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Abstract. The stability of the flow of a fluid past a solid membrane of infinitesimal thickness is investigated
using a linear stability analysis. The system consists of two fluids of thicknesses R and HR and bounded
by rigid walls moving with velocities Va and Vb, and separated by a membrane of infinitesimal thickness
which is flat in the unperturbed state. The fluids are described by the Navier-Stokes equations, while
the constitutive equation for the membrane incorporates the surface tension, and the effect of curvature
elasticity is also examined for a membrane with no surface tension. The stability of the system depends on
the dimensionless strain rates Λa and Λb in the two fluids, which are defined as (Vaη/Γ ) and (−Vbη/ΓH)
for a membrane with surface tension Γ , and (VaR

2η/K) and (VbR
2η/KH) for a membrane with zero

surface tension and curvature elasticity K. In the absence of fluid inertia, the perturbations are always
stable. In the limit k → 0, the decay rate of the perturbations is O(k3) smaller than the frequency of
the fluctuations. The effect of fluid inertia in this limit is incorporated using a small wave number k � 1
asymptotic analysis, and it is found that there is a correction of O(kRe) smaller than the leading order
frequency due to inertial effects. This correction causes long wave fluctuations to be unstable for certain
values of the ratio of strain rates Λr = (Λb/Λa) and ratio of thicknesses H. The stability of the system
at finite Reynolds number was calculated using numerical techniques for the case where the strain rate in
one of the fluids is zero. The stability depends on the Reynolds number for the fluid with the non-zero
strain rate, and the parameter Σ = (ρΓR/η2), where Γ is the surface tension of the membrane. It is found
that the Reynolds number for the transition from stable to unstable modes, Ret, first increases with Σ,
undergoes a turning point and a further increase in the Ret results in a decrease in Σ. This indicates that
there are unstable perturbations only in a finite domain in the Σ−Ret plane, and perturbations are always
stable outside this domain.

PACS. 47.15.Fe Stability of laminar flows – 47.60.+i Flows in ducts, channels, nozzles, and conduits

1 Introduction

Fluid flow adjacent to a flexible surface is often encoun-
tered in biological systems and biotechnology processes.
The flow of blood and other fluids in the body takes place
through tubes whose walls are made of elastic materials
such as tissues and membranes. Such flows are also en-
countered in industrial applications such as hollow fibre
reactors and membrane bioreactors. Separation and pu-
rification processes in pharmaceutical industries often in-
volve flow and diffusion of a fluid in tubes and channels
made up of polymer matrices and membranes. In these
systems, it is of interest to analyse the effect of the wall
flexibility on the flow structure, in order to accurately de-
scribe the transport processes. In the present analysis, the
flow of a fluid adjacent to a solid membrane of infinitesi-
mal thickness is considered, and the effect of the flexibility
of the membrane on the stability of the flow is analysed.

There has been some work, both experimental [1] as
well as theoretical [2–4] on the surface hydrodynamics of
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polymer gels and membranes. In most of the previous the-
oretical studies on the surface modes of complex fluids,
the dispersion relation is calculated using a single fluid
model for the bulk properties. In this approach, the poly-
mer is treated as a viscoelastic fluid described by the non-
Newtonian Navier-Stokes equations, in which the shear
stress is a non-linear function of the shear rate. A two
fluid model was used by Harden, Pleiner and Pincus [2],
who wrote coupled equations for the fluid velocity and
polymer displacement field in a polymer gel. The equa-
tions were solved in the infinite coupling limit, where the
coupling constant between the fluid and the network is
large, so the velocities are assumed to be equal in the
leading approximation. In addition to the viscous stress
due to the fluid flow, there is also an elastic stress due to
straining of the network. This gave rise to novel features
that were not observed in previous studies. In particu-
lar, there is a time scale associated with elastic relaxation
of the polymer matrix which causes unusual correlations
in the surface fluctuation. The surface modes on a gel
of finite thickness was analysed by Kumaran [3], in the
limit where the elastic oscillation time for the strain field



is small compared to the viscous relaxation time. In this
limit, the dominant forces in the momentum conservation
equation are the elastic and inertial forces, and the viscous
forces cause a subdominant correction. There are multiple
frequencies of oscillation, and the decay rate of the fluc-
tuations is small compared to the frequency of oscillation.
In addition, it was found that the surface fluctuations are
sensitive not just to the conditions at the free surface, but
also to the conditions at the other (fixed) surface. There
are significant differences between “grafted” gels, where
the gel is fixed onto a rigid surface, and “adsorbed” gels,
where the network can move laterally at the fixed sur-
face. The hydrodynamic modes on a viscoelastic film of
polymeric material at the interface between two Newto-
nian fluids was analysed by Harden and Pleiner [4]. The
dispersion relations and structure factor for the surface os-
cillations were obtained using generalised boundary condi-
tions derived for a thin viscoelastic surface. The coupling
between the transverse modes and the in plane longitudi-
nal modes leads to certain unusual features of the surface
fluctuations.

There have also been studies on the effect of fluid flow
on the fluctuations at the surface of polymer gels. Ku-
maran, Fredrickson and Pincus [5] analysed the stability
of the interface between a gel and a fluid at low Reynolds
number in the absence of inertia, and found that there
could be an instability when the strain rate in the fluid is
increased beyond a critical value. This analysis has been
extended to finite Reynolds number using numerical tech-
niques by Srivatsan and Kumaran [6]. There have also
been studies on the stability of the flow of a fluid in a
tube with gel walls [7], and these studies have concluded
that the flexibility of the wall destabilises the flow. A sim-
ilar conclusion was reached in the experimental studies of
Krindel and Silberberg [8] on the flow through a gel-walled
tube. In the present analysis, we consider the stability of
the flow of a Newtonian fluid adjacent to a membrane of
infinitesimal thickness. This is different from the insta-
bilities between two fluids caused due to discontinuities in
the strain rates in the two fluids. The boundary conditions
at an interface between two fluids require that the veloc-
ity and the stress in the tangential and normal direction
are continuous at the interface. In the present case, there
is a solid membrane at the interface, and it is shown a
little later that the tangential velocity at the membrane is
zero in the leading order approximation when the normal
displacement is small compared to the wavelength of the
fluctuations. Consequently, there is no tangential stress
continuity condition, while the normal velocity and stress
are continuous across the membrane.

The analysis of the stability in the low Reynolds num-
ber limit in Section 2.1 indicates that the fluctuations are
always stable in the absence of fluid inertia. It is found
that in the limit k → 0, the decay rate of the fluctua-
tions is O(k3) smaller than the frequency. However, there
is a correction to the growth rate which is O(k) smaller
than the leading order frequency due to inertial effects.
This is determined using a low wave number analysis in
Section 2.2, and it is found that small wave number fluctu-

Fig. 1. Configuration and coordinate system of the fluid-
membrane-fluid system.

ations are unstable for certain values of the ratio of strain
rates (Λb/Λa), and for certain values of the ratio of thick-
nesses H. The calculation is extended to intermediate val-
ues of the Reynolds number using numerical techniques in
Section 2.3. In Section 2.4, a membrane with zero surface
tension but non zero curvature elasticity is considered, and
the asymptotic results are derived for this case. The main
results are briefly discussed in Section 3.

2 Analysis

The system consists of a membrane of infinitesimal thick-
ness, surface tension Γ , and negligible inertia stretched
along the interface z = 0 between two fluids A and B of
thickness R and HR, density ρ and viscosity η as shown
in Figure 1. For simplicity, the densities and viscosities of
the two fluids are equal; a variation in the densities and
viscosities will cause a quantitative change in the stabil-
ity characteristics, but the qualitative behaviour will be
the same. The effect of curvature on the normal stress in
the membrane is neglected because it turns out that the
most interesting behaviour is encountered in limit of long
wavelength, and curvature effects are not important in this
limit. The surface bounding the fluid A at z = R moves
with a velocity Va, while the surface bounding the fluid B
at z = −HR moves with a velocity Vb. The lengths in the
problem are scaled by the thickness R, the velocities by
(Γ/η) and the time coordinate by (Rη/Γ ). The equations
for the fluid are the Navier-Stokes equations:

∂iv
n
i = 0 (1)

(Re/Λa)(∂tv
n
i + vnj ∂jv

n
i ) = −∂ip

n + ∂2
j v
n
i (2)

where ∂t ≡ (∂/∂t), ∂i ≡ (∂/∂xi), the indices i and j
represent the components of a vector, and repeated indices
represent a dot product. The superscript n in equations
(1, 2) is a for the fluid A in the region z > 0, and b for the
fluid B in the region z < 0. In equation (2), the Reynolds
number is defined as Re = (ρVaR/η), and the parameters
Λa = (Vaη/Γ ) and Λb = (−Vbη/ΓH). The scaled mean



Fig. 2. Domains in the Λr−H plane where fluid inertia has
stabilising and destabilising effects in the low wave number
limit.

velocities for z > 0 and z < 0 are:

v̄nx = Λnz (3)

where n is a for fluid A, and n is b for fluid B. The bound-
ary conditions at the surfaces z = 1 and z = −H are the
no-slip conditions, which require that the normal velocity
at these surfaces is zero, while the tangential velocity is
equal to the surface velocity.

The constitutive equation relating the normal stress
and normal displacement for the membrane incorporates
the effect of surface tension, but the stress due to curva-
ture was neglected because this effect is small in the limit
of small wave number, which turns out to be the most in-
teresting limit for this system. In addition, the tangential
velocity in the fluid is set equal to zero at the membrane
surface.

vnx = 0 for n = a,b. (4)

This is because the tangential displacement of the mem-
brane surface is small compared to the normal displace-
ment when the normal displacement is large compared to
the membrane thickness. For example, if the membrane
is infinitesimally thick and the amplitude and wavelength
of the perturbations are u and λ respectively, then the
extension along the surface of the membrane is propor-
tional to (u2/λ), which is small compared to u for u� λ.
Consequently, the no-slip condition requires that the tan-
gential velocity in the fluid is also O(u/λ) smaller than
the normal velocity, and is set equal to zero in the leading
approximation.

The normal velocity boundary condition states that
the normal velocity of the fluid at the membrane is equal
to the velocity of the membrane itself, while the normal
stress is balanced across the surface.

va
z = vb

z = ∂tu τa
zz = τb

zz − Γ∂
2
xu (5)

where u is the normal displacement, and Γ is the surface
tension of the membrane.

In the linear stability analysis, small perturbations are
imposed on the mean velocity fields in the fluids A and

Fig. 3. Variation of the transition Reynolds number, Ret, as
a function of wave number, k, for H = 1. (◦) Σ = 0.1; (4)
Σ = 1.0; (�) Σ = 10.0; (�) Σ = 100.0.

B and the normal displacement of the membrane of the
form:

vni (x, z, t) = v̄ni (z) + ṽni (z) exp (ikx+ αt),

u = ũ exp (ikx+ αt). (6)

These perturbed fields are inserted into the mass and mo-
mentum equations (1, 2), and only terms linear in the per-
turbations are retained, to obtain the following linearised
equations for the velocity fields ṽa

i and ṽb
i :

dz ṽ
n
z + ikṽnx = 0 (7)

− ikp̃n +
[
−(Re/Λa)(α+ Λnikz) + d2

z − k
2
]
ṽnx

− (ReΛn/Λa)ṽnz = 0 (8)

−dzp̃
n +

[
−(Re/Λa)(α+ Λnikz) + d2

z − k
2
]
ṽnz = 0 (9)

where dz ≡ (d/dz). A fourth order differential equation
for ṽnz is obtained by adding (−dz × (Eq. (8)) + ik ×
(Eq. (9)), and using equation (7) to express ṽnx in terms
of ṽnz :[
−(α+Λnikz)(Re/Λa)+d2

z−k
2
]

(d2
z−k

2)ṽnz =0. (10)

The perturbations to the stress fields in the fluid are:

τ̃nxz = dz ṽ
n
x + ikṽnz τ̃nzz = −p̃n + 2dz ṽ

n
z . (11)

The boundary conditions are derived by inserting the
equations for the velocity and displacement (6) into the
boundary conditions (4, 5). The boundary conditions at
the surfaces z = 1 and z = −H are:

ṽnz = 0, ṽnx = 0. (12)

It is necessary to apply the matching conditions (4, 5) at
the perturbed interface of the membrane z = u. However,
the velocity and stress fields at the perturbed surface can



be expressed in terms of the velocity and stress at the un-
perturbed surface z = 0 using a Taylor series expansion,
and only the linear terms in the expansion retained, to
provide the following boundary conditions at the unper-
turbed surface z = 0:

ṽnx + Λnũ = 0 (13)

ṽa
z = ṽb

z = αũ τ̃a
zz = τ̃b

zz + k2ũ. (14)

In equation (13), the second term on the left side repre-
sents the variation in the mean velocity at the surface due
to the displacement of the surface.

The growth rate α is obtained by solving the differen-
tial equations (7, 8, 9) subject to the boundary conditions
(13, 14). In this section, the stability of the system in
the absence of fluid inertia is studied using low Reynolds
number asymptotic analysis. It is found that the system is
always stable in the absence of inertia. The effect of inertia
in the low Reynolds number limit is studied using a low
wave number analysis. The low Reynolds number asymp-
totic calculations are then extended to the finite Reynolds
number regime using numerical methods.

2.1 Low Reynolds number analysis

In this analysis, we set Re = 0 in the governing equations
for ṽa

z and ṽb
z . The solutions of the resulting equations for

ṽa
z and ṽb

z that are consistent with the boundary condi-
tions at the top and bottom plates are:

ṽa
z = a1

[
e−kz − (1 + 2k − 2kz)ekz−2k

]
+a2

[
ze−kz + (2kz − 2k − z)ekz−2k

]
,

ṽb
z = b1

[
zekz + (2k − 1)ekz/(2k) + e−(kz+2kH)/(2k)

]
+ b2

[
ze−kz + (2kH + 1)e−kz/(2k)− ekz+2kH/(2k)

]
.

(15)

The tangential velocities ṽa
x and ṽb

x are obtained using
the mass conservation equation, and the pressures p̃a and
p̃b are obtained from the momentum conservation equa-
tion in the x-direction. These expressions are inserted in
the matching conditions at the interface, i.e in (13) and
(14), and a matrix equation of the form

A C = 0 , (16)

is obtained. Here, C = [a1 , a2 , b1 , b2 ] is an array of con-
stants. The determinant of this matrix is set equal to zero
to obtain the characteristic equation. The characteristic
equation turns out to be linear in the growth rate α, and
this can easily be solved to obtain an analytical expression
for α. This analytical expression is rather complex, and so
it is not provided in its full form. The expression indicates
that the perturbations are always stable at all wave num-
bers and for all ratio of thicknesses H. In the limit k→ 0,
the first three terms in the Taylor series expansion for the

growth rate α are

α =
−iHk(H2Λa − Λb)

2(H3 + 1)

+
ik3H3[2(Λa+ΛbH)(1−H)+5(ΛaH

2−Λb)]

30(H3+1)(H2−H+1)

−
H3k4

12(H3 + 1)
+O(k5). (17)

The above equation indicates that the decay rate of the
fluctuations is O(k3) smaller than the frequency in the
limit k → 0. However, in the limit of low wave number,
the correction to the velocity field due to inertial terms
is O(k), and so the inertial correction to the growth rate
is larger than the O(k4) damping due to viscous terms in
the limit k → 0. Consequently, it is of interest to exam-
ine the effect of this inertial correction on the stability of
the system. This is determined using a low wave number
analysis in the next subsection.

2.2 Low wave number analysis

In the present section, a low wave number asymptotic
analysis is used to examine the effect of fluid inertia on
the stability in the limit k → 0.

Before proceeding with the analysis, it is useful to ex-
amine the magnitudes of the velocity and pressure fields
in the limit k→ 0. As mentioned above, the leading order
growth rate is O(k) in this limit. If ṽx scales as ṽ, then
it follows from the continuity equations that ṽz scales as
kṽ, and from the momentum conservation equation in the
x-direction it can be seen that p̃ scales as (ṽ/k).The
growth rate and the velocity and pressure fields are ex-
panded in an asymptotic series in k, and the first two
terms in the expansion consistent with the scaling consid-
erations outlined above are:

α = kα0 + k2α1 + . . . ,

ṽnz = kṽn0
z + k2ṽn1

z + . . . ,

ṽnx = ṽn0
x + kṽn1

x + . . . ,

p̃n = k−1p̃n0 + p̃n1 + . . .

(18)

The governing equation (10) is expanded in a Taylor
series in the wave number k, and the leading order and
O(k) correction to the governing equations are

d4
z ṽ
n0
z = 0 , (19)

and for ṽa1
z and ṽb1

z

d4
z ṽ

n1
z = (Re/Λa) (α0 + i Λn z) d2

z ṽ
n0
z . (20)

The leading order pressure terms are obtained from the
equations

p̃n0 = − i d2
z ṽ

n0
x , (21)



Fig. 4. Variation of the frequency, ω, as a function of wave
number, k, for H = 1. (◦) Σ = 0.1; (4) Σ = 1.0; (�) Σ = 10.0;
(�) Σ = 100.0.

and the corrections to the pressure terms are obtained
from

p̃n1 =− i[d2
z ṽ

n1
x − (Re/Λa)(α0 + i Λa z)ṽa0

x

− (ReΛn/Λa)ṽa0
z ]. (22)

The leading order normal velocities ṽa0
z and ṽb0

z are
obtained by integrating equations (19). The solutions of
these differential equations that are consistent with the
boundary conditions at the top and bottom plates are:

ṽa0
z = a1 (z − 1)2 + a2 (z − 1)2 (z + 2)

(23)

ṽb0
z = b1 (z +H)2 + b2 (z +H)2 (z − 2H).

The leading order tangential velocities ṽa0
x and ṽb0

x are
obtained by substituting equations (23) into the continuity
equations. They are

ṽa0
x = 2 i a1 (z − 1) + 3 i a2 (z2 − 1)

(24)

ṽb0
x = 2 i b1 (z +H) + 3 i b2 (z2 −H2).

The first correction to the normal velocities ṽa1
z and ṽb1

z

are obtained by integrating equations (20), while the first
corrections to the tangential velocity and pressure are
obtained from the mass conservation and x momen-
tum conservation equations. Substituting these expres-
sions into the matching conditions at the interface, i.e in
(13, 14), a matrix of the following form is obtained:

A C = 0 , (25)

where C = [a1 , a2 , b1 , b2 ]. This characteristic equation,
which is obtained by setting the determinant of A equal
to zero, has the form:

f(α0) k + g(α0, α1) k2 + . . . = 0 (26)

where f is the leading order term of the determinant and
g is its first correction. The leading order, first order and

Fig. 5. Variation of the transition Reynolds number, Ret, as
a function of wave number, k, for Σ = 0.1. (◦) H = 0.5; (4)
H = 1.0; (�) H = 1.5; (�) H = 2.0.

higher order correction terms of the determinant should
separately be zero for the determinant to be zero, i.e

f(α0) = 0 , g(α0, α1) = 0 , . . . (27)

Solving these simultaneous equations, we get

α0 = −
iH (H2Λa − Λb)

2 (H3 + 1)
, (28)

α1 =−
Λa ReH3

120 (H3 + 1)2 (H2 −H + 1)

× [(H5 − 4H4 + 4H3 − 2H2 + 2H − 2)

− 6HΛr(H
4 −H3 +H2 −H + 1)

+HΛ2
r (1− 4H + 4H2 − 2H3 + 2H4 − 2H5)] (29)

where Λr = Λb/Λa. Equation (29) for α1 indicates that the
O(k2) correction to the growth rate due to inertial effects
is real, and could be positive or negative depending on
the parameter values of H and Λr. The parameter regimes
where the perturbations are stable or unstable is shown in
the Λr −H plane in Figure 2. Only the parameter range
for −1 ≤ Λr ≤ 1 has been shown because the results for
Λr < −1 and Λr > 1 can be deduced from symmetry.
The results indicate that there are domains of instability
for both countercurrent flow (Λr > 0), and for cocurrent
flow (Λr < 0). For 0.092 < Λr < 10.89, perturbations are
unstable for all values of H, and outside this regime there
is instability only when H is less than a minimum value
or greater than a maximum value.

The range of wave numbers that are unstable can be
determined by adding the inertial correction (29) to the
viscous solution for the growth rate (17), and determining
the wave numbers for which the real part of the resulting
growth is positive. This calculation indicates that there
are unstable perturbations only for:

k < km(Λr,Re) (30)



Fig. 6. Variation of the frequency, ω, as a function of wave
number, k, for Σ = 0.1. (◦) H = 0.5; (4) H = 1.0; (�)
H = 1.5; (�) H = 2.0.

where

km =

[
Λa Re

10 (H3 + 1) (H2 −H + 1)

]1/2

× [(H5 − 4H4 + 4H3 − 2H2 + 2H − 2)

− 6HΛr(H
4 −H3 +H2 −H + 1)

+HΛ2
r (1−4H + 4H2 − 2H3 + 2H4−2H5)]1/2 (31)

while wave numbers with k > km are stable. The above
calculations indicate that fluid inertia has a weakly desta-
bilising effect on long wavelength perturbations in the low
Reynolds number limit for certain parameter values of ra-
tio of thickness H and ratio of strain rates Λr. It is of
interest to examine the stability of the system when the
Reynolds number is raised to finite values. This is deter-
mined using numerical methods in the next subsection.

2.3 Numerical solution

The domains of instability are determined numerically
for the case where Λr = 0. The results are expressed
as a function of the parameter Σ which is defined as
Σ ≡ (Re/Λa) = ρΓR/η2. This ratio is independent of flow
parameters and is a function only of fluid and membrane
properties.

The numerical method is identical to that used in
Srivatsan and Kumaran [6]. There are four constants of
integration for the fourth order differential equation (10),
out of which two are fixed by the zero velocity conditions
at z = 1 and z = −H. Consequently, there are two lin-
early independent solutions for the velocity fields of flu-
ids A and B. The fourth order differential equations for
the velocity fields (10) are solved using a fourth order
Runge-Kutta integrator. The velocity field in fluid A is
determined by starting at the surface z = 1, and integrat-
ing to the interface, while the velocity field in fluid B is
obtained by starting at the surface z = −H and integrat-
ing to the interface. In addition, it was necessary to use

Fig. 7. Variation of the transition Reynolds number, Ret, as a
function Σ for H = 1.0. (◦) k = 0.25; (4) k = 1.0; (�) k = 2.0;
(�) k = 4.0.

orthonormalisation techniques due to the stiff nature of
the equations. The values for the fundamental solutions
at the membrane surface were inserted into the boundary
conditions (13, 14) to obtain a 4×4 characteristic matrix.
The characteristic equation is obtained by setting the de-
terminant of this matrix equal to zero. The characteris-
tic equation is non-linear in the growth rate α, and so it
cannot be obtained analytically. Numerical solutions were
obtained using Newton-Raphson iteration, and the solu-
tions for finite Reynolds number were determined using
a continuation scheme where the zero Reynolds number
solutions were taken as the initial guess.

The numerical calculations show that for a constant
value of Σ, the transition Reynolds number Ret, the
Reynolds number at which the system is neutrally stable,
increases monotonically with k.

Ret = k
√

10Σ/Φ (32)

where

Φ =
2− 2H + 2H2 − 4H3 + 4H4 −H5

(H3 + 1)(H2 −H + 1)
· (33)

It can easily be verified, by adding up the real parts of
the growth rates in the low Reynolds number limit (17)
and the low wave number inertial correction (29) that the
above transition Reynolds number is in agreement with
the asymptotic analyses. Figure 3 shows the variation of
Ret with k obtained numerically for four values of Σ. For
low values of k, the variation of log (Ret) with log (k) is
linear with slope equal to one, implying that Ret ∝ k for
all Σ values, and the constant of proportionality is close
to the value (30) as predicted by the low wave number
analysis. For high values of k, the variation of log (Ret)
with log (k) is linear, but the slope is 1.5, indicating that
Ret ∝ k1.5. The variation of frequency ω of the neutrally
stable mode as a function of k for different values of Σ is
shown in Figure 4. This graph indicates that ω ∝ k for
low values of k and ω ∝

√
k for high values of k. The de-

pendence of Ret on k for different values of H is shown in



Fig. 8. Variation of the frequency, ω, as a function Σ for
H = 1.0. (◦) k = 0.25; (4) k = 1.0; (�) k = 2.0; (�) k = 4.0.

Fig. 9. Variation of the transition Reynolds number, Ret, as
a function Σ for k = 1.0. (◦) H = 0.5; (4) H = 1.0; (�)
H = 1.5; (�) H = 2.0.

Figure 5. This scaling relationship of Ret with k is iden-
tical to that in Figure 3. In addition, it is observed that
Ret becomes independent of H for k > 4.0. The frequency
of the neutrally stable mode, ω, is shown as a function of
k for different values of H at Σ = 0.1 in Figure 6. The
trends observed in this figure are similar to those in Fig-
ure 4 for frequency as a function of k at different values
of Σ for H = 1.0.

Figure 7 shows the variation of Ret with Σ for four dif-
ferent values of k. The transition Reynolds number first
increases as the value of Σ is increased, and then under-
goes a turning point. Consequently, there is a finite region
in the Ret−Σ space within which the system is unstable,
and perturbations are always stable when Σ is increased
beyond a maximum value. The variation of the frequency
ω of the neutrally stable modes as a function of Σ at
H = 1.0 is shown in Figure 8. Figure 9 shows the varia-
tion of Ret with Σ for various values of H at a fixed k,
and Figure 10 shows the frequency of the neutrally sta-
ble modes as a function of Σ for different values of H
at k = 1.0. As expected, the qualitative features of these
curves are similar to those of Figures 7 and 8.

Fig. 10. Variation of the frequency, ω, as a function Σ for
k = 1.0. (◦) H = 0.5; (4) H = 1.0; (�) H = 1.5; (�) H = 2.0.

2.4 Surface with no surface tension

In this subsection, the asymptotic analysis is extended to a
surface which has zero surface tension and non-zero curva-
ture elasticity K. In this case, the normal stress condition,
analogous to (5), becomes

τa
zz = τb

zz +K∂4
xu. (34)

It is appropriate to scale the velocity by (K/R2η), and
the time by (R3η/K). The Reynolds number Re is de-
fined as before, and the parameters Λa = (VaR

2η/K) and
Λb = (−VbR

2η/KH). The mean velocity is then given by
equation (3), and the linearised equation for the fluid ve-
locity field is given by (10). The boundary conditions (12)
at the surfaces z = 1 and z = −H and the normal and tan-
gential velocity continuity conditions at the surface z = 0
remain unchanged, but the normal stress condition is

τ̃a
zz = τ̃b

zz + k4ũ. (35)

The analysis is carried out with these modifications and
the result for the growth rate in the absence of inertia in
the limit k → 0, analogous to (17), is

α =
−iHk(H2Λa − Λb)

2(H3 + 1)

+
ik3H3[2(Λa+ΛbH)(1−H)+5(ΛaH

2 − Λb)]

30(H3+1)(H2−H+1)

+O(k5). (36)

In contrast to the growth rate (17) for a membrane with
surface tension, there is no stabilising term of O(k4) in
the present case because the normal restoring force due
to curvature elasticity is O(k2) smaller than that due to
surface tension. The calculations show that the stabilising
effect due to curvature elasticity is O(k5) smaller than the
leading order frequency.

The low wave number analysis for the present case
is carried out in a manner similar to the analysis of



Section 2.2, and the calculations show that the leading or-
der and the O(k) correction to the growth rate are iden-
tical to (29) and (29), because the surface tension and
curvature elasticity do not contribute to the inertial cor-
rection to the growth rate at this level of approximation.
The destabilising effect due to fluid inertia is the same as
that for a surface with surface tension, but the stabilising
effect is much smaller. Consequently, the domains of sta-
bility shown in Figure 2 are the same for the case where
stabilisation is due to curvature elasticity, with the mod-
ified definition of the parameters Λa and Λb. However,
the transition Reynolds number is proportional to k2

√
Σ,

because the destabilising effect is O(Re2Σk) smaller than
the leading order frequency while the stabilising effect due
to curvature elasticity is O(k5) smaller than the leading
order frequency. This dependence is different from (32) for
a membrane with surface tension.

3 Conclusions

The effect of fluid flow in the stability of the surface fluc-
tuations of a solid membrane separating two Newtonian
fluids was analysed using a linear stability analysis. First,
the growth rate of fluctuations was calculated analytically
in the absence of fluid inertia, and it was found that the
real part of the growth rate is always negative, indicating
that the fluctuations are always stable at all wave num-
bers. The fluctuations have the slowest decay rate in the
limit k → 0, where the decay rate is O(k3) smaller than
the leading order frequency. However, in this limit, the in-
ertial terms cause a correction to the growth rate that is
O(k) smaller than the leading order frequency. The effect
of this correction was calculated using a low wave number
(k � 1) asymptotic analysis. This indicated that fluctua-
tions could be unstable due to inertial effects for certain
values of Λr = (Λb/Λa) and ratio of thickness H.

The asymptotic analysis was extended to finite
Reynolds number using numerical analysis for the case
where the strain rate in one of the fluid is zero. In the
calculations, the Reynolds number for the transition from
stable to unstable modes for the fluid with non-zero strain
rate, Ret, was expressed as a function of the parameter
Σ = (ρΓR/η2), which is only a function of the fluid and
wall parameters and is independent of the fluid velocity.
The results of these calculations indicate that the tran-
sition Reynolds number first increases as Σ is increased,
and then undergoes a turning point of infinite slope and
any further increase in the transition Reynolds number
results in a decrease in Σ for the neutrally stable modes.
Consequently, perturbations could become unstable only
in a finite domain in the Σ−Re plane, and perturbations
are always stable outside this domain.

The authors would like to thank the Department of Science
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