STABILITY OF EQUIVARIANT SMOOTH MAPS

BY V. POÉNARU

Communicated May 6, 1975

This research announcement is a summary of a paper which will appear elsewhere [5], and which continues the program started in [4].

1. We consider a compact Lie group G and smooth compact G-manifolds X and Y. By $C^{\infty}_{G}(X, Y)$, $\text{Diff}_{G}(X)$, $\text{Diff}_{G}(Y)$ we denote the C^{∞} , G-equivariant mappings $X \to Y$, respectively, diffeos of X or diffeos of Y.

There is a natural group action

$$\operatorname{Diff}_{G}(X) \times \operatorname{Diff}_{G}(Y) \times C^{\infty}_{G}(X, Y) \xrightarrow{\Phi} C^{\infty}_{G}(X, Y),$$

and for each $f \in C^{\infty}_{G}(X, Y)$, we define the corresponding orbit-map

$$\operatorname{Diff}_{G}(X) \times \operatorname{Diff}_{G}(Y) \xrightarrow{\Phi_{f}} C_{G}^{\infty}(X, Y).$$

We consider the G-bundles TX, TY, f^*TY and their "invariant sections" $\Gamma^{\infty}(TX)^G$, $\Gamma^{\infty}(TY)^G$, $\Gamma^{\infty}(f^*TY)^G$. (These are modules over the corresponding rings of G-invariant functions.)

As in the usual case [3], [6] we have linear mappings

$$\Gamma^{\infty}(TX)^{G} \xrightarrow{\beta_{f}} \Gamma^{\infty}(f^{*}TY)^{G}$$

$$\Gamma^{\infty}(TY)^{G} \xrightarrow{\alpha_{f}} \Gamma^{\infty}(f^{*}TY)^{G}$$

defined in a natural way.

By definition, f is infinitesimally stable if $\alpha_f + \beta_f$ is surjective. By definition, f is stable if Image Φ_f is a neighbourhood of $f \in C_G^{\infty}(X, Y)$. With these definitions we have the

STABILITY THEOREM. Let $f \in C^{\infty}_{G}(X, Y)$ be infinitesimally stable. Then:

(i) Whenever Z_1 is the germ of a metrizable or compact topological space, Z_2 the germ of a smooth finite dimensional manifold, and $\psi: Z_1 \times Z_2 \rightarrow C_G^{\infty}(X, Y) = C^{0,\infty}$ -germ of a map sending the base points to f, there is a germ of a $C^{0,\infty}$ map $\Psi: Z_1 \times Z_2 \rightarrow \text{Diff}_G(X) \times \text{Diff}_G(Y)$ sending the base points to (id X) × (id Y) and such that

AMS (MOS) subject classifications (1970). Primary 58C25.

Copyright © 1975, American Mathematical Society

1125

$$\begin{array}{c} \operatorname{Diff}_{G}(X) \times \operatorname{Diff}_{G}(Y) \\ & \swarrow \\ & \swarrow \\ Z_{1} \times Z_{2} \xrightarrow{\psi} C_{G}^{\infty}(X, Y) \end{array}$$

is commutative.

(ii) There is a neighbourhood $f \in N \subset C^{\infty}_{G}(X, Y)$ such that every $f' \in N$ is also infinitesimally stable

(iii) f is stable.

The proof relies heavily on the work of J. Mather [2], [3] (which is generalized by this theorem) and of G. Schwarz [7].

2. Let $G \xrightarrow{\psi} \operatorname{Aut}(V)$ be a linear representation of the compact Lie group G.

Let $x \in V$ be the current point of V and $R[x]^G \subset R[x]$ be the algebra of G-invariant polynomials. According to a classical theorem of Hilbert [1], [8] we can always choose a *finite* system $(\rho_1, \ldots, \rho_k) = \rho \subset R[x]^G$ of algebra generators of $R[x]^G$. We shall attach to the representation (G, ψ) the number

$$\operatorname{ord}(G, \psi) = \min_{\rho} \left(\max_{i} \operatorname{deg} \rho_{i} \right) \in Z^{+}.$$

Suppose now X is a (not necessarily compact) G-manifold (G compact). By the slice-representation we have a naturally defined function on the space of orbits $X/G \xrightarrow{\text{ord}} Z^+$.

One of the technical ingredients occurring in the context of the stability theorem is the following

SEMICONTINUITY LEMMA. For every orbit $\{Gx\} \in X/G$ there exists a neighbourhood $\{Gx\} \in W \subset X/G$, such that, for any $\{Gx'\} \in W$, one has

$$\operatorname{ord}(Gx') \leq \operatorname{ord}(Gx).$$

This might be useful in the study of deformations of group actions suggested by Thom.

BIBLIOGRAPHY

1. J. Dieudonné and J. B. Carrel, Invariant theory, old and new, Advances in Math. 4 (1970), 1-80. MR 41 #186.

2. J. Mather, Stability of C^{∞} mappings. I. The division theorem, Ann. of Math. (2) 87 (1968), 89-104. MR 38 #726.

3. — , Stability of C^{∞} mappings. II. Infinitesimal stability implies stability, Ann. of Math. (2) 89 (1969), 254-291. MR 41 #4582.

4. V. Poénaru, Déploiement des fonctions G-invariantes (to appear).

5. ------, Stabilité structurelle equivariante. I, II (to appear).

6. -----, Analyse différentielle, Lecture Notes in Math., vol. 371, Springer-Verlag, Berlin and New York, 1974.

7. G. Schwarz, Smooth functions invariant under the action of a compact Lie group, Topology 14 (1975), 63-68.

8. H. Weyl, The classical groups, Princeton Univ. Press, Princeton, N. J., 1939. MR 1, 4:

DEPARTEMENT DE MATHÉMATIQUES, FACULTÉ DES SCIENCES D'ORSAY, 91-ORSAY, FRANCE License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use