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1. Introduction. John [1] has shown that in problems of finite plane strain of

isotropic elastic materials, the analysis is considerably simplified if the strain energy

density has the form

w = C[4>{X,+h)-hhl (1.1)

where and A 2 are the principal stretches. A material with this form of W is called

harmonic. The harmonic form of W has been used by a number of investigators

[1-4] to obtain explicit analytical solutions of the equations of equilibrium.

In the present paper we discuss the stability of equilibrium for harmonic materials.

The problems considered are strictly two-dimensional, and we consider stability ver-

sus plane alternatives only. Half of the problem of stability is solved by a theorem of

Graves [5] which implies that a deformation is locally stable only if the strain energy

is rank-one convex at each strain involved in the deformation. We prove a restricted

form of the converse. For harmonic materials, and for displacement boundary value

problems with no body force, an equilibrium state is stable if W is rank-one convex

at each strain involved. Moreover, every locally stable state is globally stable (Section

7).

The basic stability theorem can also be stated in terms of Wq, the quasiconvexifica-

tion of W. For the problems considered, an equilibrium state is stable if and only if

W = Wq at each point in the deformed body. We determine Wq explicitly in Sections

5 and 6. With I = Xi + A2 and J = A1A2, it has the form

Wq = C[<t>c{I)-J], (1.2)

where is the largest nondecreasing, convex function of I that nowhere exceeds

Then, as a more directly useful statement of the theorem, an equilibrium state

is stable if and only if (j) - <j)c at each point in the deformed body.

Wq is determined by first finding the rank-one convexification Wr of the density

W, and then showing that Wq = Wr for harmonic materials. These concepts are

explained in detail in Sections 4 to 6, after some mainly notational preliminaries in

Sections 2 and 3. In particular, we show that <j>c in (1.2) is convex as a function of

the deformation gradient F.
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In Section 5 we obtain a result that is useful because of its simplicity. In a stable

deformation,

<t>'>0 and </>">0 (1.3)

at each point in the deformed body. If either of these conditions is violated at some

point, the deformation is unstable.

In Section 8 we give an example that illustrates the meaning of the function Wq.

Let E and Eq be the total strain energies based on W and Wq, respectively. Then

every stable deformation minimizes both E and Eq. Without restriction to harmonic

materials, Dacorogna [6] has shown that this is true generally. His results also imply

that when E has no minimizer, the minimizer of Eq can be regarded as the mini-

mizer of E in a certain generalized sense. Our example illustrates this. The physical

interpretation of Wq as an observable energy density has been discussed by Pipkin

[7], who also gives a number of specific examples in the context of membrane theory

[8-10]. The general area of quasiconvexification is reviewed by Kohn and Strang [11].

2. Kinematics. We consider strictly two-dimensional deformations in which a par-

ticle initially at x moves to the place r(x) in the same plane. The deformation gradient

F, defined by dr = ¥ dx, has a nonnegative determinant detF > 0. From the polar

decomposition theorem, F can be represented in the form

F = Aiui <g> vj + A2u2 ® v2 (Afl > 0) (2.1)

where

ufl • ufc = ya ■ vb = Sab. (2.2)

The vectors \a and ua are the principal directions of strain in the undeformed and

deformed states, respectively, and Xa are the principal stretches. To calculate the

stretches, given F, we use the strain C defined by

C = F'F = Afv] <g> vj + A2v2 ® v2. (2.3)

Then

WC = k\ + k\ (2.4)

and

det C = (det F)2 = (2.5)

Consequently, the two fundamental symmetric functions of and A2 are

/ = +^2 = [trC + 2detF]1/2 (2.6)

and

/ = ;l,A2 = detF. (2.7)

In terms of components of F with respect to a Cartesian system,

J = FuE22 -Fl2F2l (2.8)

and

I2 = (Fu+F22)2 + (Fl2-F2l)2. (2.9)
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To compute the changes in / and J that occur when the deformation gradient is

changed to F + AF, it is convenient to use the components of AF with respect to the

bases ua and \a defined by F:

AF = J2J2AFabUa®Vb- (2.10)
a b

It is easy to verify that the expressions (2.8) and (2.9) are still valid for components

with respect to the basis ua ®vb. Consequently, if I and J are the invariants for F,

then the invariants for F + AF are

J + AJ = J + k2AFu +AlAF22 + detAF (2.11)

and

(I+ AI)2 = (I + AFU + AF22)2 + (AFn - AF2l)2. (2.12)

Then, in particular,

AI>AFu+AF22. (2.13)

3. Energy and stress. Harmonic materials. For plane strain of isotropic elastic

materials, the strain energy W per unit initial area can be expressed as a symmetric

function of k\ and k2, or equivalently as a function of I and J. Consider an element

that is initially a unit square, and let it be deformed into a rectangle with dimensions

k\ and k2. The change Of energy in a small change of the stretches is

dW = T\ dk\ + T2 dk2, (3.1)

where T\ and T2 are the total forces on the sides of the rectangle. These forces are

thus given in terms of W by

Ta = dW/dka. (3.2)

The forces per unit current length are

oa = Taka/J. (3.3)

A harmonic material [1] has an energy density of the form

W = C[<t>{I) - J] (C>0), (3.4)

where C is twice the shear modulus for infinitesimal strain. For such a material the

principal forces are

T, = C(<t>'-A2), T2 = C(4? -kx). (3.5)

If the energy and stress are to be zero at the undeformed state ka = 1, then

<)>{ 2) = 0'(2)=1. (3.6)

The principal stresses are

a, = C{4>'/k2 - 1), a2 = CW'/A, - 1). (3.7)

We note that the term -CJ in W gives rise to an isotropic pressure -C. With C

constant, this part of the stress is trivially in equilibrium in any problem.

We assume that </>' is continuous and </>" is at least piecewise continuous. The

harmonic material is physically unrealistic for k\ or k2 approaching zero because the
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corresponding principal forces do not approach -oo as one would expect. For some

resemblance to the behavior of real materials, we can take 0(0) = oo and = -oo,

with 4>' < 0 for / < Im and 0' > 0 for / > Im, where Im is the place where <f> takes its

minimum value 4>m. If (p has such a form, then Im < 2 since cp' > 0 at I = 2. Except

for the continuity assumptions, we do not use any of these ideas about the behavior

of cp in proofs of theorems.

In an inhomogeneous deformation, the Cartesian components of stress are defined

in terms of W by

Tab = dW/dFab. (3.8)

We use the notation

dW = T : dF. (3.9)

The relation (3.8) is also valid for components of T and F with respect to the basis

ufl0Vi, defined by the principal directions ua and \a. Let T/ and T/ be the stress-like

quantities defined by replacing W by I and J in (3.8). Then from (2.11) and (2.12),

T/: AF = AF,, + AF22 (3.10)

and

T, : AF = X2AFU + MAF22, (3.11)

where AFab are components with respect to the basis ua <g> v^,. In the same way, let T^

be defined in terms of </>(/). Then

T0:AF = 0'(/)(AFn+AF22). (3.12)

In general,

T : AF = W^Fn +A^22) + Wj(A2AFu +A,AF22) (3.13)

where W/ and Wj are the derivatives of W with respect to I and J.

4. Convexity and rank-one convexity. A function Wc is convex at F if

^(F + AF) > WC(F) + T(F) : AF (4.1)

for all AF, where T is defined in terms of Wc as in (3.8). It is convex (without

qualification) if (4.1) is valid for all F. A function Wr is rank-one convex at F if it

satisfies (4.1) whenever AF is rank-one, i.e., AF = a®b:

jrf(F + a<g>b) > Wr{¥) + a-Tr(F)b. (4.2)

It is rank-one convex if this is satisfied for all F. For a function of one variable,

4>c is convex and rank-one convex at I if

&(/ + A/)>&(/) + #(/)A/ (4.3)

for all AI.

The invariant I is a convex function of F:

/(F + AF) > 7(F)+T/(F) : AF. (4.4)

This is essentially the inequality (2.13), with (3.10). /(F) is not convex, but it is

rank-one affine, i.e., it satisfies (4.2) as an equality:

7(F + a®b) = /(F)+a-Ty(F)b. (4.5)
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This follows from (2.11), (3.11), and det(a® b) = 0.

The following lemma will be used. Let <t>c{I) be convex at / and suppose that

^ 0, at the particular value / = /(F). Then </><-[/(F)] is convex at F, as a function

of F. To prove this, we use (4.4) in (4.3); the inequality is preserved because (j>'c is

nonnegative. Then with Tc computed from (f>c, as in (3.12), we have

<M(/(F + AF)] > &[/(F)] + Tf(F) : AF. (4.6)

If <f>c{I) is convex in I and nondecreasing for all I, then 0C[/(F)] is a convex function

of F (for all F).

We now prove two necessary conditions for rank-one convexity at F. First, treating

Wr as a function of / and J, we show that

Wr[l + A/, J) > Wr(I, J) if A7 > 0, (4.7)

where I = /(F). Second, treating Wr as a function of and fa, it is convex in either

argument:

Wr(fa+d,fa)> Wr{fa,fa) + ddWr(fa,fa)ldfa. (4.8)

To prove (4.7), we set a ® b = 0U! ® v2 in (4.2). With AFn = 0 and AFab = 0

otherwise, (2.11) shows that A J = 0 and (2.12) gives

(/ + A/)2 = I1 + 62. (4.9)

Since 9 is arbitrary, A/ is an arbitrary nonnegative value. With (3.13), (4.2) then

reduces to the form (4.7).

To prove (4.8), we set a®b — 0ui ®vi in (4.2). When Wr is expressed as a function

of the stretches, (4.2) then reduces to the form (4.8) directly.

5. Rank-one convexity for harmonic materials. Let W be harmonic, as in (3.4).

Since J is rank-one affine, then W is rank-one convex at F if and only if 0 has the

same property.

If (f> is rank-one convex at F, it has the properties (4.7) and (4.8):

<t>{I + A/) > (f)(1) if A/ > 0, (5.1)

<p(I + A/) > <p(I) + (j>'(I)AI for all A/, (5.2)

where I = /(F). To obtain (5.2) from (4.8) we use / = Xi + fa and write 6 = A/ in

(4.8).
With (f>' continuous and <p" piecewise continuous, the preceding relations imply

that

<//>0, cf>" > 0 at / = /(F). (5.3)

These are, in effect, the Legendre-Hadamard conditions [12] for harmonic materials.

If satisfied for all I, they imply that (5.1) and (5.2) are valid for all I.

We now show that the necessary conditions (5.1) and (5.2) are also sufficient for

rank-one convexity at F. Let us denote the function by <pc in this case. Then (5.1)

(or (5.3a)) and (5.2) are the hypotheses used in Section 4 to show that (j)c is convex

at F. But convexity (in F) implies rank-one convexity. Thus, if Wr is harmonic, it is

rank-one convex at F if and only if

Wr = C[Mn~J] (5-4)
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where, at I — /(F), <j)c is convex and nondecreasing as a function of I. As a corollary,

Wr is rank-one convex if <f>c is a convex and nondecreasing function of I.

The rank-one convexification Wr of a given function W is the largest rank-one

convex function that nowhere exceeds W. When W is harmonic, Wr is determined

by finding 0r, the rank-one convexification of 4>. We now show that the result has

the form (5.4), where <j>c{= <pr) is the largest function of I that is (i) nondecreasing,

(ii) convex in I, and (iii) no greater than 4>. The proof would be instantaneous if it

were known that <j>r is independent of J.

Let be the convexification of 4>, i.e., the largest convex function of I that nowhere

exceeds <j>. As a function of k\ and A2, <f>v is also the largest function < <f> that is convex

in X\ for each fa. Now <j)r must be convex in k\, from (4.8), and < </>, so 4>r < <t>v

since 4>v is the largest such function.

Next let <j>c{I) be the largest nondecreasing function that nowhere exceeds (j>v(I).

From (4.7), <j>r(I,J) is nondecreasing as a function of /, and it does not exceed <f)v,

so (pr < 4>c since <pc is the largest such function. But as we have seen previously, (f)c

is rank-one convex (as a function of F), so the largest rank-one convex function that

does not exceed <j>c is 4>r — <j>c.

If is the minimum value of 4>, then

MI) =Wm) (I<Im)

= MI) (5-5)

where <f)v is the convexification of <j> (as a function of I).

It is important to note that Wr — W at every F for which W is rank-one convex,

and Wr ^ W at values of F for which W is not rank-one convex. Furthermore, if Tr

and T are the stresses computed from Wr and W, respectively, then Tr = T at values

of F for which Wr = W. (The equality of stresses is a consequence of the fact that

(j}'c = <j>' wherever <j>c = <f>, since <t>'c and <j>' are continuous). Consequently, if W is

rank-one convex at every F(x) occurring in the solution of a given problem, the same

solution is valid when W is replaced by Wr.

6. Quasiconvexity. A function H^F) is quasiconvex at F if

Wq[¥ \¥(x)]dA > Wq{¥)A(D) (6.1)IL
for all AF = (Vu)1 with u(x) = 0 on the boundary of D. Here A(D) is the area

of the domain D. Quasiconvexity at F means that in displacement boundary value

problems that admit r = Fx as a solution, it is an absolute minimum energy solu-

tion. The property is independent of the domain D [7], Wq is quasiconvex (without

qualification) if (6.1) is valid for all F.

It is known that if Wq is quasiconvex at F, then it is rank-one convex at F [13].

The converse is not known to be true in general. However, we now show that it is

true for harmonic materials.

We first observe that /(F) is quasiconvex, satisfying (6.1) as an equality. For, all

deformations that satisfy the given displacement boundary conditions have the same

deformed boundary and thus the same deformed area. But the integral of J over D
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is just this deformed area. Consequently, if Wq is harmonic and quasiconvex at F,

then 4>q is quasiconvex at F, and conversely.

Now, if 4>q[I{F)] is quasiconvex at F, then it is rank-one convex at F, so from

Section 5, 4>q{I) is convex and nondecreasing at I = /(F). But these conditions

are sufficient to ensure that 4>q[l(F)] is convex at F (as a function of F). Since every

convex function is quasiconvex [ 13], it follows that Wq is quasiconvex at F if and only

if it has the form (5.4), with the properties of <f>c described there. Wq is quasiconvex

if and only if it has the form (5.4) with <f>c convex and nondecreasing in I.

Let Wq be the quasiconvexification of a given function W. Wq is the largest qua-

siconvex function that nowhere exceeds W. If Wr is the rank-one convexification of

W, then in general [7]

Wq <Wr<W (6.2)

For harmonic materials, Wr is quasiconvex itself, so the largest quasiconvex function

satisfying (6.2) is

Wq = Wr, (6.3)

where Wr is described in (5.4).

7. Stability. We now consider the stability of equilibrium for displacement bound-

ary value problems with no body force. Let the body occupy a region D with bound-

ary C in the undeformed state. By an admissible deformation r(x), we mean a func-

tion that is piecewise continuously differentiable and satisfies the boundary condition

r = r0(x) on C. The energy of deformation is

E[r] = jjw[m]dA. (7.1)

We say that r(x) is an equilibrium state if E is stationary at r(x), and that the equi-

librium state is locally stable if

E[r + Ar] > E[r] (7.2)

for all sufficiently small perturbations Ar that vanish on C:

|Ar(x)| < £ in A Ar = 0 on C. (7.3)

This definition of stability does not require r(x) to minimize E over all admissible

deformations, and it allows r(x) to be only neutrally stable.

Graves [5] has shown that if r(x) is locally stable, then W is rank-one convex at

F(x), for each x in D. We now prove the converse, for harmonic materials. If W is

rank-one convex at F(x) for each x in D, then r(x) is locally stable. Moreover, r(x)

minimizes E over all admissible deformations. Thus for harmonic materials, there

are no locally stable states except those that are globally stable as well.

To prove these statements, we begin by noting that when W is harmonic, the term

— CJ makes a contribution to E that is independent of the particular deformation

considered, in displacement boundary value problems. The contribution is -CA*,

where A* is the area of the body in its deformed state. The associated stress is a uni-

form isotropic pressure -C for every deformation, which is trivially in equilibrium.
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Now suppose that r(x) is an equilibrium state with cj) rank-one convex at each F(x).

Then in fact </> is convex in F at each F(x), satisfying (4.6). Integrating (4.6) gives

E[r + Ar] > E[r] + C jj^ T^, : AF dA. (7.4)

Since the stess from -CJ is in equilibrium, then the remaining stress CT$ is also in

equilibrium. Then with Ar = 0 on the boundary, the virtual work equation implies

that the integral in (7.4) is zero, so

E[r + Ar] > £[r], (7.5)

Since the size of Ar did not enter into the proof, this implies that -E[r] is the absolute

minimum energy.

From this necessary and sufficient condition, we immediately obtain an equivalent

condition that is easier to check. Let <f)c be the largest convex, nondecreasing function

that does not exceed 4>. From the results in Section 5, <j> = <pc at points where <f> is

rank-one convex, and only there. Thus a solution is stable if and only if <f> = (fic at

each point in the deformed body.

8. An example of microscale buckling. Let Wq be the quasiconvexification of W,

obtained by replacing cp by <j)c, and let Eq be the energy computed from Wq as in

(7.1). Then every stable equilibrium state for a material with strain energy W can be

found by using Wq instead. For, if E has a minimizer r(x), then W is quasiconvex at

each F(x) in the solution, whence W = Wq at each point in the deformed body, and

Eq is minimized because Wq is rank-one convex at each F(x). The minimum of Eq

is the same as that of E. Furthermore, from the remarks at the end of Section 5, the

stresses calculated from W and Wq are the same (since Wq = Wr).

If r(x) minimizes E, it also minimizes Eq, but the converse is not true. At an

unstable equilibrium state, E > Eq, and in fact it is possible that there may be cases

in which E has no minimizer, even though it is bounded below by Ea, which does.

Dacorogna [6] has shown (with no restriction to harmonic W) that in such cases, if r

minimizes Eq then there is a sequence of deformations r„ such that r„ —*■ r uniformly

in D and E[r„] —+ ̂[r]. The sequence r„ is a minimizing sequence for the functional

E but its limit does not minimize E. The reason is that E actually involves only the

derivative F, and the sequence F„ does not converge. For large n, F„ has very finely

spaced discontinuities, and the derivative F of the limiting function r is a spatial

average of F„ over a small region. The function Wq is similarly the average of W(F„)

over a small region. The use of Wq(¥) accounts for this averaging directly.

We illustrate these ideas with a specific example. Let W be harmonic, with (f)(1)

convex as a function of 7, and suppose that the minimum value of <p is <j)m, the value

at /„, = 2Am, where 0 < < 1. Then Wq{= Wr) has the form (5.4), where

<t>c{I) = <t>m (I<Im),

= 4>{I) (I > Im).

Let D be the unit square 0 < (x, y) < 1, where x and y are the Cartesian compo-

nents of x. Suppose that the square is compressed so that on its boundary, r0 = Ax,

with X < Xm. In the deformed state, the boundary is a square with side X.
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The integral of —CJ over the unit square is equal to -CA2 for any admissible

deformation. Then both E and Eq are bounded below by

£o = C(^m-A2). (8.2)

For Eg, this value is achieved at the homogeneous deformation r = Ax. However, the

value of E for this deformation is

E = C[<j>{2A) - A2] > E0. (8.3)

The homogeneous deformation is an equilibrium state, but it is not stable. For,

with I = 2X < Im, then < 0, and this violates the rank-one convexity condition

4>' > 0 that must be satisfied for any stable deformation. An alternative method of

proof is to observe that E > Eq at this deformation; at any stable state, E = Eq.

Nevertheless, there are deformations arbitrarily close to r = Ax with energies ar-

bitrarily close to Eq, which is smaller than i:[Ax] by a finite amount. We now show

this explicitly for the present problem.

Let us temporarily ignore the exact boundary conditions. Let the unit square be

divided into n strips parallel to the x-direction, each of width l/n in the ^-direction.

Let S(y) take the values +1 and -1 in alternate strips. Let

F„ = AI + 0S(y)i®j, (8.4)

where i and j are unit vectors in the coordinate directions. Then with r„(0) = 0,

integration gives

r„(x) = Ax + 9\ [ S(y') dy'. (8.5)
Jo

Since the magnitude of the integral does not exceed l/n, then

r„(x) = Ax + 0(l/n). (8.6)

To compute the energies for these deformations, we first use (8.4) in (2.8) and

(2.9) to obtain

/ = A2, /2 = ( 2A)2 + 02. (8.7)

Let us take

0 = 2(A2m - A2)1'2 (8.8)

so that / = Im and cf> = (j>m- Then for all these deformations,

E[ r„] = E0. (8.9)

In order to modify these results so as to satisfy the boundary conditions exactly,

we restrict n to even values (to satisfy the condition at y = 1) and replace 5(^) by

S{y)fn{x), where /„ is unity except close to the ends x = 0 and x = 1, where fn = 0.

Let fn increase linearly from zero to unity in a strip of width 1 /n at each end. Then

(8.6) is still valid, but (8.9) is replaced by

E[rn] = E0 + O(l/n). (8.10)

Thus for n —> oo, r„ is arbitrarily close to r = Ax, while £■[!■„] is arbitrarily close to

Eq.
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