacementu, applied.

Shear test 1Cyclic tes})

* A constant axial load®= P, applied,

* Five cycles to shear displacementy, applied.
Stability/critical load testquasistatic te$tas shown in Figs.
2(aand b



Table 1. 5 and 10 in. Elastomeric Bearing Detdils

Thickness Thickness
Nominal size Number of of rubber of steel

Bearings BXxB’xHP rubber layers shim Shape
tested (in.Xin.xin.) layers (In.) (In.) factor
101, 102, 103 % 5X4.375 3 0.75 0.0625 1.67
201, 202, 203 X 5X4.375 4 0.50 0.1250 2.50
301, 302, 303 % 5x4.385 8 0.25 0.0550 5.00

401 10x10x 4.375 3 0.75 0.0625 3.33

501 10x10x 4.375 4 0.50 0.1250 5.00

601 10x10x4.385 8 0.25 0.0550 10.00

8 in.=2.54 mm.
bB=width of the square bearin@®’ = breadth;H = height of the bearing.

* Axial load P= P, applied.P,=5, 10, 20, 80, 80, 80 kip for ~ procedure developed by Nagarajaiah and Fe(i€lB9 based on
100, 200, 300, 400, 500, and 600 series, respectively equilibrium paths, the unconstrained critical loads were deter-

[1 kip=4.448 kN], mined [Nagarajaiah and Ferrell 1999; Liu et #personal com-
* Predetermined initial displacement, applied and held, munication(2001)] and it is these results which are presented
* The axial load,P, increased monotonically until the hori-  and discussed in this paper.

zontal force F, became negative, The axial load—horizontal displacemer®~u, variation is
* The horizontal displacement brought to zero by unloading. shown in Fig. Zc) as a function of shear force for bearing 302.

4. Shear test 2Cyclic tes} The equilibrium path, a smooth curve passing through discrete

* Constant axial load®= P, applied, points, shown in Fig. @), at each shear force level, passes
* Five cycles to shear displacementy, applied. through a limit point, which is the critical load. In Fig(Q the

Steps 1-4 were repeated for the same bearing with a differentequilibrium paths are unstable past the limit poiNagarajaiah
initial displacementu, of 0.28, 0.48, 0.8, 0.88, 1.0, and and Ferrell 1999 hence, the critical load must decrease with
1.2B. The scrag and shear tests were essentially the same, exceplncreasing horizontal displacement. The critical lo&],, ob-

that the purpose of the scrag test was to precondition the bearingained from Fig. 2c) is shown in Fig. 8a) as a function of hori-
until steady state bearing properties were achieved. The sheagontal displacement. The shear force—horizontal displacement

tests were repeated to observe changes in bearing properties, bgyrves in Fig. &) can be used to verify the critical load, since, at
fore and after each stability test. While the scrag and shear testsp the horizontal tangential stifiness goes to zero.

were conducted under constant axial load and cyclic shear dis- The shear force—horizontal displacemefit-u, curves are
placement, the quasistatic stability tests were conducted with con-shown in Fig. 3b) as a function of axial load for bearing 302.
stant displacement and monotonically varying axial load. Two important features to be noted in FigbBare as follows: the
F—u curves pass through a maximum as the horizontal displace-
ment increases, under constant axial load; the shear force and
horizontal displacement at which the maximum occurs decrease
with increasing axial load. In Fig.(B), the horizontal tangential
stiffness,K},, decreases with increasing axial load and horizontal
displacement.

Test Results

The results of the critical load tests are highlighted in this paper.
The time histories of horizontal displacement, axial load, P,

and shear forcefr, are shown in Fig. @). From Fig. Za) it is
evident that as the axial forcP, is increased, the shear fordg,
decreases and becomes negative, while the horizontal displacefvaluation of Test Results
ment remains at- u.

Fig. 2(b) shows the variation of shear forde, with increasing ~ In Fig. 3@), it is evident that significant reduction P, occurs at
axial load,P, for each test performed at a predetermined displace- horizontal displacements equal to the width of the bearig,
mentu=0.28, 0.4B, 0.68, 0.88, and 1.8, for bearing 302. It is =5in. The error bars in Fig.(d) represent the variability of the
shown that, for a given displacement, as the axial loadP, is recovered test results; since, the tests were performed only at 1, 2,

increased the shear force decreases until it becomes negative. 3, 4, and 5 in. horizontal displacements and the points in between
these displacements were recovered by curve fitting techniques.
The moment—horizontal displacement]—u, curves are
shown in Fig. 4a) as a function of axial load for bearing 302. The
In the preliminary evaluation of test results the critical loads were moment shown is an approximate moment, which was recovered
estimated using the data in Figh2 and following procedure: the  from loadcell measurements. Since rotation measurements were
value of the axial load at which the horizontal load is zero was not recorded, moment—rotation curves could not be generated. In
defined as the critical load for that shear displacement. This pro- Fig. 4@ the M —u curve increases with increasing axial load—a
cedure gives “constrained” critical loads, in that the bearing is trend typically observed in moment—rotation curves of elasto-
held against further horizontal displacements as the critical load is meric bearings—and hence, moment resisting capability increases
approachedBuckle and Liu 1994 These boundary conditions  with increasing axial load. The moment is a nonlinear function of
are not typical of those used in practice where the horizontal displacement.
displacement is unconstrained and free to increase as necessary. The height reduction due to horizontal displacement of the
Upon further analysis of the test data, using a new and accuratebearing 302 is shown in Fig(#), as a function of axial load. It is

Determination of Critical Load from Test Results
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Fig. 3. Stability test:(a) Critical load as function of horizontal dis-
placement andb) shear force—displacement curves as function of
axial load

Fig. 2. Stability test:(a) Force, P, F, and displacement, u, time his-
tories; (b) Axial load—shear force variation as function of displace-
ment, u; and(c) Axial load—horizontal displacement variation as a
function of shear force, F
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evident from Fig. 4b) that the height reduction increases as the
horizontal displacement and axial load increase.

The variation of critical loadP,, with respect to horizontal
displacement for the bearings 103 and 201 is shown in Figs. 5
and B. Again, it can be observed from Figs(aand b that
critical load decreases with increasing horizontal displacement.
However, in these two sets of bearings the decreasg,irs not
as significant as in bearing 302. The shear force—horizontal dis-
placementf—u, curves are shown as a function of axial load in
Figs. §a and . The severe nonlinearities are clearly evident in
Figs. 6a and B, similar to bearing 302.

The height reduction due to horizontal displacement of the
bearings 103 and 201 is shown in Figéa and B, as a function
of axial load. Again, it is evident that the height reduction in-
creases with increasing horizontal displacement and axial load.

The shear force—horizontal displacemeRt-u, curves are
shown as a function of axial load in Fig. 8 for 10 in. bearings 401,
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of axial load andb) height reduction due to horizontal displacement Fig. 5. Stability test: Critical load as function of horizontal displace-
as function of axial load levels for bearing 302 ment(a) bearing 103 andb) bearing 201

where ! W=strain energy density per unit original volum@y,

501, and 601. The critical load variation B,—u curves could ~ =hydrostatic work termyl;=invariants given in terms of the
not be obtained from test results for 401, 501, and 601 seriescomponents of the Cauchy—Green deformation tensor; @Gnd
bearings because the bearings were not loaded to such high level@ndC,=material constants. Modified for@ADINA 1999) of Eq.
of axial load due to test setup limitations. From Fig. 8, a similar (8) used for displacement/pressure formulation is

trend as in 5 in. bearings is observed. I)V_\/= C1(4d1—3)+Cy(L,— 3) + 1/2Kk(1 J3—1)2 9)

wherelJ; =reduced invariants.
Finite Element Analysis An incremental nonlinear analysis with an updated Lagrangian
formulation was used, wherein, all kinematic nonlinearities, large
Liu et al. (2002 have studied the stability of the elastomeric bear- displacements/rotations and large strains were accounted for.
ings tested in this study, using the ADINA999 finite element Newton—Raphson iterations were used in which both nodal point
program. The Mooney—Rivlin material model suited for rubber displacements and pressure variables were updated incrementally
undergoing large strains was adopted. In the Mooney—Rivlin during each iteration. In order to minimize the computational ef-
model (ADINA 1999), it is assumed that the bulk modulus is fort, a plane strain restriction was imposed and the bearings were
several thousand times as large as the shear modulus of rubbemodeled as strip bearingef unit breadth. The boundary condi-
which is almost incompressible; this assumption is incorporated tions imposed were appropriate for plane strain condition. Also,
by removing the restriction that the invarigfit=1 and includ- fixity at the bottom plate and the top plate, free to translate hori-
ing the hydrostatic term in the strain energy function to obtain ~ zontally and vertically but restrained against rotation, were mod-
. . . . eled. The material properties were similar to the tested bearings:
oW=C1(ol1=3)+Ca(gl2=3) + Wh(ola), 8 shear modulusG=0.136ksi (0.938 MPa, bulk modulus K
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Fig. 6. Stability test: Shear force—displacement curves as function of Fig- 7. Stability test: Height reduction due to horizontal displace-
axial load(a) bearing 103 andb) bearing 201 ment as function of axial load leve(s) bearing 103 andb) bearing

201

=408, 420 ksi(2816 GPa Poisson’s ratioy=0.499667, and

steel shim properties were Young’'s modullis= 30,000 ksi displacement values were obtained. Complete details of the finite
(206.85 GP3g yield stressy, =44 ksi(303.38 MP#g, strain hard- element model and analysis results can be found in Liu et al.
ening modulusE;=1,500ksi(10.35 GP3 and Poisson’s ratig (2002.

=0.2. The parameter<;=0.0424ksi (0.292 MPa and C,
=0.0256 ksi (0.177 MPa were used for the Mooney—Rivlin
model.

The stability of the bearings was determined by the following The variation of normalized critical load with normalized hori-
procedure involving equilibrium path@agarajaiah and Ferrell ~ zontal displacement computed using the ADINA finite element
1999. The bearings were first deformed in shear to a predeter- program is presented in Figs. 10 and 11, for the 100, 200, 300 and
mined shear displacement by means of a constant shear force, a400, 500, 600 bearing series, respectively. The results from the
shown in Fig. 9. Then, additional shear displacements were moni-nonlinear analytical model developed by Nagarajaiah and Ferrell
tored as the axial load, in the form of vertical pressure at the top (1999 in a companion paper are also shown for the same set of
surface of the bearing, shown in Fig. 9, was monotonically in- bearings. The comparisons with ADINA results for 100 and 400
creased up to the limit point of the equilibrium path. The equilib- series bearings are not shown, as reliable results could not be
rium path past the limit point could not be traced as the incre- obtained due to convergence problems experienced in the finite
mental solution failed. The critical load is the axial load at the element solution for these bearings. The critical load at a given
limit point of each equilibrium path(Nagarajaiah and Ferrell ~ shear displacement is normalized with respect to the critical load
1999. This procedure was repeated for increasing values of initial at zero-shear displacement. Similarly, the horizontal displacement
shear displacement; the corresponding critical load—horizontal is normalized with respect to the width of the bearing. This is

Evaluation of Analysis Results
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necessary since in the finite element analysis, strip bearings of
unit breadth were analyzed under plane strain condition. Hence,
the results cannot be compared directly since the actual breadth of
the bearings is either 5 if127 mm or 10 in. (254 mm). The
comparison in Figs. 10 and 11 indicate good agreement for both 5
in. (127 mm and 10 in.(254 mm bearings with different shape
factors. The reduction in critical load with increasing horizontal
displacement is captured in both the analytical model results and
the ADINA results. The comparisons indicate that the effect of
large horizontal displacements on the critical load can be reliably
predicted. It is worth noting that a two degree of freedom nonlin-
ear analytical mode{Nagarajaiah and Ferrell 1998an capture

the complex nonlinear behavior adequately as compared to the
finite element model.

It is evident from the results in Figs. 10 and 11 that substantial
critical load capacity exists at a horizontal displacement equal to
the width of the bearing and is not zero, as predicted by the
correction factors used in design to account for large shear dis-
placements. These factors are not conservative at smaller dis-
placements and overly conservative at larger displacements.

It is also important to note that 200 series bearings with shape
factor, S=2.5, and rubber layer thicknesss0.5in. (12.7 mn)
exhibits a similar reduction in critical load with horizontal dis-
placement, as compared to 500 series bearings 8#th, andt
=0.5in.(12.7 mm). A similar observation can be made when the
results of 100, 300 series bearings and 400, 600 series bearings
are compared. Hence, the rubber layer thickness seems to have
stronger influence than the shape factor on the decrease in the
critical load with horizontal displacement. This same observation
may be made from the data in Table 2. In this table the rati®pf
(atu=B) to P, (atu=0) is given for each of the bearings. These
data are obtained from Figs. 10 and 11, and based on analytical
results for series 400 from Nagarajaiah and Fef909. Again
it may be seen that the critical load ratiowat B, decreases with
decreasing layer thickness. It might also be said that this ratio
decreases with increasing shape factor but the trend is inconsis-
tent. There is a stronger relationship between critical load ratio
and layer thickness than with shape factor.

Conclusions

Experiments performed on a series of elastomeric bearings have
been presented. Tests were performed with specific objectives of
finding the effect of horizontal displacement or shear strain on the
critical load and to evaluate the existing design approaches. Ana-
lytical predictions were made.
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§0_6. S.o | 5. Substantial critical load capacity exists at a horizontal dis-
% . placement equal to the width of the bearing and is not equal
;__:eo.s» ) to zero, as predicted by the correction factors used in design;
20_4. N 1 6. The correction factors are not conservative at smaller dis-
@ e placements and overly conservative at larger displacements;
=0.3 N 1
g _ and
802 NN 1 7. The rubber layer thickness seems to have greater influence
01 : | than the shape factor on the decrease in the critical load with
' _ horizontal displacement.
O i L i 4 il
0 0.2 0.4 0.6 0.8 1
Normalized Horizontal Displacement: u/B
Fig. 10. Critical load as function of horizontal displacement Table 2. Critical Load Ratios ati=B
Shape Rubber layer Critical load
Bearing factor thickness ratio
series S t Pe/Pero
The conclusions based on the test results and the analysis re- 100 1.67 0.75 0.59
sults are as follows: ‘2188 ggg 8'23 8'22
1. The critical load decreases with increasing horizontal dis- 500 5'00 0'50 0.28
placement or shear strain; 300 5'00 0'25 0'12
2. The horizontal stiffness decreases with increasing axial load : : :
600 10.00 0.25 0.07

and horizontal displacement;
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Dissipation and Contrgl ATC-17-1, Applied Technology Council,
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