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STABILITY OF FORCED OSCILLATIONS
OF A SPHERICAL PENDULUM*

BT

JOHN W. MILES**
University of California, Los Angeles

Summary. The equations of motion for a lightly damped spherical pendulum that
is subjected to harmonic excitation in a plane are approximated in the neighborhood of
resonance by discarding terms of higher than the third order in the amplitude of motion.
Steady-state solutions are sought in a four-dimensional phase space. It is found that:
(a) planar harmonic motion is unstable over a major portion of the resonant peak, (b)
non-planar harmonic motion is stable in a spectral neighborhood above resonance that
overlaps neighborhoods of both stable and unstable planar motions, and (c) no stable,
harmonic motions are possible in a finite neighborhood of the natural frequency. The
spectral width of these neighborhoods is proportional to the two-thirds power of the
amplitude of excitation. The steady-state motion in the last neighborhood is quasi-
sinusoidal (at the forcing frequency) with slowly varying amplitude and phase. The
waveform, as determined by an analog computer, is periodic but quite complex.

1. Introduction. If the point of suspension of a lightly damped spherical pendulum
is made to oscillate in a plane, it is observed that the steady-state response may depart
from that plane in some neighborhood of resonance. The projection of the bob on a
horizontal plane then may trace either a fixed ellipse, corresponding to a non-planar
harmonic motion, or a quasi-ellipse of slowly, but non-uniformly, rotating axes and
slowly changing shape, corresponding to a non-planar oscillation with slowly varying
amplitude and phase. This last motion is reminiscent of the free oscillations of an un-
damped spherical pendulum [1], but in that case angular momentum is conserved, and
the rotation of the quasi-ellipse is uniform.

The linearized differential equations for the transverse motions (say the Cartesian
coordinates of the projection on a horizontal plane) of a spherical pendulum are un-
coupled. The non-linear equations are, however, coupled, in consequence of which
energy may be transferred between the two degrees of freedom. Planar motion is still a
solution of those equations, to be sure, but it need not be stable with respect to transverse
perturbations.

We present here an analysis based on the equations of motion obtained by including
terms of first and third order in the amplitude of motion, but discarding all non-linear
terms of higher order. We shall seek quasi-sinusoidal solutions (at the forcing frequency)
with slowly varying amplitude and phase. This leads to the description of the motion
in a four-dimensional phase space, in which simple harmonic motions —i.e., those with
constant amplitude and phase—appear as singular points. We shall determine these
singular points for both planar and non-planar motions and shall examine the stability
of motions in their neighborhoods. Explicit solutions for phase-space trajectories that
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do not remain in the neighborhoods of the singular points appear to be beyond presently
available powers of analysis, but such trajectories have been studied on an analog
computer.

The essential results of the present analysis are:

a) Planar harmonic motion is unstable over a major portion of the resonant peak
in an amplitude-frequency plane.

b) Non-planar harmonic motion is stable in a spectral neighborhood above resonance
that overlaps neighborhoods of both stable and unstable planar motions.

c) No stable, harmonic motions are possible in a finite neighborhood of the natural
frequency (g/l)1/2.

The spectral width of each of these neighborhoods is proportional to the two-thirds
power of the amplitude of excitation.

Acknowledgements. I am indebted to L. E. Freed for bringing this problem to my
attentionf and to W. L. Graves, R. E. Hutton and F. C. Rieman for aid with the analog
computer studies.

2. Equations of motion. We consider a spherical pendulum of length I and point
mass m suspended from the origin of the Cartesian coordinate system (Ix, ly, Iz) in a
gravitational field (g) directed along the positive z-axis. The position of static equilibrium
then is (0, 0, 1), while the geometric constraint is

x2 + y2+z2 = 1. (2.1)

Let (^7r — a, kir — p, y) be the direction cosines of the pendulum, so that

x = sin a, y = sin /3, z = cos y, (2.2)

and

sin2 y = sin2 a + sin2 /3. (2.3)

We shall use a and j3 as the generalized coordinates of the pendulum.
Now let us suppose that this Cartesian coordinate system is subjected to the har-

monic displacement (e cos wt, 0, 0). The kinetic and potential energies and their second-
order approximations (retaining terms through fourth order in e, a and /3) then are

T = — (u sin cot + a cos a)2 + Q3' cos /3)2 + (7' sin y)2~\ (2.4a)

= ^wiZ2[(eco sin ut)2 — 2eo)(l — %a)a sin coZ + a2 + |3" + 2a/3a j3 ] (2.4b)

and

V = mgl(l — cos 7) (2.5a)

V = mgl( 1 — cos 7) (2.5a)

= \mgl a2 + /32 + | afi1 - ~ (a* + /J4) | • (2.5b)1
fFreed predicted the instability of forced, planar oscillations of an undamped spherical pendulum in

an unpublished memorandum (Space Technology Laboratories, 18 October, 1957). His analysis contained
certain inconsistencies, which led the writer to undertake the present analysis.
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Forming the Lagrangian T — V from (2.4b) and (2.5b), we may proceed to the second-
order approximations to the equations of motion in the form

La — + \olL|82 = eco2 cos ait (2.6a)

and

Lp - &Y + hpLa2 = 0, (2.6b)
where

and

L-jp + p' (2.7)

V = (2.8)
We have neglected a factor of cos a on the right-hand side of (2.6a) in anticipation of
the fact that a = 0(e1/s) in the subsequent analysis.

We may extend the preceding formulation to include damping by introducing the
appropriate dissipation function. Taking the damping force to be equal (in magnitude)
to the relative velocity multiplied by the damping coefficient 2 Smp, where S is the ratio
of actual damping to critical damping in first approximation, we find that we may
generalize (2.6a, b) simply by letting

L = 2 sp£+p2- (2-9)

If the damping were proportional to the absolute velocity of the mass we also would
have to add the term 25epu sin wi to the right-hand side of (2.6a), but this term would
be negligible in the subsequent calculations, which assume 8 — 0(e2/s).

3. Harmonic motion in plane of excitation. Setting /S = 0 in (2.6a, b), we obtain

La — \p2a = eco2 COS wt. (3.1)

This is Duffing's equation, and its solution for | e |<<C 1 has been discussed extensively
[2, 3]. We shall be concerned only with that neighborhood of resonance in which La,
p2a3 and eco2 are of the same order of magnitude as e —» 0, i.e. a = 0(e1/3) and (co/p)2 =
1 + 0(e2/3). We then may pose the solution to (3.1) as a Fourier series in (2n + l)w<
with amplitudes of 0[e<2"+1)/3]. Only the first two terms of this series need be retained
within the approximations already implicit in (2.6a, b), however, and we therefore write

a{t) = e1/3a cos 6 + ta3 cos 30 + 0(e5/3) (3.2)

and
u2 = p2(l + e2/3„), (3.3)

where
6 = at, (3.4)

a and a3 are dimensionless amplitudes, and v is a dimensionless measure of frequency.
Substituting (3.2)-(3.4) into (3.1), neglecting terms of 0(«5/3), and equating the co-
efficients of cos 6, we obtain

fa3 + va + 1 = 0 (3.5)
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or, equivalently,
v = —a~l — \a . (3.6)

The resonance curve given by (3.6) is plotted in Fig. 1. The left and right-hand

3 < 9«,/s 5/3
-?(2) TVT.

i/a

Fig. 1. The resonance curves for forced, planar oscillations of a spherical pendulum, as given by (3.6)
and (3.12). Stable oscillations of the undamped pendulum are restricted to branches I and IV. The
oscillations of branches II and III are unstable, although those of branch III would be stable if the

motion were constrained to the plane of excitation.

branches comprise those points for which a > 0 and a < 0, respectively; portions II and
III of these branches represent unstable motions, as we shall show in Sec. 5 below. We
emphasize that (3.5) and (3.6) are not valid for large v (since t/3v has been assumed to be
small) or, equivalently, for either very small | a | or very large | a |.

The appropriate solution to (3.1) for small | a | is given by the linear approximation

a = e[(p/co)2 — l]"1 cos 6. (3.7)

We remark that if e2/3x is added to the left-hand side of (3.5) the result (3.2) tends
uniformly to (3.7) as | a \ —> 0, while (3.6) goes over to

„ = _(a + e2/3)_1(l + ia2). (38)

The appropriate solution to (3.1) for large values of | a \ requires the inclusion of
damping. We shall assume that 5 = 0(e2/3) in (2.9) and write

8 = i/c«2/3. (3.9)

We then replace (3.2) by
a = e1/8 I a \ cos (0 - 0) + e | a3 \ cos (3d - 03) + 0(e5/3), (3.10)

substitute into (3.1) with L given by (2.9), and equate coefficients of cos (6 — </>) and
sin (6 — (j>) to obtain

§ | a |3 + v | a |2 -(- cos<j> = 0 (3.11a)
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and

k | a | = sin </>. (3.11b)

Eliminating <£ between (3.11a) and (3.11b), we obtain

* = ±(<T2 - k2),/2 - W, | a | < k-1. (3.12)

This last result, which evidently tends to (3.6) as k | a | tends to zero, is plotted in
Fig. 1 for k = \. The resonant peak occurs at v= —1/(8k) and | a \ — 1/k, where <f> = 7r/2,
while 0 tends to 0 and t as v tends to — °q and + respectively. The peak value of a
is e1/3/« = e/25, exactly as in the linear approximation; in either approximation, this
peak represents the maximum response at the forcing frequency and is characterized by
a balance between applied force and damping force at a frequency determined by a
balance between inertial and restoring forces.

We shall consider the stability of the foregoing solution in Sec. 5 below.
4. Differential equations in phase space. Guided by the considerations of the

preceding section, we seek a general solution to (2.6a,b) in the neighborhood of reso-
nance—i.e., for | to2 — p2 | = 0(e2/3p2) as 0—in the form*

a = €1/3[/i(t) cos 6 + /2(r) sin 0] (4.1a)

and

P = «1/3[Mt) COS e + /4(t) sin 0], (4.1b)

where

r = h2/3e, (4.1c)

and regard the /,• (i = 1, 2, 3, 4) as Cartesian coordinates in a four-dimensional phase
space. Substituting (4.1), (3.3) and (3.9) into (2.6a, b) and (2.9) and equating coefficients
of cos 6 and sin 6, we may place the results in the form

^ = Fi(U ,U,U, U) - Kh (4.2)ar

where

and
Fi = -H,2 , F2 = H, F3 = -Ha , Ft = H,3 , (4.3)

h = A + ivfifi + - UUU - Ufi)■ (4.4)
Repeated subscripts imply summation and subscripts following commas imply differentia-
tion with respect to the corresponding /, , in accord with the usual conventions for
Cartesian tensors.

It is well known that, by virtue of the fact that I<\ — k/; is an integral function of
the fi , the set of differential equations (4.2) has a unique solution for any prescribed
set of initial values, /, (0). The available tools of analysis appear to be inadequate for the
explicit calculation of this solution for arbitrary /;(0), however, and we shall find it
necessary to restrict the subsequent analysis primarily to a discussion of the solutions

*This is an obvious generalization of Van der Pol's method for a single degree-of-freedom oscillator.
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of (4.2) in the neighborhoods of its singular points. Some global properties of (4.2) are
discussed in the Appendix, but they do not go very far toward the main goal of explicit
solutions.

5. Solutions near the singular points. The singular points of the set of differential
equations (4.2) are given by the zeros of the algebraic equations

Ft - icfi = 0. (5.1)
The coordinates of such a point obviously constitute a solution to (4.2), and the substitu-
tion of these coordinates in (4.1a,b) yields a simple harmonic motion. Conversely,
the solution (4.1a,b) can be simple harmonic only at a singular point in the phase
space. [The description simple harmonic is, of course, appropriate only insofar as terms
of 0(e) are neglected in a and 13.]

To determine the stability of the harmonic motion corresponding to a given singular
point, say f'f', we may consider the perturbation solution

fM = /J0) + c, exp [(X - k)t], | c, | « 1. (5.2)
Such a solution tends to the singular point if X < k, remains in the neighborhood of the
singular point if X = k, or departs from this neighborhood if X > k. We designate both
the singular points and the corresponding harmonic motions as stable if X < k or un-
stable if X > k, but we emphasize that these terms are mathematically significant only
for trajectories originating in the neighborhood of the singular point under consideration.
In particular, more than one stable singular point may exist for given values of v and
k (see below), and the asymptotic behavior (as r —> °°) of a solution for these values
of v and k then must depend on the initial conditions /-0).

Substituting (5.2) into (4.2) and linearizing in the c, , we obtain

[X SH - Fj"f]c,- = 0, (5.3)

where Si, is the Kronecker delta. It follows that the X's must be equal to the latent roots
of the matrix Evaluating Fitf from (4.3), we may place the characteristic determi-
nant in the form

| X 5,-,. - | = X4 + (Mm2 + 2M123l + M3l34)X2 + | \ = 0, (5.4)

where MVQrs is that minor of | | containing those elements common to rows p, q
and columns r, s (note that MVai — M3n2).

Let us consider first the stability of the harmonic solutions for planar motion. The
solution to (5.1), as obtained from (3.11) and (3.12), then is given by

A = or, f2 = Ka2, U = 0, U = 0, (5.5a)

and

v = — cTV — | a, (5.5b)

where

t = +(1 — kV)1/2, (5.6)

and

a ^ 0 as !° < 0 < ^T- (5.7)
2lr 7T
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Substituting (5.5) into (5.3), we find that either

X2 = X2 = | a~2r(a3 — 4 r), c3 = c4 = 0, (5.8a)

or

-.2 12 3 _z ,A = Xjs = — — a r \(a3 + |r) > Cn = c2 = 0. (5.8b)

The critical condition X2 = k implies ra3 = 4, while = k implies ra = —4/3;
each of these conditions yields two real roots for sufficiently small values of k. The roots
of X2 = k imply dv/d\ a | = 0, corresponding to the points of vertical tangency on the
resonance curve of Fig. 1, and that portion of the resonance curve between these two
points represents unstable oscillations of the pendulum independently of whether or
not it is constrained to the plane of excitation. The roots of X^ — k occur on the right-
hand branch (a < 0) of the resonance curve and are significant only if transverse motion
of the pendulum is possible.

If k = 0, \2 > 0 for a > 22/3 and X^ > 0 for — a > (4/3)1/3. We designate the corres-
sponding, unstable branches of Fig. 1 as II and III and the stable branches as I and IV.
If k <5C 1 the upper critical points are given by

X„ = k at a — k 1 — 8k5 + 0(ku)

and
v = —(1/8)k 2 — 2/c4 + 0(k10)

and by
X^ = k at —a = k_1 — (8/9) + 0(/cn)

and
v = —(1/8K2 + (14/9) k4 + 0(k10)-

We therefore arrive at the curious result that planar oscillations of a damped spherical
pendulum are stable in a very small neighborhood of the resonant peak—viz.,
— 2k4 < v + (1/8)k~2 < (14/9)/c4—but are unstable over most of the remainder of this
peak—namely for a > 22/3 + f«2 + 0(k ) below resonance and for a > (4/3)1/3 +
(2/9)k + 0(k ) above resonance. It seems likely, however, that the initiation of a phase-
space trajectory terminating at the singularity corresponding to this small neighbor-
hood of the resonant peak would be quite difficult and that most trajectories in this
frequency band would terminate on branch I (see Sec. 6).

It is relatively straightforward to show that (5.1) has at most one solution other
than that of (5.5). If k = 0 this solution is given by

U = a, f2 = 0, U = 0, fl = 62 = a2 + | a"1 (5.9a)

and
V = -la'1 + W (5.9b)

provided that either a > 0 or a < — (4/3)1/3; b is imaginary if —(4/3)1/3 < a<0.
Substituting (5.9) into (5.4), we obtain

+1 a(a3 + f)^2 + |a ](a3 + 3) = (5.10)
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Regarding (5.10) as a quadratic in A2 and invoking Descartes' rule of signs, we see
that it has one positive root if — a3 > 4/3. This implies (since b2 < 0 if — a3 < 4/3)
that there can be no stable harmonic motions corresponding to a < 0 in (5.9). If a > 0
there are no positive real roots to (5.10), but the roots are complex if a<0.841 (p<0.154).

We conclude that the non-planar, undamped harmonic motion defined by (5.9) is
stable only for a > 0.841 (v > 0.154). The locus of those stable motions is plotted as
branch VI in Fig. 2, together with the stable branches I and IV for planar oscillations.

|o| .

Fig. 2. Branches I and IV comprise the stable solutions for (forced) planar oscillations of a spherical
pendulum and branch VI the stable solutions for non planar oscillations. See Table 1 for a summary of

both stable and unstable branches.

The explicit results corresponding to (5.9) for k > 0 are quite cumbersome;
accordingly, we state only the result that the maximum displacement for non-planar,
harmonic motion is given by

(a2 + PXL = 2~1/V/V1 = 2~3/2(f/S) (5.11)

at

fi = 0, j2 = §k_1, f3 = |(1 + s)k_1 ft = 5(1 ~ s)*-1 (5.12a)

and

where

= —(1 + 3s) k 2, (5.12b)

s = [1 - (32/3) k]. (5.13)
We observe that the maximum potential energy of this motion, being proportional to
the maximum value of a + /32 in first approximation, is only one-half that of the planar
oscillation (for which amax = e/25 and /3 = 0).

The foregoing results are summarized in Table 1 on the assumption that terms of
order k can be neglected compared with unity. The central results are:

a) Simple harmonic, planar solutions are stable if either v < —0.945 or v > 0.757.
b) Simple harmonic, non-planar solutions are stable if v > 0.154.
c) Simple harmonic motions are unstable if —0.945 < v < 0.154.
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TABLE 1
The domains of stable and unstable harmonic motions, as plotted in Figs. 1 and 2. Branches I
and IV comprise stable planar motions, while branch VI comprises stable non-planar motions.

Branch p=e-2/3(u2/p2_1)

I
II
III
IV
V
VI
VII

0, 1.59
1.59, k~1

-1.10
-1.10, 0
0, 0.841

0.841, ^r1
-J -1.10

— co, —0.945
0.945

0.758
0.758, co

- co, 0.154
0.154, I k 2
0.758, | k"2

stable
unstable

stable
stable

unstable
stable

unstable

stable
stable

unstable
stable

unstable
stable

unstable

This range of instability decreases with increasing damping (probably monotonically,
but we have not proved this). By stable, we imply only that the motion of a lightly
damped pendulum will tend to a simple harmonic motion if its trajectory through a
prescribed point in the /.-phase space (corresponding to prescribed initial conditions)
passes sufficiently close to the appropriate singular point. In particular, both planar and
non-planar simple harmonic motions are stable for 0.757 < v < §k_1, and which would
be approached asymptotically would depend on the initial conditions (we have not proved
that either would be approached, but this seems entirely plausible on physical grounds).

6. Analog computor studies. The differential equations (4.2) were programmed on
an analog computer in order to gain further insight into the character of their solutions,
especially in that frequency range where no stable simple-harmonic solutions exist.
The damping was adjusted to give k = J.

The solutions to (4.2) for v < —0.85 settled down quite rapidly to the solution
given by branch I of Fig. 2 (the critical value of v given by X„ = k = \ is —0.90, but
the difference is within the precision of the computer). As anticipated, no steady state
solutions were obtained in the neighborhood of the resonant peak for planar motion,
even though the results of the preceding section indicate such a possibility for a v-
interval of 0.01 near v — — 2 (for k = J).

The asymptotic solutions for —0.85 < v < 0.10 were independent of the initial
conditions (so that the description limit cycle would be appropriate) and were periodic,
but the waveforms (of /1,2,3.4) were far from sinusoidal except for values of v just below
v — 0.10 (see Fig. 3). This appears to be connected with the fact that the perturbation
of (5.2) exhibits a pure divergence (X positive real) for v just above —0.85 and oscillatory
instability (X2 complex) for v just below 0.10. It suggests that a perturbation solution of
(4.2) via Fourier series might be relatively efficient in the latter neighborhood, but not
elsewhere. The solutions for intermediate values of v, as shown in Fig. 3, are typical of
essentially non-linear phenomena—e.g., relaxation oscillations. (We note that the motion
of the pendulum is sinusoidal only if the /,• are constant.)

The planar and non-planar solutions corresponding to branches IV and VI of Fig. 2
were observed for v > 0.8 and 0.1 < v < 1.9, respectively. The motion could be trans-
ferred between these two branches throughout the range 0.8 < v < 1.9 by introducing
transient disturbances. This range naturally lies within the overlapping range of stability
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Fig. 3. The functions/i,2,3,4(7-) for values of v in the range (—0.85 to 0.10) where no simple harmonic
motions are stable.

Fig. 4. The functions /1,2,3,i(r) at v = 1.2, illustrating the jump (initiated by a transient disturbance)
from planar to non planar, harmonic motion.

in consequence of difficulty of initiating phase-space trajectories that will terminate on
branch IV as v —* 0.75 + or branch VI for v —* 2—. A typical run, illustrating the transfer
from branch IV (planar motion) to branch VI (non-planar motion), is shown in Fig. 4.
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Appendix
We consider here the differential equation

~ = F,(f) - xf< , (Al)

where

f = {/.} (« = 1,2, >--,2N) (A2)
is a vector in a 2Ar-dimensional phase space.

F2j—i = H.2i , F2j = H,2,_i (j = 1,2, • • •, iV") (A3)

and

H = //(f). (A4)
If k = 0 this system has the form of Hamilton's equations for a conservative system

(let /2,_x = p, and /2; = <?,-) with H as the Hamiltonian. f We infer from this that

//(f) = const. (k = 0) (A5)

is a first integral of (Al), as also may be proved directly by calculating dH/dr with
the aid of (Al) and (A3). We may extend this analogy to non-conservative systems
through the transformation

/. = 1*e-K\ t) , (A6a, b)

where

H* = H*(f, r) = e2KTH(fe~KT), (A7)

but then H* = const, is no longer a first integral of (A6).
The result (A5) implies that a trajectory associated with the initial conditions f = f0

must remain on the hypersurface //(f) = H0 if k = 0, but we may prove that (Al)
cannot be satisfied everywhere on a closed hypersurface if k ^ 0. Consider the integral

I = Is Ui d^ dSifd, (A8)
which must vanish identically if S is any closed surface in the /.-space. If (Al) were
satisfied everywhere on some S we would have

I = f nx(F, - Kid dSifJ (A9a)
J s

= [ (Ft,, - 2Nk) dV (A9b)
J V

by applying the tensor form of Gauss' divergence theorem to transform the surface
integral, V being the enclosed volume. But Fiti = 0 from (A3), whence (A9b) reduces to

/ = -2 NkV, (A10)

fBut note that H of (4.4) is not, the conventional Hamiltonian for the spherical pendulum.
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which can vanish only if k = 0. This result is a direct extension of the well-known criterion
of Bendixson for phase planes (N = 2).

We may investigate the boundedness of the solutions to (Al) by forming

Yr (i I f D = /•'£" = - /«->#« — K I f |2, (All)

where j is summed from 1 to N. In the particular case of (4.4), we obtain

T (i If I2) = /i - * I f I2 (A12a)a t

(£)' - (>. - £){'■ - £). (A 12b)

It follows that the solutions to (4.2) in the phase space must tend to the interior of any
hypersurface for which (A12b) is negative and hence that the asymptotic motion must
be confined to the interior of a hypersphere of radius fk_1 with center at fi = §/c-1,
fi = fs — 1i = 0. The maximum amplitude of this asymptotic motion is given by /] = k-1,
U = fa — f* = 0) corresponding to planar resonance.
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