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1. Introduction

The main objective of the paper is to stuydy the onset of the
instability of flow process for dissipative bodies with internal
imperfections.

Pormulation of a quasi-atatic, isothermal flow process for a
bounded body is given. Criteria of localization of plastic deformae
tions are considered.

It has been proved that to describe the posteritical behaviour
for dissipative solids we need very precise constitutive modelling
and to take into consideration important cooperative effects such
as internal imperfections, strain rate sensitivity, etc. So, the
constitutive modelling for description of instability and posteri-
tical behaviour is one of the main problems in modern research

in the mechanics of solids,

In this paper the constitutive modelling is developed within
the framework of two material structures, namely the intermal sta-
te variable and rate type material structures.

As main effect we would like to include in the description is
the influence of internal imperfections and transport phenomena
governing the evolution oft imperfections in time and its distribu-
tion in a body during the flow process., Physical and experimental
motivations for these effects are given and theoretical proposie
tion describing the nucleation, growth and diffusion of voids is
presented,

Recent experimental investigations for metals at temperatu-
res above 0,3 of the absolute melting point have shown that ther-
mally activated rate processes are significant, The mechanisms of
flow and fracture are influenced by strain rate effect, tempera-
ture dependence and by kinetics of crack growth, The concentra=
tion of the internal imperfections /ecrack at grain interfaces,
voids nucleating on grain boundaries/ in a material during the
straining process of a body does depend on the boundary conditions,
The transport phenomenon of imperfections during the deformation
process plays an important role and frequently has a predominant
influence on the onset of instability and, consequently, on the
fracture mechanism. :

A simple model of an elastic-viscoplastic material with inter-
nal imperfections is proposed, This model is justified by physical
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mechanisms of polycrystalline matter flow in some regions of tempe=-
rature and strain rate changes. The thermo-activated mechanism
causes elastic-viscoplastic flow and the mechanisms of void nuclea-
tion and growth plus its diffusion field insert evolution of
imperfections in a solid considered. To describe this model a set
of the internal state variables al-,t)={§pl- th wisth gl-,t)
is introduced, where E (-, t) 1is interpreted as the inelastic
strain tensor field, W (*,t) as the isotropic work hardening para-
meter field and § as the scalar measure field of the concen-
tration of voids, It is postulated that the evolution equation for
£ has the form of the diffusion equation,

; A model proposed has some important features., First, by intro-
ducing the control function /control vector/ the model can descri-
be the properties of a material in a range of strain rates near
the static value, This model satisfies also the regquirement that
during the deformation process in which the effective strain rate
is equal to the static value the response of a material becomes
elastic-plastic, Second, it can describe the evolution of imper=
fections during the deformation process by taking account of the
nucleation of voids as well as the growth of voids, Third, it
includs in the description the diffusional accommodated flow mecha-
nism, )

The identification procedure for all material functions and
constants has been based on available experimental data. Two kinds
of experimental tests have been used. First, the mechanical test
data for broad range of strain rate changes are utilized to deter-
mine material functions and constants in the evolution equations
for the inelastic strain tensor Ep and for the work hardening
parameter W ., Second, the physical, metallurgical observations
are assumed as a basis for determinations material functions and
constants in the evolution equation for the concentration of imper=-
tections £ .
\ As an example of a guasi-static, isothermal flow process the
boundary-initial=value problem describing necking phenomenon has
been considered. The problem is formulated in such a way that
enables discussion of influence on the onset of localization the
strain rate effect, as well as imperfections and diffusion effects,
Comparison of theoretical predictions with available experimental
results is given.
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2, Quasi-static, isothermal flow process for dissipative solids

To describe the flow process for dissipative solids with in-
ternal imperfections induced by the nucleation and growth of vcias
in the material we utilize the modified material stiructure with
internal state variables. We shall postulate thatl the evolution
equations for some cf the internal stute variables nave the form
of the partial differential equations, This material structure ie
sufficiently general te include. such cooperative effects like
strain rate sensitivity and diffusion processes for kinetics of
voids /imperfections/.

S50, the quasi-static, isothermal flow process for dissipative
solids with internal imperfections will be determined in the mate-
rial description by

(1) the constitutive equation for the Picla-Kirchhoff stress
tensor -
?=12(0), [ 241)

where U denotes the intrinsic state which is given by the pair -
the strain tensor field E and the field of the internal state
vector (L , i.e.
G=(EBQ)EL (2.2)
and 2 denotes the intrineic state space,
Basing on the previous resulte [ ef, Rfs. [35-36])jwe can
write

S’ZPQOE@lal, (203)

where U denotes the free energy constitutive function and P -
is the mass density in the reference configurationj

The intrinsic state G =(E, Q 4) does depend on the internal
state variables ( 4 Which are described by the ordinary differen-
tial evolution equations and it is independent of the internal
state variables (L, which are described by the partial differen-
tial evolution equations, This result yields from the thermodyna-
mic restriction (ef. Ref. [14]) and has very important consequen~
ces on the constitutive modelling,

(ii) the evolution equation for the internal state yariable
vector O in the form

dalxt) =Lalxt) +f(0), (2.4)
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where o is a linear spatial differential operator, f 4is a
ponlinear function of G and at denotes the differentiation
with respect teo time ;
(111 )~ the equation for the strain tensor E, i.e.

E=p(E+E +E), e.5)
where H = v yu denotes the displacement gradient ;
(1v)  tHe equilibrium equation ;
Div (F2) =0, (2.8)
where F is the deformation gradient field ;
(v ) the initial values &
ulx,0) = 0, %(x0)=3°1x),0(x,0) =0q°x) (2.7)

for X € B, where v = o ¢t & 1is the velocity vector field j
(vi) the boundary conditions
E{I,t]- E1lxst]o

(2.8)
ad,ax,t)+ DA(Xt) =0

for (X,t)€ OB x(:o,dpj , where n is the unit outward normal
vector on OB, u', a and b are bounded functions on Q B xLO,dp_J .

By the solution (D = {u,Q } of the quasi-static, isothermal
flow process formulated we undérstand such functions u and Q
which satisfy the equations (2,1) = (2.6) with the initial-boun-
dary value conditions (2.,7) =(2.8) %

3, Criteria of localization of plastic deformations

The criteria of the onset of instability of the flow process
for solids can be considered from two point of views, The first
is purely mathematical in nature and can be achieved within the
framework of investigation of disoontinuonsl solution or bifurca=-
1:,10112” branching of the solution. The second is more engineering

1/ The criteria of discontinuous solution for a flow process
have been discussed_basing on the first and second Liapounov
methods in Ref, Eﬂ .

2/ T)Ti:a eriteria of bifurcation have been broadly investigated by

Rinn [39,20] HILL and HUTCHINSON [22] cf. also the review papers
by HIIL [21], MILES [27] and ASARO [4] .
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approach and is based on investigation of the load-extention
curve during a flow process, -

During plastic flow processes for dissipative solids the om~
set of instability is usually connected with the localization of
plastic deformations / c.f. RICE [}i] and Ref, [?é]ﬁ

The most widely recognized mode of localization of plastic
deformations is that of necking. A necessary condition for the
occurrence of necking are the fluctuations in cross-sectional
area, This leads to a maximum load criterion for the instability
condition (c.f. CHAKRABARTI and SPRETNAK [9]).

A second basic mode of localization is the phenomenon of
plastic instability in direction of pure shear, A necessary con-
dition for the localization of plastic deformatiofi® in the form
of the plastic shear band is a maximum true flow stress crite-
rion3 .

In thie paper we would like to study necking phenomenon for
dissipative solids with internal imperfections and to use the cri-
terion of maximum load as a fundamental condition for the onset
of instability.

It is noteworthy that experimental as well as theoretical
studies of necking phenomena showed that some additional coopera-
tive effects can influence the onset of instability by shifting
the point of initiatien of localization from the maximum load
peint on the load=extention curve4 .

NEEDLEMAN and RICE [29]have proved that the onset of locali-
zation does depend critically on the assumed constitutive law.
This means that the onset of instability is influenced not only
by the geometry and boundéxy conditions of the body considered but
also by the properties of the material,

In this study we focus mostly on the description of posteri-
tical behaviour of solids, so, the influence of the criterion of
localization by different cooperative effects and material proper=
ties needs further investigations,

3/ Experimental obsérvations of this criterion were conducted by
CHAKRABARTI and SPRETNAK [97]. For recent investigations in this

subject see the review papers by PERICE, ASARO and NEEDLEMAN [31]
and ASARC [4] .

4/ For discussion of these effects see the review papers by
PEIRCE, ASARO and NEEDLEMAKN [2f] and ASARO [4].
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4., Constitutive modelling

4,1, Internal state variable material structure., The analysis of
thermodynamic restrictions on constitutive a.aﬂumptiona5 showed
that it is convanie:;t to split the intermal state varjables Ol into
two groupe ( y and (, in such a way that the first group ({ ,
is described by the ordinary differential evolution equations and
the second group QU 2 is described by the partial differential
evolution equations,c.f. discussion on this subject given in Sec=
tion 2 . So, the intrineic state has now the form

01{.,1’-] = | }E{-)t}t a!{-nt] ’ (12[ b)) (4")

FRISCHMUTH and PERZYNA [14] have proved that the internal
state variables of the second group {12 do not influence explici-
tly the stress. Taking advantage of this result we can write
{cf. Eq. ( 2.3))

~
R ¢

-

_ (B (e0t), ®y(-rt)) (4.2)
The evolution equations can be written in the form as follows
O 0q leot)= £4 (G1( «rt))
(@.3)
~
atazlnt]'l‘ a 2 [.,t) + f2[G1 I lot}]J
where c£ denotes the spatial differential operator,
The constitutive equation for the stress tensor { 4,2 ) and

the evolution equations [ 4,3 ) describe the properties of the
material of a body if we give the initial values

a, [ x,0) = agf'x), Qa,lx0)= a: (X) for X € B (4.4)

5/ The investigation of the thermodynamic restrictions for the
modified material structure with internal state variables has

been presented by FRISCHMUTH and PERZYNA [14].
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and the boundary condition

ﬂa‘n az{xft}" bazlxst) =0 3

(445)
for (X,t) € 193 x [o,a.]) :

The thermodynamic condition that the constitutive stress
function § does not-depend on (L, is of great importance to
constitutive modelling. The consequences of thies condition we
shall show better when we shall pass to the rate type material
atructure. To do this we need to specify more directly the both
groups of the internal state variables, We postulate

aji"t} "lEp[-ttln K[ost}]J

(4.6)

Azl oot) = Elest )
where E {.s%t) denotes the inelastic strain tensor field, W(.,t]
is the work hardening parameter field, and ¥ ( .,t) is interpre-
ted as a scalar measure field of the concemtration of imperfec=-
tions,

We further postulate the evolution equations for the first
group of internal state variables ‘11 in the form

atgp{ﬂtl' EIG-‘{-vt])n
9 W let)= =[E(G, (w0t DyBylunt)], (1)

and for the second group (L, which is represented by the imper-
fection parameter E we assume the diffusion evolution egquation

Dy Elert)=D, T2E(Wt)+ [yl 64 (rt))Dy By ]

A
¥ Eg { 01 { «sE)) . ("‘-8)
A ~ A ~
m ™
where G , 5_, oy and = o @are the material functions and Do
denotes the diffusion constant,
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4,2. Rate type material structure, Let us introduce the intrinsic
state in the form as follows
Gy lest) =B Lent] s 2leat) ,Riest),Elert)). (4.9)

If we assume additionally that the constitutive equation (4.2)
is such that Eg { opt) can be expressed as function of E{ .,t),
2 (4,t)ad R (.,t) for any time te[o,dp] 1.e.

A
E’p(ﬂt}' E[E’{ tlt} ’ E{.Otll)(.(O[t]) (4.10}
then the intrinsic state 6‘2 can be obtained from O, by taking

advantage of Eq. [ 4.10) ,
Basing on the constitutive equation (4.2) we can write

at?_{nt]'af‘!: [a t@,l ’tt)1 +aBp ,&:[at}'}p{-.tl]
(8.11)

+ ax;atn{..t] -

The last result yields the evolution equation for the stress
tensor T (+4,t) as follows

Ot 2["t}'J31[at§{ 'It]J *po (.4'12)
where % =,
.El' 0% -
/30- g2 [E10, 10w (4.23)
+0xE w[R(0p( et ,@,tozr..tn],

and additionally we have the evolution equation for in the form
= at g{-;tln D v g("tl" tr [|_|1{02{-,t” at {..t«}]

A 424
w8 il (i3

6/ The conditions under which the internal state variable struc-
ture is iaomorphic with the rate type material structure have been
investigated in Ref, [32] .
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It is noteworthy that the evolution equation for the stress

tensor (4.12) is not explicitly influenced by the rate & of
the imperfection parameter g « This is consequence of the ther=-
modyna&}c restriction superposed on the stress constitutive func-
tion T .

5. Description of imperfections

5.1. Physical and experimental motivations, In the comstitutive
modelling for the poatcritical behavicur we have to take into con-
sideration the intermal imperfections generated by the nucleation
and growth of voids. As it has been pointed out by LE ROY, EMBURY,
EDWARD and ASHBY [25] ductile fracture is the end of a sequence of
three processes: (i] Nucleation of voids at second phase particles;

(11) Growth of voids mostly due to plastic deformation and yield
stress state and due to the diffusional accommodated flow; [iii)
Linkage of voids, It is assumed that voids coalesce when the void
length reaches some multiple of its distance from the neighbouring
void (ef. Figs. 1 and 2] -

The most important experimental investigatmns of the failure
of metals are those under the unidirectional tensile mode of loa~-
ding, It can be expected that in the temperature - strain rate
spectrum (cf. data of WRAY [51]]01- in the temperature-flow stress
spectrum (er. Refs. [:3 34 )different fajlure modes may occur,
This conjecture is justified by the fact that different mechanisms
of plastic flow should lead to different failure modes. We can say
that these failure modes are the result of different fracture
mechanisms. ;

From the fracture maps?/ for 304 stainless steel (cf. Figs.

3 and 4 ) and for 316 stainless steel (cf. Figs, 5 and 6)it can be
observed that most important fracture mechanisms are those of
ductile fracture at low temperature, transgranular creep fracture
and intergranular creep-controlled fracture as well as the pure
diffusional fracture. The latter mechanism is not detected on the
maps,

7/ A thorough investigation of the fracture maps for different
materials can be.found in Refs, [5,6,11, 15
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We shall concentrate our attention on these four flow and
fracture mechanisms, j

To collect most important features for all of these fracture
mechanism it would be useful to discuss physical nature of every
mechanism separatly. )

Polycrystalline solids, when they do not cleave, may fail
in a ductile, transgranular way, Voids or holes nucleate at inclu-
siocas, further plasticity.of a material makes them grow and when
they are large enougn or when the specimen during tensile test
itself becomes mechanically unstable, they coalesce and the ma-
terial fracture.

At temperature above 0.3-3‘M metals creep, The flow stress
depends on strain rate and the thermo-activated process for dis-
location creep occurs. Voids or holes nucleate at inclusions
within the grains and grow as the material creep, until they
coalesce to give a fracture path. This mechanism is called the
transgranular creep fracture.

At lower stresses, and longer times-to-fracture, a transi-
tion fromltransgranu;ar to an intergranular fracture is observed,
Within this new regime, grain boundaries slide, wedge-cracks or
voids grow on boundaries lying roughly normal to the tensile
axis, Fracture is directly controlled by thermally-activated dis-
location creep and often may be approximated by the power-law
creep. The shapes of the grain-boundary voids or cracks suggest
that the diffusion-accommodated flow process contributes to their
growth.

When the temperature is high enough to permit diffusion pro-
cess, and stress so low that creep process is negligible voids or
holes on grain boundaries in stressed solids can grow by pure
diffusion mechanism,

From this consideration it is clear that the postcritical
behaviour of ductile solids is controlled by several cooperative
mechanisms. We can recognize some characteristic features for all
of them.

First, the most essential are the nucleation and growth of
voids. The behaviour of the bulk specimen in tensile test is
influenced by evolution of voids during the deformation process.

Second, temperature and strain rate sensitivity of the mate-
rial is a2lso observed as very important. It means that for
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regions in which these mechanisms operate the thermally-activa=-
ted process for very low strain rate can be assumed as respan-
sible for dislocation creep flow.

Third, for intergranular creep-controlled flow and for pure
diffusional mechanism the transport phenomena contribute to void
growth, The transport process is usually approximated by the
diffusion cooperative mechanism.

IE ROY, EMBURY, EDWARD and ASHBY[25] have shown that voids
nucleated both by the cracking of carbides and by their decohe=~
siona',. Once nucleated, the voids grow mainly in the tensile
dirertion and only in the late stages of necking. When the tria-
axiality is large does tranverse gmwtli occur, As all tne voids
did not nucleate at the same strain, a certain range of void
sizes can be observed at a given strain level. When decohesion
occurs on one side of the particle only, the free end of the
void grows in the longitudinal direction until it meets another
particle, forming a long and narrow cavity or a vertical chain
of cavities as decohesion latter occurs at the other side of
the particle also.

The number of voids and their area fraction are shown, as
a function of strain in Figs. 7 and 8, The volume fraction of
boids increases slowly at first, approximately linearly with
strain, until a threshold value is reached, beyond which it
increases rapidly.

8/ Gt here also suggestions presented by GURLAND [16_] and
investigations conducted by FISHER b;f. Fisher noted that a
better understanding of the mechanies of ductile fracture
requires further study of the micromechanisms which operate du~
ring the early stages of void initiation. Current fracture
models attempt to relate microstructure to the critical condi-
tions for crack initiation and growth and help to characterize
the fracture process in engineering materials. In void nuclea=-
tion processes very instrumental are particles and inclusions
(inhomogeneities in polycrystalline materials). Particle frac-
ture and interfacial decohesion result as a consequence of the
local state of deformation which exists in the vicinity of void
inhomogeneities, Existing models for void nucleation are gene=-
rally grouped into one of three categories based upon either
an energy criterion, a local stress criterion or a local strain
criterion is postulated,
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Fracture occurs by the transverse linking of the elongated
voids in plane which is macroscopically normal to the tensile
axis, Very few connected voids are observed below the fracture
surface, which illustrates the highly localized and catastrophic
character of the final coalescence process.

The conditions for the void coalescence are not well under-
stood, although some authors show the influence of strain rate
sensitivity and the effect of partial adhesion of the particle and
matrix as most important réctors.

In a model based on continuous nucleation of voids LE ROY,
EMBURY, EDWARD and ASHBY [ésj assume that the number of cracked
particles increases linearly with strain, This assumption is in
agreement with the initial portion of the curves shown in Figs. 7
and 8.

Basing on careful examination of the void nucleation, the
void growth and the accumulation of damage during tensile loading
and the subsequent necking process and taking advantage of physi=
cal suggestions we can assume proper evolution equation for the
scalar measure of the concentration of imperfections g .

It is'worth to note that in many recent investigations the
analysis of the growth of cavities along grain interfaces by the
combined processes of grain boundary diffusion and plastic dislo=-
cation creep in the adjoining grains has been given. However, this
mode19/ is based on the assumption that coupling between the pro-
cesses can be expressed in terms of a parameter I, which has
the dimensions of length and which is a function of material pro-
perties, temperature and applied stress /cf, RICE [;{] , NEEDLEMAN
and RICE [30] and SHAM and NEEDLEMAN [46]) This idea describes
the coupling in situations when extensive dislocation creep allows
local accommodation of matter diffused into the grain boundary
from the cavity walls but it is not in the position to describe
the boundary-spatial effect observed for the bulk specimen in
tensile test.

o/ Physical foundations for this model were presented HULL
and RIMMER !23%,‘ SPEIGHT. and HARRIS_[47] and WEERTMAN [49,50],
cf. also ¢ (18] and COBIE [10] .
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5e2s Theoretical proposition., Cur aim is to describe the evolu-
tion of imperfections generated by the nucleation and growth of
voids and to take into consideration the transpert phenomena sug-
gested by the physical mechanisms. To do this we postulate the
evolution equation for the imperfection para.met.er Ein the form

Gh §=[at gldiﬁ'usion + (O, Elnucieation T (0 E)growtn - (5.1)
The comparison of the postulated evolution eguation (4.8)
with (5.1) gives
(9, Elaittusion = Dy VZE [x,t) 5.2)

and
(D, E)nucieation +(0, Elgrowth = trt S 0 tgp}* =25 6.3

where ZD is the diffusion constant properly assumed for particu-
lar material, ._.1 and .=, are two material functions which have
to be detarmined.

To fix precisely the diffusion constant Do we can use the

expression U
(9) ; ot | (5.4)
D = cons - - =
Xp Y +

where UD is the activation energy of the diffusion process assu-
med, R denotes the gas constant and temperature. By proper
selection of the diffusion proceasm/ we can determine the acti-
vation energy Up as a function of temperature, For isothermal
process, that is for constant temperature we can assume

D, =D (J) n (5.5)
A A

To determine the material functions -1 and = = 2 We take advan-
tage of previously discussed physical and experimental motiva-
tions.

Experimental result suggest that growth(Q, ) in the first
approximation can be assumed as proportional to the inelastic
strain rate., On the other hand physical consideration imply that
nucleation( O, g} is coznected with the inelastic power -and with

10/ For g_thorough discussion of diffusion processes in solids
see FLYNN [ 12

http://rcin.org.pl



-]

the rate of the first invariant of the stress tensor.
Basing on these suggestions we postulate

>
i
-

grins B8 v ol
s o ' 5.6
2=l o)

where m is interpreted as a limit value for { , godenotes the
material constant matrix, h is the material function and 1
denotes the material constant.

As a consequence of the postulates assumed we have the evolu-
tion equation for the imperfection parameter g in the form as
follows

OE (Xt )=D, VZE (Xt )+ (m-E)tr(Z,04Ep )

+ oo (T O Epl # U . &)

6. Elastic-viscoplastic solids with internal imperfections.

64%l. Internal state variable description. To describe the elas=-
tic-viscoplastic response of a material we have to specify the
evolution equation for tp‘e inelastic strain tensor 5 . It means
to specify the function G in the evolution equation (4:7)s ILet
us postulate ( cf, Refs. [33-35])

616) =4 <o -9pa, £ (6.1)

where X; is the viscosity eonstmtﬁp is interpreted as the con-
trol function and is assumed to depend on =4,I;=(T¢) %
is the second invariant of the strain rate témsor, Igzlﬁ"-és}k
and E’, is the static strain rate tensor, d) denotes the Gverstress
viscoplastic function, f(.) is the guasi-static yield function
and is postulated as -

(6.2)

fle)=f(T,EpyE)
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the symbol<[ J>is understood according to the definition

TR
<[J> [] it I % (6:2)

For the control function P we postulate (cf. Ref, [34] )
1im P=0 and P(+)=0 for I, < 4 ‘7 (6.4)

Ip=
The elastic-viscoplastic response of a material is determi-

ned by the constitutive equation for the Piola-Eirchhoff stress
tensor (ecf, Eq. (4.2})

I=TIE,Ep 0] (6.5)
and the evolution equations for the 1nte.’mal state va.riablea -Ep’
W and g postulated in the form as follows

BEix,t1= B <4 -1 >0t
(6.6)
DRIX,t)= ty [g{ma,g,(x,t -ﬂ,

2 ¢ -
3y EIX;t)= Do VZE Xt )+ (m —E )tr[ZerEn X t) ]
Far b [T X, )t

The evolution equations postulated have some important
I‘eaturersll/. First, by introducing the control functionlp the

1/ For physical motivations of the elastic-viscoplastic model
with internal imperfections see Ref, [36] . It has been shown
[cf .&SHB{ a.E VERRALL [7]) that when sirain rate is small
10' 10™ and the temperature is high enough to permit
diffusion and when strain are large(as in superplastic rlaw], the
flow process can be modelled by a grain-boundary sliding mechani-
sm witn diu}nsioniu accommodation, For higher strain rates
= 10% dislocation creep flow is more dominant., The

astic-viacoplastic model with internal imperfections is based
on the assumption that each void when nucleated grows by inelas-
tic deformation and by diffusion, but the void plus its diffusio-
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model proposed can describe the properties of material in a
range of strain rates near the static value 12 = I;. This model
satisfies also the requirement that during the deformation proceas
in which the effective strain rate is equal to the static value
the response of a material becomes elastic-plastic, Second, it can
describe the evolution of imperfections during the deformation
process by taking account of the nucleation of voids as well as
the growth of voids. Third, it includs in the description the dif-
fusional accommodated flow process,

To describe the evolution of the intrinsic state for a btody B
we need the initial values =

_]_i':p[x,O}-E;{-” ’

n(x,0) =%°(x), (6.7)

]
€(x,0) = E(x],
for t =0 and for X € B, and the boundary condition for the
imperfection parameter g in the form

adnE(X,t)+ b E (X,t) = © (6.8)
for (X,t )€(OB x [-0, dn]]' , where a and b are constant values,

6.2, Rate type material structure in Hlerian description.
We shall ncwe use different method than that proposed in Sec-
tion 4,2 to formulate the equations which describe the elastice-
-vigcoplastic reaponse in the form of the rate type materizl struc-
ture,

Let us denote the symmetric rate of deformation tensor by I
and postulate

2= k8- tr G 1] 5 (6.9)

nal field is contained within a cell of a thermo-activated
flowing material,

Cf, also the physical consideration presenied by PECHERSK]
[20,417] in which the modified evolution equation in the form (6.6),
is justified,
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where _@denotes the symmetric Zaremba-Jaumann rate of change of
the Cauchy stress temnsor G, G is the shear modulus and V is the
Poison ratio, by Ji we denote the first invariant of the Cauchy
stress tensor J and J; and J; are used to denote the second
and third invariants of the stress deviator, respectively.

As the result of Eqs. (6.9) we have the evolution equation
for the Cauchy stress tensor U in the form

a2
(6.10)

- T{%-_ﬂ <¢[ f(Ji:}iénJiig}_1j>a‘gH_]-

The intrinsic state O is now assumed in the form

o=le, 8, n,E ) (6.11)
where € denotes the Cauchy strain tensor,

We need additionally the evolution equations for the inter-
nal state variables W and g . Let us first focus on the imper-
fection parameter "

To compare the scalar measure of the concentration of imper-
fections with the void volume frection parameter introduced by
GURSON [17], cf. also NEEDLEMAN and RICE [29] and SAJE, PAN and
NEEDLEMAN 45:' we have to consider the voided solids ( porous
solids) . For this new interpretation of the imperfection para=
meterg we have to assume m=l . We shall denote by G the tensile
flow strength of the matrix material, Eg the matrix equivalent
plastic tensile strain and h = do'/dip the equivalent tensile
hardening rate of the matrix material.

Equivalence of plastic work (ef. Refs, E9,45,43])

(1-E)G EP = tr (G DP) (6.12)
gives

. B P
R (N tr (G 2°) (6.13)

If we assume after NEEDLEMAN and RICE EZB] and SAJE, PAN
and NEEDLEMAN [45]

[E]nucleation = A0 + lj1 (6.14)
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and take advantage of (6.13) we have

{E]nucleation 5 '_1'?_ tr( g2 =L (6.15)
where =

-Ak 6.16

2 0 (6.16)

as has been postulated by Eq. (5.6), The result (6.16)51?23 new
interpretation for the material function h.
If we keep postulates (5.2) and(5.3) f.e.

(ot = (1 ~E) = (2o 2°), (6.17)

(g}difnlsion = e v?g

we can write the evolution equation for the void volume frac=-
tion gj.n the form as follows

B=DeV2E + o tr(g D7)+ Lrelt-g e (S0 €2°)

i

We shall consider the following yield functions for voided
material (cf. Refs, [29,45,48])

(0 105" wa w=n 11— g,

: 2
(11) f(-)=J5{1+n'§jJ§ Jena w=2311—ER, ~ (6.29)
"2 .
(111) fI-J=J£H—0.73i?a+n§i€i} and nﬂgn-g"‘;,
= 3
(v) f()=34 +26G%cosh (3F)  ma =G24 ET)

(v) f(-)=33p+2EG7mcosh | FBH) gy =G21ns -

The work hardening parameter W is now assumed to play a role
of the material function which is postulated in the particular
form for every case considered.

We shall write down the evolution equation for the inelastic
deformation for two first examples of the yield function,
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We have the following results

(1) pe- @;n-11<‘5[u7\i/17%'7’7-1]>7%5' 6-20)
w2 ol >33

It is nolworthy that ‘even in the case when we assume the ma-
terial function the workhardening effect of a material can be in-
cluded into consideration by interpreting as isotropic work harde-
ning parameter. In this point we shall be flexible,

7. Elastic-plastic response

The elastic-plastic response of a matgrial is reached in the
limit case, when I, = Ig « Then we have the evolution eguations as
follows

;-Bpahagf{'] =
E: E;—_hg—tr[g‘zp] _-!- lJ|+{1—g] trtgogl {7.1)
for =
f(+) =M and tr[a£f§}>0 (7.2)

It is noteworthy that the diffusion effect has been neglected,
The parameter M can be determined from the condition

f =A% (7.3)
The evolution eguation for the plastic deformation in index
notation can be written in the form (cf, Refs. [29,45])

D i 4 v
ey TR % Owm (7-4)

of _ ot % TS )
- 8, B0, +F 8 S

He—[1-g gjg‘ﬁi,g—é;* H%EM%EEJ' 8?3'10“%;] .

http://rcin.org.pl
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As examples let us consider the two yield functions [cf.(6.19])
For the first case

(1) H)= (3% ana w=RIE)= wati-gh) (1.6)
Ee [0:1] }
we have
a f s {Jz )w
I v”* I

% - Py G bkl )

where

5
L I T 73 o ) Te = V13

Q

H-4%E-\/_[J --?1&1"'1%‘%] ) (7.8)

Sy =Gy = 3 { Gix) Oy .

For the second caae
(41)  #(-)=J3l1+ng } ana W =RE)WE (1-E 5 @ 9)

then

5 5
Pij i !‘H‘ + % 513 ' le - !-%sel + '% 6 Kl ) (7-10)
where
p, 3nng )
2] « ¥R e
VG 11 - E%)-ng S Ga11)

2 2
u=p ‘zuvﬁ;f?ig‘%r-g‘@”—f
[“Ejuug_ TF '1'83.]‘8_ g!"
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It is noteworthy that the normality does 1ot apply because
RW#EP.If 1 =0 then pafh, Pyy = Qy and nomality applies.

The comparison of the Gurson solution (cf. Ref. ElT])with
the present proposition is giv.: in Fig, 9 .

In Figs. 10 .and 11 it has been shown the influence of the
constant n on the results for g = 0,02,

8, Identification procedure

8.1, Basing on mechanical tests. To determine the material func-
tions and constants involved in the evolution equation for the
inelastic deformation tensor Ep we shall use the available expe-
rimental data obtained in dynamical tests. As it has been shown
in Ref, [ 34] the determination of the material function § , the
control function P and the material constants can be based on
both the combined as well one-dimensional loading tests.

We shall use the procedure of identification developed for
the elastic-perfectly viscoplastic material in Ref .L_34] and gene-
ralized to the elastic-work hardening viscoplastic material in
Ref, [39]'.

Let us show this procedure first for the dynamical tests
under combined loading, We shall use two experimental data obtai-
ned by LINDHOTM [26] for mild steel and by RANDALL and CAMPBELL

E2J for a low=carbon steel.

From these works for particular metals we have the experi-

mental curves as follows

{II}‘ 11{2 = 'gj’{ I,) [HL}"k = comst . @.1)

Using as an optimum criterion for the best fitting of experi-
mental data by theoretical results the functional

e " te[0,d5] Rt 1, 0. l"’=ccl;li.:)

)AL Lit)e(13,13°)

2

St =n {1 +¢“[ULIE£AD%@(TIE_ _1)] } ) (8.3)
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we obtain results for mild steel (plotted in Fig.12 ) and for
low-carbon steel (plotted in Fig, 13 ).

A similar procedure is applied basing on the results obtained
in dynamical tests performed under one-dimensional loading, For
this case an optimum criterion is as follows .

Tz!'g%S,dﬂ flTi- 9 ltHIannst‘ H 1
EelE, E ]
where
Tit)= u"‘{1 . [-%-Lptézq 1]] ©.5)
and
Tit)= ?} (E(t)) lE=cmst i (8.6)

represents the experimental curve obtained for E = const.

The results obtained for mild steel basing on CAMPBELL and
FERGUSON [8] data are plotted in Pig,14 and for plain carbon
steel basing on experimental tests performed by different authors
(ef. KANNINEN, MUKHERJEE, ROSENFIELD and HAHN [24]) are shown in
Fis.l'i L]

The previously discussed procedure has been generalized to
the elastic-work hardening viscoplastic material in Ref. E}gj *
It has been assumed that

S1Ep) = ¥o + aEF (8.8)

H

Y (Ep)= Ygo + KE®
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The equation (8.7) gives the relation for the dynamic yield
gtress as follows

T=?(Ep]{1f[ﬁE—pr(-g» = ):I‘/"} . (8.9)

To fit data obtained’?/ by ALBERTINI and MONTAGNANI [2] it
has been found

n=7, You1.5°10° [s2], a=9.8° 01 [] »
KG KG
Y., = 25| % k=505, 1, b-oa38 .

The comparison of theoretical predictions with experimental
data are given in Figs, 16 and 17.

842. 'Basing on metallurgical observations, There are very few
available data concerning the quantitative void measurements
during tensile test, FISHER [13] was conducted an investigation
to determine the effects of various mechanical and material para-
meters on void formation at cementite particles in axisymmetric
tensile specimens of sphercidized plain carbon steel, The veolume
fraction of voids g =fv and the number of voids per unit area of
transverse cross section TJA , were measured as functions of defor-
mation in the neck of each specimen, Figs. 18 and 19,

Similar data have been recently obtained by LE ROY, EMBURY,
EDWARD and ASHEY I:.’-.'S] for spheroidized steels ( ef, Pigs. 7 end 8).

To determine the constant matrix Eo s the constant 1 and the
material funection h in evolution équ:tian for the imperfection
parame ter g we use FISHERS data. o

The material function h and constants 0 and l are obtained
by using the best curve-fitting method (as it is shown in Fig,18).

12/ ¢, also_data presented by ALBERTINI, DEL GRANDE and
MONTAGNANI [1] and ALBERTINI, MONTAGNANI, CENERINI and CURIONI [_‘3_'] 2
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It is worthwile to compare our theoretical predictions with
those presented by SAJE, PAN and NEEDIEMAN [45]based also on
Pisher's data, cf, Fig. 20.

9, HNecking phenomena
9,1. Formulation of the initial=boundary-value problem, ILet us
study the tensile deformation of a eircular cylindrical bar of ~
initial length 2!.0 and initial radius Ro' cf, Fig. 21. The pro-
blem is described in the cylindrical coordinates r, 8 , z, It has
been assumed that the problem is axisymmetfric and additionally
that the deformations are symmetric about the mid plane 2z =0 ,
The ends of the specimen are assumed to remain shear free,

We use the Eulerian spatial description and the rate type
constitutive modelling,

The problem is formulated for the two different yield func-

tions assumed,
In the first case f(.)= (szthve have the constitutive evolu--

tion equations as follows

2%[7’; +u%£g:+ VP — Vot (8]
=8 - W el D
A [80m + v Qo= 1 v, 80— G 1 B)]
=¥—J;3L<¢EJ>V%?=
aﬁzz+u_6gl_+'[j 1+V tF(G}]

- L1
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(B U= e 8-k + G
I RCIPR- S

For the second case f(-)= J2+n§ 2 the constitutive evolution
equations take the form

zc,[%&L*U%Q“ U%g“ tr{O}:]
=5 Wk (o[t ) =t
% (S U B v

=Y~ ol Tp Smezabs

v (9'2)
vV

b

ZG[at +U%QR+U=

=%ﬁ 2 _(%_<¢[ :|> Szz ;{2°n§J.

z

)

7 (e + U % - v, )= 94 Qi

-Gl 1% -
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The evolution equation for the :I.lperrect’ion parameter is
independent of the assum®d yield condition and has the form

%—EA + %g— U+ %5 U: =Dn[—l-aa;(r %;EL)+ %izé ©6.3)

+l1—§ltri_2_,g’}+1—f‘gtrlgg"}+1j )
The equations of motion are as follows

Pk + (pu.Ogs — g )+ (pu. BE %’

— —1"" (Orr— Ges )= 0 (9‘4)

o G (pud — oy (pu. % %)

=0 ‘]— Grz =0 -
The kinematieal :tpresainns have the form

i r : aUr .
m-%"" U}_%— +W e o (9.5)
U= UG U
The initial values for the problem considered are determined
t=0,rel0Rd | z el0,Lo]
ylr,z,0)=0,
gtr;zso )=0, i (9.6]
Elr,z,0) :g"{ r,z)

The boundary conditions are postulated in the form:

(1) the lateral surface of the specimen is required to remain
stress free during the straining proceses

http://rcin.org.pl
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.{%—';hu,%“';—} (Ger +.Gu%l+ﬁlz-”{%%"
+'[I,%“ - Ué%g' %G +%H‘(%%

+'D'r +'U§ } 0
{%= ('a_ 'U;‘%_‘)(G “a—)"'n{ztl{%(g.ﬂ

+Ur U‘% %-o’u-f—
+u9§f+vz%°f)}=

$? =0

)

for te@,apj , e=R(8,t), seE,Lttﬂ , where
n, = n (z,¢), n = -%—% nls,t) (9.8)
an

2 (1= [(38) F -2] " 6-9)

fii] the specimen has shear-free ends

g [%gfn+u"%grn +U‘%; ShLit).

‘i‘.s- o,

for * eEa,a.p] 3 A TE E, R (s,tT_I

(©.10)

s=15(t)
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{iii) to the ends of the specimen is prescribed constant velocity
i in direction of 2z axis, i.e.

V(2 5 (Y5 ¢ ) T,

] » TE€[0, R (2,t)
R R

(h) the assumed symmetry about 2z = 0 requires

(6.21)

t.(z,0,t)=0, te(r,0,t) = 0 P, (r,0,t)= 0O
for t€[0,d,] : re[o, R (o,t)];

(v) the imperfection parameter has to satisfy the boundary
condition as follows

a aB g(r,z,t) + b E(rz,8) =0

(0.12)

fo

: t EEJ,clp] , wwRaE),- & s[o,L(tﬂ, (9.13)
and for t,e[t-).%] =1 rE[O,R (s,t]J » £ = Ift),

i.e, for the lateral surface as well as for the end surfaces.

The necking problem is described by the evolution equations
for the components of the Cauchy stress tensor (9.1) or ( 9.2) the
evolution equation for the imperfection paramater(g.B). the equa-
tions of motion ( 9.4_), the kinematic eguations (9.5) the initial
values (9.6) and the boundary conditions (9.7) - (9.13).

The solution of the initial-boundary-value problem is repre-
sented in the cylindrical coordinates system by .

9* [UTs u, 1 Uz Uz * Oppr Ggg v Ggzo Orz’g}(r'z’t) . (9‘14)

The problem formulated is very complex, So, it is worth
while to consider some particular cases which can be treated as
reasonable simplifications of the general problem,

9.2, Influence of the strain rate effect on the onset of locali-
zation, Let us assume that there is no internal imperfections in
the material of the specimen and let consider a sequence of the
initial=boundary-value problems by postulating

http://rcin.org.pl
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V, (s T (%), 8) = By, Uy wernnsy Uy, (9.15)

instead of the condition (9.11). = :

The spectrum of velocities U,, U,, 03 cvesssy U has to be
assumed such that it causes changes of the mean strain rate in
the specimen in a sufficiently large range.

To simplify the numerical procedure as far as possible let us
neglect the inertial ferms in the equations of motion (9.4]. So,
we shall treat problem as quasi-static (cf. Ref. ['34]).

Since the problem has been simplified to quasi-static, we
have to restrict our considerations to such values of the veloci-
ties fI1 (f=1,2, secvey n) to be sure that our guasi-static ap-
proximation is valid,

The advantage of the problem posed in Sec. 9.1 is the uni=-
fied formulation for the elastic-viscoplastic range as well as
for the elastic-plastic response of a material. So, we can obtain
the Needleman results as a limit case of our processes under the
assumption that the velocity fll = 6atat1c =0 (2assumed by
Needleman [28]).

The numerical results obtained are plotted in Figs. 22 and
23, These theoretical results can be compared with experimental
data obtained for 316 I stainless steel by ALBERTINI and MONTA-
GNANI [2] (cf. also Fig.16) and which are presented in Figs. 24
and 25. -

It can be said that the theoretical predictions are consis-
tent with experimental observations that the load at the insta-
pility point is increasing function of the sirain rate while the
strain at the same point is decreasing function of the strain
rate,

9,3, Influence of imperfections on the elastic-plastic-solution.
We shall now consider the elastic-plastic response of a material
with internal imperfections, In the evolution equation[9.3)for the
imperfection paremeter we neglect the diffusional term (as it has
been postulated for the elastic-plastic range, cf. Sec. 7).

The numerical finite-difference procedure may be developed
in such a way that it can be applicable for all the yield func-
tions postulated by Eqs. (6.19). However, since we are interested
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in the comparison of our results for voided solids material with
imperfections with those obtained by NEEDEIMAN Ezd] we intend to
focus our attention on the J; flow theory, i.e. we aseume the
yield condition in the fomm

B L (6:16)
where A is the work = hardening parameter., -

It is postulated the engineering criterion of the on=et of
necking in the form of & maximum load condition(ef. Sec.3).

We postulate also that the process of deformation of the
specimen is the same as that considered by NEEDLEMAN [2€]until
the maximum load point is reached, Starting from this point we
superpose internal imperfections by postulating the following
distribution of the initial imperfections

Elraz) = 0.02(1--F) (1~ ). ' (9.27)

This linear approximation is based on the experimental obser-
vations presented by FISHER [13___] « He has performed quantitative
void measurements during the tensile test. The areal density of
voids T)a , measured as number of voids per unit area of transver-
se section, and the volume fraction of wvoids fv are plotted as
functions of z (with r =0) andof r ( with 2z = 0) for each
specimen in Figs. 26, 27 and 28,

The material function

Il

_ w=U(E) (0.18)
is assumed in two particular forms, giving the parsbolic and
linear appro imations, cf, Fig, 29.

The results for voided elastic-plastic solid are compared
with those obtained by NEEDLEMAN [28] in Pig, 30, Similar compari-
son has been p{fgsented for the first material function, i.e. for

K=K 1~ g ) in Fig.31., The latter results show the develop-
ment of neck as a function of engineering strain,

FISHER [13] has presented the relationship between the equiva-
lent plastic strain € _and S/L based on the numerical results
of NEEDLEMAN [28] and the measurements of the meck contours of the
B and W type specimens, Comparison of these results with our
theoretical predictions for W type specimen has been shown in
Pig. 32, This comparison shows that our theoretical results are
consistent with Fisher's experimental observations.

-~
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9.4, Influence of diffusion effects. To investigate the dif-
fusional effects on the onset of necking as wall as on the post-
eritical behaviour of the specimen we have to solve the initial-
-boundary-value problem(with inertial terms neglected)formulated
in See., 9.1 for an elastic=viscoplastic material with intermal
imperfections, The evolution equation for the imperfection parame-
ter £ may be assumed in general form (9.3) with diffusional “erm
included. ; :

This problem enables us to show importance of the diffusio=-
nal effects on the solution and to discuss cooperative effects by
taking into consideration the strain rate sensitivity of the mate-
rial as well as the internal imperfections,

Preliminary numerical results obtained for the problem posed
prowed importance of the diffusional effects., However, the solu=-
tion of the problem is very difficult to achieve numerically and
it needs particular fine numerical procedure, So, it has to be
postponed to further investigations.

10, Conclusions and comments T

The main objective of the paper was to describe some coopera=-
tive phenomena generated by nucleation, growth and diffusion of
voids during a deformation process for posteritical behaviour of
dissipative solids.

Studies [ cf, FISHER [13])dealing with the deformation of
solids containing dispersions of hard second phases or inclusions
have shown that the nucleation of microcracks or voids is associa-
ted with these particles when the material of a body is subjected
to various types of deformation. These voids appear either as
cracks in the particles or as failures of the particle-matrix

interfacial bonding. The actual void morphology depends upon the
interrelation of various microstructural parameters as well as the
local deformation state. In very high purity materials, the absen-
ce of particles acting as void sites requires that other mechanis-
ms of void nucleation be operative, It has been observed that in
high purity silver and stainless steel voids are nucleated in the
areas characterized by high dislocation densities, During high
temperzture creep deformation void formation may be associated
with diffusion controled processes in which grain boundaries act
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ag sinks and sources for vacancies with directional diffusion
occuring as a result of the local stresses,

The theory proposed can describe such cboperative phenomena

as influence of strain rate effects and imperfection and transport
effects on main inelastic deformation process, However, this: theory
can not describe the final mechanism of fracture., The mechanism

of fracture is initiated by linking of voids and by forming a long
and narrow cavity within a body. This final stage of deformation
process is of great practical importance and needs further study,
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