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This research announcement is a summary of a paper which will appear 
elsewhere [5], and which continues the program started in [4], 

1. We consider a compact Lie group G and smooth compact G-manifolds X 
and 7. By CQ(X, Y), DiffG(T), DiffG(7) we denote the C°°, G-equivariant map
pings X —• Y, respectively, diffeos of X or diffeos of Y. 

There is a natural group action 

DiffG(X) x DiffG(F) x C£(X, Y) -^> C%(X, Y), 

and for each ƒ E CQ(X, Y)9 we define the corresponding orbit-map 

DiffG(JT) x DiffG(7) -£-> C£(X, Y). 

We consider the G-bundles TX, TY9 f*TY and their "invariant sections" 
r°°(7T)G, T°°(TY)G

9 Y°°{f*TY)G. (These are modules over the corresponding 
rings of G-invariant functions.) 

As in the usual case [3], [6] we have linear mappings 

r~(TX)G ^Jlf 
j ^ * r°°(/*rr)G 

defined in a natural way. 
By definition, ƒ is infinitesimally stable if ay. + /L is surjective. 
By definition, ƒ is stable if Image <ïy is a neighbourhood of ƒ G CQ(X, Y). 
With these definitions we have the 

STABILITY THEOREM. Let f G CQ(X, Y) be infinitesimally stable. Then: 
(i) Whenever Zx is the germ of a metrizable or compact topological space, 

Z2 the germ of a smooth finite dimensional manifold, and i//: Zt x Z2 —• 
CQ(X, Y) a C09°°-germ of a map sending the base points to f, there is a germ of 
a C°>~ map ̂ : Zx x Z2 —• DiffG(X) x DiffG(7) sending the base points to 
(id X) x (id Y) and such that 
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DiffG(Z) x DiffG(F) 

* / 

is commutative. 

(ii) There is a neighbourhood f E N C C£{X, Y) such that every f'GN is 

also inflnitesimally stable 
(iii) ƒ is stable. D 

The proof relies heavily on the work of J. Mather [2], [3] (which is genera

lized by this theorem) and of G. Schwarz [7]. 

2. Let G — • Aut(K) be a linear representation of the compact Lie group G. 
Let x G V be the current point of V and R[x]G C R[x] be the algebra of 

G-invariant polynomials. According to a classical theorem of Hubert [1], [8] we 
can always choose a finite system (p1, . . . , pk) = p C R[x]G of algebra genera
tors of R[x]G. We shall attach to the representation (G, \JJ) the number 

ord(G, \{J) = min (max deg p\ E Z + . 

Suppose now X is a {not necessarily compact) G-manifold (G compact). By 
the slice-representation we have a naturally defined function on the space of or-
bits X/G-^^Z*. 

One of the technical ingredients occurring in the context of the stability the
orem is the following 

SEMICONTINUITY LEMMA. For every orbit {Gx} e XIG there exists a neigh
bourhood {Gx} eWC X/G, such that, for any {Gx} G W, one has 

ord(Gx') < ord(G*). D 
This might be useful in the study of deformations of group actions suggest

ed by Thorn. 
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