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Stability of highly shifted equilibria in a large 

aspect ratio tokamak 

P.-A. Gourdain, S. C. Cowley, J.-N. Leboeuf, R. Y. Neches 

Department of Physics and Astronomy 

University of California Los Angeles, CA 90095-1547 

 

High beta poloidal tokamaks can confine plasma pressures an order of magnitude 

higher than their low beta poloidal counterparts. The theoretical stability of these high 

beta poloidal magneto-hydrodynamics equilibria was left unresolved for many years. 

Using modern computational tools, such configurations are now found stable to Mercier, 

resistive and high-n (ideal and resistive) ballooning criteria as well as fixed and free 

boundary modes for a wide range of current density profiles in the framework of a low 

field large aspect ratio machine. 

PACS: 52.30.Cv, 52.55.Fa, 52.55.Tn 
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The most promising magnetic fusion concept is an axi-symmetric configuration 

called tokamak, where a plasma (i.e. ionized gas) is confined by an external magnetic 

field and a toroidal electrical current running through the plasma itself. The plasma 

geometry looks like a torus with arbitrary cross-section. The confinement efficiency is 

measured by means of a simple figure of merit called the plasma beta, β. This is the ratio 

of the kinetic pressure and the magnetic pressure 
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B is the total magnetic field confining the plasma of pressure p. Since this field is the 

main cost of the device, high β plasmas lead to the design of cost effective machines. 

Another efficiency parameter is the poloidal beta, βp, 
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where Bp is the magnetic field created by the toroidal plasma current. βp is solely 

dependant on the current distribution inside the plasma. In ideal MHD theory, the 

pressure is maximum where Bp is null. This location is called the magnetic axis. If the 

average βp is close to 0, the axis is near the geometrical center of the plasma cross-

section. As the average βp increases (but not necessarily β), the axis moves towards the 

plasma edge. Fig. 1(a) shows the major difference between standard and asymptotic (i.e. 

extremely shifted) configurations. The lines represent the surfaces of constant poloidal 

magnetic flux created by Bp, or flux surfaces, which are also surfaces of constant plasma 

pressure p. This shift is called the Shafranov shift, measured relative to the plasma minor 

radius, a. The control of the plasma shape for large shifts is mandatory to obtain 
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equilibria that are not wall confined. By using an external set of coils to shape the plasma 

boundary, the cross-section of the plasma will stay circular independently of the 

Shafranov shift. When no shaping coils are used, an X-point appears on the high field 

side of the plasma due to the strong vertical field necessary to confine the plasma inside 

the vacuum chamber. This limits the shift to a value of approximately 50%, well below 

the value presented in this paper. The pressure gradient in such devices is confined by the 

Lorentz force. This MHD equilibrium obeys 

∇ = ×p J B . (3)

J is the toroidal plasma current density (hereafter “current density” or “current” in this 

letter). By increasing J, larger pressure gradients can be confined. Unfortunately, 

increasing J decreases the safety factor q which should always remain above 1. This 

requirement limits the maximum current density that can be sustained in a tokamak 

without creating unrecoverable MHD instabilities, called internal kinks. As a result 

conventional tokamak designs are low β. 

When a shifting of the axis occurs the current density J can be increased 

significantly before the minimum value of the safety factor drops below 1. Thus, for the 

same confining magnetic field, high βp machines can confine higher pressures than their 

low βp counterparts, as illustrated by Fig. 1(b). The Shafranov shift alters the shape of the 

flux surfaces but also the current density distribution. It produces a shifted, sharp peak in 

the current density profile (Fig. 1(c)). It was assumed that the presence of large gradients 

and high βp configurations would trigger major MHD instabilities, which explains the 

lack of interest in the topic despite its obvious attractive properties. Nevertheless, analytic 

asymptotic equilibria (βp >> 10) [1] were shown to be stable to several MHD instabilities, 
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such as localized ballooning, interchange and internal kink modes in large aspect ratio 

machines [2, 3].  

With new computational tools, a thorough study of ideal MHD stability can now 

be conducted, focusing on Mercier [4], Glasser-Greene-Johnson (GGJ) resistive [5] and 

high-n (ideal or resistive) ballooning [6, 7] criteria as well as the stability of ideal MHD 

modes with low toroidal mode numbers (n = 1, 2, 3) for fixed and free boundary 

equilibria. Ballooning modes are a localized instability driven by pressure gradients in the 

plasma. They usually have a large toroidal mode number n and can be driven by ideal or 

resistive phenomena. The Mercier instability is limiting case of ballooning modes, 

historically discovered before the generalized criterion previously discussed. The GGJ 

criterion evaluates the resistive interchange instabilities, which tend to eliminate the 

stabilizing influence of magnetic shear on ideal MHD interchanges. Using these different 

criteria, we investigate here the stability of several current density profiles. All current 

shapes have a large portion of their profiles equal to zero, which enforces large shifts. In 

the region where J = 0, Eq. (3) is satisfied since diamagnetic poloidal plasma currents 

equilibrate pressure gradients. In order to understand the stability dependence of large βp, 

we scanned various current density profile shapes. To constrain the parameter space, all 

scans used the geometry and magnetics of the Electric Tokamak (ET). ET has a major 

radius R = 5 m, a minor radius a = 1 m, a toroidal field Bt = 0.25 T and a total plasma 

current IP = 50 kA [8]. It is a large aspect ratio, low field device with a circular cross-

section. These properties tend to minimize the geometric and magnetic effects on 

stability. To accomplish this theoretical study, the high β free-boundary code CUBE [9] 

was used to generate high resolution equilibria. This code uses a multigrid approach and 
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a plasma current density constraint to obtain convergence at high beta. A dozen of 

external coils are uniformly distributed around the computational grid and constrain the 

plasma shape and position for any βp. To determine stability, we used the DCON code, 

which solves the Euler-Lagrange equation to minimize the potential energy and evaluates 

a real critical determinant whose poles indicate the presence of ideal instabilities [10]. 

Previous high βp equilibrium codes [11] were low resolution and incompatible with 

stability code requirements. Three different types of shape modifications are studied; the 

radial position of the current peak (Fig. 2(a)), the current profile peaking (Fig. 2(b)), and 

the transition between the null and non-null current regions (Fig. 2(c)). All profiles 

presented have a Safranov shift of about 80%, and are Mercier stable. The rest of this 

letter will focus on current profile shape changes which lead to other types of 

instabilities. 

Our first treatment of the stability properties for highly shifted configurations 

focuses on the effects of the location of the current peak. The resulting shape 

modifications are indicated in Fig. 2(a). Profile A has a central q just below 1 and limits 

the scan on the magnetic axis side. As the peak moves to the low field side of the plasma 

β decreases while the whole q profile rises. Fig. 3(a) shows the different criteria as a 

function of the normalized radius, ρ = r/a. In this parameter scan, the only concern lies 

with resistive instabilities which emerge as the peak of the profile moves away from the 

magnetic axis. The high-n ballooning criterion is never violated in this scan. In fact, the 

peak location does not alter this criterion in a meaningful manner. We observe that 

relatively large swings of the current profile peak are not likely to push the equilibrium 

into an unstable regime of operation. The stability is theoretically guaranteed for all 
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profiles bounded by profiles B and C. The safety margin on the GGJ criterion between 

stable and unstable regions is large enough to insure robust stability across the whole 

profile. Moreover, the large swing in peak position barely affects the Shafranov shift 

which varies by less than a percent. Lastly, all profiles are stable to all fixed boundary 

modes with toroidal numbers n = 1, 2 ,3. 

After investigating the effects of the peak position on stability, we turn to the 

shape of the current peak itself. The different profiles investigated are collected in Fig. 

2(b). Profile D is particularly interesting because the strong peaking in current density 

significantly increases the pressure that can be confined. Since we keep the total plasma 

current constant, peaked profiles have high current densities. The width of the current 

density peak influences the pressure and q profiles in a large region surrounding the 

magnetic axis. Fig. 3(b) regroups the stability results for this scan. Current profile A 

suffers from high-n ballooning instabilities. Broad profiles such as profile D are 

impervious to ballooning modes, but are bedeviled by resistive instabilities in a large 

region of the plasma. Broad profiles also lower the effective plasma pressure, which 

makes them less attractive. Profiles B and C have acceptable stability and β average. 

These two profiles are our current shape references. All profiles are stable to the fixed 

boundary modes with n = 1, 2 and 3. Profile C is also stable to free boundary modes for  

n = 1, 2, and 3.  

The shape of the transition region, where the null toroidal current ends and the 

strong current gradient begins, is now studied. Fig. 2(c) presents the different cases 

investigated. The interplay between the transition, pressure and q profiles remains 

strongly localized to the magnetic axis. A gentle transition (profile A of Fig. 2(c)) 
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increases the value of q at the axis. The reduction in magnetic shear triggers high-n 

ballooning modes [12], as highlighted by Fig. 3(c). Nevertheless, the localization of high-

n ballooning modes around the magnetic axis does not jeopardize overall plasma 

stability. When a sharp transition (profile D of Fig. 2(c)) appears, the resistive criterion 

degrades and further steepening will yield resistive instabilities. Finally, all the profiles 

investigated are stable to fixed boundary modes (n = 1, 2, 3). 

While the majority of equilibria presented in Fig. 2 are stable to ideal ballooning 

modes, resistive ballooning modes may be unstable in the so-called first stability regime 

[13], where the shear s is comparable to the normalized pressure gradient α, using 

r dq
s

q dr
=  and 

2

0 2
2

t

Rq dp

B dr
α µ= −  (4)

In contrast equilibria in the second stability regimes (s << α) are usually stable to 

resistive ballooning modes [14]. Ideal and resistive ballooning limits merge for low s and 

α, as occurs in the plasma core. Examining ideal ballooning stability instead is usually 

acceptable in this region. In contrast, these limits diverge for larger values of s and α in 

the plasma mantle (r/a > 0.5). The s-α diagram must be used to assess the high-n resistive 

ballooning mode stability directly. Fig. 4 shows that all the profiles presented in this letter 

are in the second stability regime and they are stable to resistive ballooning modes, 

except for extremely peaked profiles (such as profile D from Fig. 2(b)). If the location of 

the current peak is close to the magnetic axis, as for profile A from Fig. 2(a), the stability 

to resistive ballooning modes is marginal at the plasma edge. On the other hand, the 

transition from null to high current density does not affect the s-α curves in either critical 

region of the diagram. High-n resistive ballooning stability remains unaffected. 
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The stability of highly shifted configurations using ET geometry and magnetics 

has been studied in this letter. Detailed scans of the current profile shape revealed that 

robust stability exists for a wide range of contiguous profiles. While keeping geometric 

and magnetic parameters constant, a systematic study demonstrated that a wide range of 

shifted equilibria are stable according to Mercier, GGJ resistive and high-n ballooning 

criteria. Furthermore, fixed-boundary modes with toroidal mode numbers n= 1, 2 and 3 

are stable in all the cases explored. This work extends and completes previous analytic 

and asymptotic research on the stability of equilibria with large Shafranov shifts [2, 3]. 

The impact of current density peak location, profile peaking and transition on the stability 

was investigated. Peak location affects the stability by degrading the GGJ resistive 

criterion or by lowering the central q below 1. The peaking factor is an important 

parameter in the stability of the equilibria. Unlike peak location, profile peaking triggers 

both ballooning as well as resistive instabilities. Finally, although a current profile 

transition may trigger ballooning modes, in this case they should raise few concerns for 

stability because they are localized to the magnetic axis. Smooth current profiles without 

any of these extreme characteristics are stable to major ideal MHD instabilities in high βp 

regimes. The target profile for a high βp device should correspond to current density C of 

Fig. 2(b). This current distribution is stable according to all classical ideal MHD criteria 

as well as to resistive high-n ballooning modes. It is also stable to all fixed and free 

boundary modes with toroidal mode numbers n = 1, 2 or 3. 
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Fig. 1. (a) Flux surfaces for a circular plasma cross-section. The Z-axis is the axis of axi-symmetry 

(actually located at R = 0). Due to the up-down symmetry, only one half of the configurations is 

shown. The top set of surfaces is for a 15% Shafranov shift (β = 1.8%, βp = 1.15) and the lower set of 

surfaces represents an equilibrium with a 90% shift (β = 35 %, βp = 50). The magnetic axis is located 

on the plane of symmetry (Z = 0) at R = 5.15 m (15 % shift) and R = 5.90 m (90 % shift). (b) Pressure 

and (c) normalized current density profiles for the same shifts. 
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Fig. 2. Current profiles scans used in the stability study of high βp equilibria. (a) Peak position, (b) 

peaking factor, (c) current profile transition scans. The plasma extends from R = 4 m to R = 6 m. 

Part of the null region of the current profile has been truncated from the plots to enlarge the section 

where shape changes occur. The magnetic axis is located around R = 5.80 m. 
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High-n Ballooning 
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Fig. 3. GGJ resistive and high-n ideal ballooning criteria of profiles A (solid lines), B (dashed lines), C 

(dash-dot lines) and D (dotted lines) for (a) peak location, (b) peaking factor and (c) transition scans. 

The different criteria are plotted as a function of ρ (=r/a). ρ  = 0 is at the magnetic axis and ρ  = 1 at 

the plasma edge. The ordinates of all curves are in arbitrary absolute units. In the left column, the 

part of the profiles that is positive shows instabilities to resistive interchange instabilities. In the right 

column, the profiles are stable is the criterion is positive. 
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Fig. 4. s-α diagrams for (a) peak, (b) peaking factor and (c) transition scans. The majority of profiles 

are in the second stability regime for high-n resistive ballooning modes. The diagrams exclude the 

region above q95.  

 


