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Abstract

For least squares problems in which the rows of the coefficient matrix vary

widely in norm, Householder QR factorization (without pivoting) has unsatisfac-

tory backward stability properties. Powell and Reid showed in 1969 that the use of

both row and column pivoting leads to a desirable row-wise backward error result.

We give a reworked backward error analysis in modern notation and prove two new

results. First, sorting the rows by decreasing ∞-norm at the start of the factor-

ization obviates the need for row pivoting. Second, row-wise backward stability is

obtained for only one of the two possible choices of sign in the Householder vector.

Key words. Weighted least squares problem, Householder matrix, QR fac-
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1 Introduction

In many applications of the linear least squares (LS) problem min ‖b − Ax‖2, where

A ∈ IRm×n with m ≥ n, the rows of A have widely varying norms (with corresponding

variation in the size of the elements of b), typically because in the underlying model some
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observations have been given greater weight than others. Such weighted LS problems

also arise when the solution to a linearly constrained LS problem

min{ ‖b − Ax‖2 : Bx = d, B ∈ IRp×n, rank(B) = p }

is approximated by the solution to the unconstrained problem

min

∥∥∥∥∥

[
A

µB

]
x −

[
b

µd

]∥∥∥∥∥
2

, (1.1)

for a suitably large value of the parameter µ > 0 [16].

For full rank A, QR factorization provides a standard way to solve the LS problem,

and the QR factorization is perhaps most often computed using Householder transfor-

mations (as is done in LINPACK and LAPACK, for example). The backward stability of

Householder QR factorization can be summarized by the following result [9, Thm. 18.4].

We make use of the standard model of floating point arithmetic:

fl(x op y) = (x op y)(1 + δ), |δ| ≤ u, op = +,−, ∗, /, (1.2)

where u is the unit roundoff. We introduce the constant

γk =
ku

1 − ku
.

It also convenient to define the quantity

γ̃k =
cku

1 − cku
,

in which c denotes a small integer constant whose exact value is unimportant. Thus

we can write, for example, 3γ̃k = γ̃k, and mγ̃n = nγ̃m = γ̃mn. Absolute values and

inequalities are interpreted componentwise.

Theorem 1.1 Let R̂ ∈ IRm×n be the computed upper trapezoidal QR factor of A ∈ IRm×n

(m ≥ n) obtained via the Householder QR algorithm. Then there exists an orthogonal

Q ∈ IRm×m such that

A + ∆A = QR̂,

where ‖∆A‖F ≤ nγ̃m‖A‖F and |∆A| ≤ mnγ̃mG|A|, with ‖G‖F = 1. The matrix Q is

given explicitly as Q = P1P2 . . . Pn, where Pk is the Householder matrix that corresponds

to the exact application of the kth step of the algorithm to the computed matrix produced

after k − 1 steps.
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Theorem 1.1 shows that Householder QR factorization is normwise backward stable,

and the componentwise bound shows that each column of the backward error matrix

∆A is nicely bounded relative to the corresponding column of A, that is, the computed

factorization is columnwise backward stable. However, for weighted LS problems we

would like the row-wise backward error

max
i

‖∆A(i, : )‖2

‖A(i, : )‖2

to be of order u. The following example of Powell and Reid [14] shows that this quantity

can be large for Householder QR factorization. Consider the matrix

A =




0 2 1

λ λ 0

λ 0 λ

0 1 1


 , (1.3)

where λ ≫ 1 is a parameter. The first step of the factorization produces the matrix




−
√

2λ − λ√
2

−λ√
2

0 λ
2
−
√

2 −λ
2
− 1√

2

0 −λ
2
−

√
2 λ

2
− 1√

2

0 1 1


 .

If λ > 2
√

2u−1 then in the computed second and third rows the constants
√

2 and 1/
√

2

will be lost. This loss can be shown to be equivalent to zeroing the first row of A and

then carrying out exact computation, which corresponds to a row-wise backward error of

order 1. The conclusion is that Householder QR factorization can be very unsatisfactory

for weighted LS problems.

In this example there is a simple way to avoid the loss of row-wise stability, namely

to bring an element of maximal absolute value into the pivot position by interchanging

the first two rows of A: 


λ λ 0

0 2 1

λ 0 λ

0 1 1


 .

Now, one step of the factorization yields the matrix




−
√

2λ − λ√
2

−λ√
2

0 2 1

0 − λ√
2

λ√
2

0 1 1


 ,
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Pivoting: None Row Col. Row and col.

Normwise (η) 2.06e-16 3.47e-16 1.19e-16 3.41e-16

Row-wise (ηR) 1.27e-4 1.75e-8 1.27e-4 4.53e-16

ρm,n 1.41e+12 2.53e+7 1.41e+12 2.83e+0

Table 1.1: Backward errors for QR factorization with no pivoting, row pivoting and

column pivoting on matrix (1.4).

and the previous loss of information has been avoided. Note that row interchanges

before or during Householder QR factorization have no mathematical effect on the result,

because they can be absorbed into the Q factor and the QR factorization is essentially

unique. The effect of row interchanges is to change the intermediate numbers that arise

during the factorization, and hence to alter the effects of rounding errors.

Row interchanges alone are not enough to make Householder QR factorization row-

wise backward stable, as an example of Van Loan [16] shows. Let

A =




1 1 1

1 3 1

1 −1 1

1 1 1

µ µ µ

µ µ −µ




. (1.4)

We applied Householder QR factorization in Matlab with µ = 1012, using no pivoting,

and combinations of row pivoting (defined later) and the standard column pivoting strat-

egy introduced by Golub [7]. The unit roundoff u ≈ 1.1 × 10−16. Table 1.1 reports the

backward errors

η =
‖AΠ − Q̂R̂‖2

‖A‖2

, ηR = max
i

‖(AΠ − Q̂R̂)(i, : )‖2

‖A(i, : )‖2

.

In these expressions, Q̂ denotes the computed product of the Householder transformations

and Π is the permutation matrix produced by column pivoting, or the identity if column

pivoting was not used. The quantity ρm,n in Table 1.1 is a row-wise growth factor that is

explained at the end of Section 2. Normwise stability prevails in each case. But with no

pivoting, or row or column pivoting alone, the computation is not row-wise stable. The

combination of row and column pivoting, however, does yield row-wise stability.

The need for row and column pivoting in Householder QR factorization was estab-

lished nearly two decades ago by Powell and Reid and soon became well known, being
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reported in Lawson and Hanson’s 1974 book for example [11, pp. 103–106, 149]. However,

Powell and Reid’s analysis is relatively inaccessible: the analysis is outlined in the con-

ference proceedings paper [14] and the full details are given in the technical report [13].

Powell and Reid assumed that inner products are accumulated in extra precision and

gave a first-order analysis. They also assumed, without comment, a particular choice of

sign in the construction of the Householder matrix at each stage.

The contributions of this work are as follows.

• We give a reworked version of Powell and Reid’s backward error analysis of QR

factorization with column pivoting. Our analysis is shorter and easier to read

because we use matrix and vector notation exclusively and are not concerned with

obtaining explicit constants. Unlike in [13], [14], ours is not a first-order analysis

and we do not assume that inner products are accumulated in extra precision.

• Björck [5, p. 169] conjectures that “there is no need to perform row pivoting in

Householder QR, provided that the rows are sorted after decreasing row norm

before the factorization”. We prove that this conjecture is true, by showing that it

leads to the same row-wise backward error bound as for row pivoting. A practical

advantage of row sorting over row pivoting is that it enables us to use standard

software for Householder QR factorization with column pivoting, such as that in

LAPACK.

• We show the somewhat surprising result that with the alternative choice of sign

in the vector defining the Householder matrix, row-wise backward stability is lost,

and we explain the reasons for this behaviour.

Related investigations for QR factorizations computed using Givens transformations

are given by Anda and Park [1] and Barlow [3]. Other work concerned with error analysis

for the weighted least squares problem includes that of Barlow and Handy [4], Gulliks-

son [8], and Hough and Vavasis [10].

2 Error Analysis for the Factorization

In this section we derive a row-oriented backward error bound for Householder QR fac-

torization with column pivoting.

First, we recall how a Householder matrix is constructed in Householder QR factor-

ization. Let A = A(1) ∈ IRm×n (m ≥ n) and let a
(k)
j denote the jth column of A(k), the

reduced matrix at the start of the kth stage of the reduction to trapezoidal form. We
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form the Householder matrix

Pk = I − βkvkv
T
k ∈ IRm×m, β =

2

vT
k vk

,

where vk(1: k − 1) = 0 and

vk(k: m) = a
(k)
k (k: m) − σke1, (2.1)

where e1 ∈ IRm−k+1 is the first unit vector and

σk = ±‖a(k)
k (k: m)‖2.

This Householder matrix Pk has the property that a
(k+1)
k = Pka

(k)
k satisfies a

(k+1)
k (k: m) =

σke1.

For the error analysis in this section and the next we assume that

σk = − sign(a
(k)
kk )‖a(k)

k (k: m)‖2, (2.2)

which is the choice of sign recommended in most textbooks and the choice used by the

QR factorization routines in LINPACK [6] and LAPACK [2]. In Section 5 we consider

the other choice of sign.

In QR factorization with column pivoting, columns are exchanged at the start of the

kth stage to ensure that

|σk| = ‖a(k)
k (k: m)‖2 = max

j≥k
‖a(k)

j (k: m)‖2. (2.3)

It follows from (2.3) that

|σ1| ≥ |σ2| ≥ · · · ≥ |σn|. (2.4)

To simplify the notation we assume, without loss of generality, that A is “pre-pivoted”,

that is, that no column interchanges are required in order to satisfy (2.3). The next result,

from [14], is the key to obtaining a row-wise backward error bound.

Lemma 2.1 Consider the application of the Householder matrix Pk to the vector a
(k)
j ,

where j ≥ k:

a
(k+1)
j = Pka

(k)
j = a

(k)
j − βkvkv

T
k a

(k)
j

= a
(k)
j − φ

(k)
j vk.

The scalar φ
(k)
j = βkv

T
k a

(k)
j = βkvk(k: m)T a

(k)
j (k: m) satisfies

|φ(k)
j | ≤ |βk||vk|T |a(k)

j | ≤
√

2.
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Proof. We have

|φ(k)
j | ≤ |βk||vk|T |a(k)

j |
≤ |βk|‖vk‖2‖a(k)

j (k: m)‖2

=
2‖a(k)

j (k: m)‖2

‖vk‖2

.

For the choice of sign of σk in (2.2),

vT
k vk = |2σk(σk − a

(k)
kk )| ≥ 2σ2

k. (2.5)

Thus

|φ(k)
j | ≤

2‖a(k)
j (k: m)‖2√

2|σk|
≤

√
2,

using (2.3).

Rounding errors in computing the quantities β and v that determine a Householder

matrix are analyzed in [9, Lem. 18.1]. By absorbing the errors in β into the vector v we

can assume that β is obtained exactly. Then the computed v̂k ∈ IRm from the kth stage

of the reduction satisfies

v̂k = vk + ∆vk, |∆vk| ≤ γ̃m−k|vk|, (2.6)

where

Pk = I − βkvkv
T
k

is the Householder matrix corresponding to the exact application of the kth step of the

algorithm to the computed matrix Â(k). We define

αi = max
j,k

|â(k)
ij |, Ω = diag(αi). (2.7)

Lemma 2.2 Consider the computation of â
(k+1)
j = fl(P̂kâ

(k)
j ), where P̂k = I − βkv̂kv̂

T
k

and v̂k satisfies (2.6). We have

â
(k+1)
j = Pkâ

(k)
j + f

(k)
j , (2.8)

where f
(k)
j (1: k − 1) = 0 and

|f (k)
j | ≤ u|â(k)

j | + γ̃m−k|vk|. (2.9)

Furthermore,

|f (k)
j | ≤ γ̃m−kΩe,

where e = [1, 1, . . . , 1]T .
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Proof. It is straightforward to show using standard error analysis results (see the

proof of Lemma 18.2 in [9]) that (2.8) holds with f
(k)
j (1: k − 1) = 0 and

|f (k)
j | ≤ u|â(k)

j | + γ̃m−k

(
|βk||vk|T |â(k)

j |
)
|vk|.

But from Lemma 2.1 we have |βk||vk|T |â(k)
j | ≤

√
2. For the last inequality, note that

|â(k)
j | ≤ Ωe, trivially, and that, from (2.1),

|vk|i ≤
{

αk + |σk| ≤ 2αk, i = k,

αi, i > k,

since |σk| = |â(k+1)
kk | ≤ αk, so that

|vk| ≤ 2Ωe. (2.10)

Now, using P 2
k = I, we rewrite (2.8) as

â
(k)
j = Pkâ

(k+1)
j − Pkf

(k)
j .

This gives

â
(1)
j = P1â

(2)
j − P1f

(1)
j

= P1(P2â
(3)
j − P2f

(2)
j ) − P1f

(1)
j

...

= P1P2 . . . Pj â
(j+1)
j − P1P2 . . . Pjf

(j)
j − · · · − P1f

(1)
j .

Since aj = â
(1)
j and â

(j+1)
j = â

(n+1)
j ,

aj = P1P2 . . . Pj â
(n+1)
j −

j∑

i=1

P1P2 . . . Pif
(i)
j . (2.11)

Consider a general term in the sum,

yi = P1P2 . . . Pif
(i)
j , i ≤ j.

We have

yi = (I − β1v1v
T
1 )P2 . . . Pif

(i)
j = P2 . . . Pif

(i)
j − β1v1v

T
1 P2 . . . Pif

(i)
j

= (I − β2v2v
T
2 )P3 . . . Pif

(i)
j − β1v1v

T
1 P2 . . . Pif

(i)
j

...

= f
(i)
j −

i∑

k=1

βkvkv
T
k Pk+1 . . . Pif

(i)
j .
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We use Lemma 2.2 to bound the first occurrence of f
(i)
j in this equality by γ̃m−iΩe and

the subsequent occurrences by u|â(i)
j | + γ̃m−i|vi|. Writing

zk = βkvkv
T
k Pk+1 . . . Pif

(i)
j =

2vkv
T
k

vT
k vk

Pk+1 . . . Pif
(i)
j

and using (2.10), we have

|zk| ≤ 4Ωe
‖f (i)

j ‖2

‖vk‖2

, k ≤ i.

Now, using ‖vk‖2 ≥
√

2|σk| from (2.5) and ‖vi‖2 ≤ 2|σi| from (2.1),

‖f (i)
j ‖2

‖vk‖2

≤ u
‖â(i)

j (i: m)‖2

‖vk‖2

+ γ̃m−i

‖vi‖2

‖vk‖2

≤ u
|σi|√
2|σk|

+ γ̃m−i

√
2
|σi|
|σk|

≤ u√
2

+ γ̃m−i

√
2 = γ̃m−i.

We conclude that

|yi| ≤ γ̃m−iΩe + 4iΩeγ̃m−i = iγ̃m−iΩe. (2.12)

Thus

aj = P1P2 . . . Pj â
(n+1)
j + hj, (2.13)

where

|hj| ≤
j∑

i=1

iγ̃m−iΩe = j2γ̃mΩe. (2.14)

But

P1P2 . . . Pj â
(n+1)
j = P1P2 . . . Pnâ

(n+1)
j =: Qâ

(n+1)
j = Qr̂j.

The conclusions of the analysis are summarized in the following theorem.

Theorem 2.3 Let R̂ ∈ IRm×n be the computed upper trapezoidal QR factor of A ∈ IRm×n

(m ≥ n) obtained via the Householder QR algorithm with column pivoting. Then there

exists an orthogonal Q ∈ IRm×m such that

(A + ∆A)Π = QR̂,

where Π is a permutation matrix that describes the overall effect of the column inter-

changes and

|∆A| ≤ γ̃mΩeeT diag(1, . . . , n)2, (2.15)

where Ω is defined in (2.7). The matrix Q is defined as in Theorem 1.1.
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Powell and Reid’s bound is of the form |∆A| ≤ p(n)uΩeeT + O(u2), where p is an

explicitly given quadratic; the absence of a factor m is due to their assumption that inner

products are accumulated in double-precision.

We can rewrite (2.15) in the slightly weakened form

max
i

‖∆A(i, : )‖∞
‖A(i, : )‖∞

≤ n2γ̃mρm,n, (2.16)

where the row-wise growth factor

ρm,n = max
i

αi

‖A(i, : )‖∞
= max

i

(
maxj,k |â(k)

ij |
maxj |aij|

)
.

The ρm,n values in Table 1.1 show that the bound (2.16) is reasonably sharp for the

matrix (1.4).

3 Error Analysis for the Least Squares Solution

We now analyse the use of the QR factorization to solve the LS problem min ‖b −Ax‖2.

Given the QR factorization with column pivoting

AΠ = QR, R =

[
R1

0

]
, R1 ∈ IRn×n,

the computation to be analysed is c = QT b (application of the individual Householder

transformations to the right-hand side), R1y = c(1: n) (solution of a triangular system),

and x = Πy. The standard analysis of this computation (see, e.g., [9, Thm. 19.3]) does

not lead to row-wise backward error bounds, even though we have row-wise bounds for

the factorization. Therefore we adopt a more specific approach, beginning by following

the analysis of Powell and Reid.

First, consider the computation of c. For the purposes of the analysis it is convenient

to regard b as an extra column of A. We cannot allow b to participate in the column

interchanges, so we require that

νk = ‖b(k)(k: m)‖2 ≤ |σk|, k = 1: n. (3.1)

In the special case of zero residual problems (where b = Ax), it is easy to show that, in

fact, νk ≤ (n − k + 1)|σk|, k = 1: n. To ensure that b does not increase the αi values we

also require that

µi = max
k

|b(k)
i | ≤ αi, i = 1: m. (3.2)
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Since conditions (3.1) and (3.2) are not necessarily satisfied, we imagine multiplying b by

ξ−1 before carrying out the analysis, where

ξ = max

{
1, max

k

νk

|σk|
, max

i

µi

αi

}
≥ 1. (3.3)

The only consequence of this scaling is that we have to insert a factor ξ in the bound for

∆b. Writing b ≡ an+1 and using (2.13) with j = n + 1, we have

b = P1 . . . Pnĉ − ∆b, |∆b| ≤ n2γ̃mξΩe. (3.4)

Next we turn to the triangular solve. Standard analysis yields [9, Thm. 8.5]

(R̂1 + ∆R̂1)ŷ = ĉ(1: n), |∆R̂1| ≤ γn|R̂1|. (3.5)

Now R̂1(: , j) = â
(j+1)
j (1: n, j) and so

|∆R̂1(: , j)| ≤ γn|â
(j+1)
j (1: n)|. (3.6)

We can try to incorporate the jth column of the backward error matrix ∆R̂1 into our

analysis of the factorization by increasing the bound for |f (j)
j | in (2.9) by γn|â

(j+1)
j |.

However, as Lemma 2.2 states, f
(j)
j (1: j − 1) = 0, and this property is used in the proof

of Theorem 2.3. Our proposed perturbation γn|â
(j+1)
j | has nonzero leading entries in

general. In the analysis of Powell and Reid, ∆R̂1 in (3.5) is diagonal (to first order),

because inner products are assumed to be accumulated in double precision, and using

this argument it is straightforward to obtain a backward error result analogous to that for

the factorization. However, since we are making no assumption about the accumulation

of inner products we must take a different approach.

It is not hard to see from the analysis above that the computed solution x̂ is the true

solution to the LS problem with data A + ∆̃A and b + ∆b, where

∆̃A = A + ∆A + Q∆R, ∆R =

[
∆R1

0

]
,

∆b is defined in (3.4), and ∆A and Q are as defined in Theorem 2.3. We therefore need

a row-wise bound for the matrix Q∆R. Writing ∆rj for the jth column of ∆R we have

Q∆rj = P1 . . . Pn∆rj

= P1 . . . Pj∆rj

= P1 . . . Pj−1(I − βjvjv
T
j )∆rj

= P1 . . . Pj−1∆rj − P1 . . . Pj−1vj(βjv
T
j ∆rj)

...

= ∆rj −
j∑

i=1

P1 . . . Pi−1vi(βiv
T
i ∆rj). (3.7)
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From (3.6),

|∆rj| ≤ γn|â
(j+1)
j | ≤ γnΩe. (3.8)

For i ≤ j, exploiting the key property that vi(1: i − 1) = 0, we have

|vT
i ∆rj| ≤ |vT

i ||∆rj(i: m)|
≤ γn|vT

i ||â
(j+1)
j (i: m)|

≤ γn‖vi‖2‖â(j+1)
j (i: m)‖2

= γn‖vi‖2‖â(i)
j (i: m)‖2 by orthogonality,

≤ γn‖vi‖2‖â(i)
i (i: m)‖2 by column pivoting,

≤ γn√
2
‖vi‖2

2, by (2.5). (3.9)

Now

|P1 . . . Pi−1vi| = |(I − β1v1v
T
1 )P2 . . . Pi−1vi|

≤ |P2 . . . Pi−1vi| + |β1v1v
T
1 P2 . . . Pi−1vi|

≤ |P2 . . . Pi−1vi| + 2|v1|
‖vi‖2

‖v1‖2

.

Applying this inequality recursively, we obtain

|P1 . . . Pi−1vi| ≤ 2
i−1∑

h=1

‖vi‖2

‖vh‖2

|vh|. (3.10)

To bound the right-hand side of (3.10), we need a lemma.

Lemma 3.1 The vectors vk from Householder QR factorization with column pivoting

satisfy
‖vi‖2

‖vj‖2

≤
√

2, i ≥ j. (3.11)

Proof. For i ≥ j we have, from (2.1),

‖vi‖2 ≤ 2‖a(i)
i (i: m)‖2

≤ 2‖a(i)
i (j: m)‖2

= 2‖a(j)
i (j: m)‖2 by orthogonality,

≤ 2‖a(j)
j (j: m)‖2 by column pivoting.

Since (2.5) can be written as

‖vj‖2 ≥
√

2‖a(j)
j (j: m)‖2,

the result follows.
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Applying the lemma to (3.10) we obtain

|P1 . . . Pi−1vi| ≤ 2
√

2
i−1∑

h=1

|vh|.

From (2.10), |vk| ≤ 2Ωe, so
i−1∑

h=1

|vh| ≤ 2(i − 1)Ωe.

Substituting into (3.7) and using (3.8) and (3.9) gives

|Q∆rj| ≤ γnΩe +

j∑

i=1

2
√

2(2(i − 1)Ωe)
√

2γn

= γ̃nj
2Ωe.

Hence

|Q∆R| ≤ γ̃nΩeeT diag(1, . . . , n)2.

We have proved the following result.

Theorem 3.2 Let A ∈ IRm×n (m ≥ n) have full rank and suppose the LS problem

min ‖b−Ax‖2 is solved using Householder QR factorization with column pivoting. Then

the computed solution x̂ is the exact LS solution to

min
x

‖(b + ∆b) − (A + ∆A)x‖2,

where the perturbations satisfy

|∆A| ≤ γ̃mΩeeT diag(1, . . . , n)2, |∆b| ≤ n2γ̃mξΩe, (3.12)

where Ω is defined in (2.7) and ξ in (3.3).

Unfortunately, it is not possible to test the bounds in (3.12) empirically, because no

computable expression is known for the row-wise backward error of an arbitrary approx-

imate LS solution (formulae are known, however, for the normwise backward error [15],

[17]).

4 Row Pivoting and Row Sorting

For Householder QR factorization with column pivoting, Theorem 2.3 bounds the rows

of the backward error matrix ∆A in terms of the scalars αi in (2.7). The matrix (1.3)

shows that αi/ maxj |aij| can be arbitrarily large for column pivoting, and the matrix
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(1.4) shows that the row-wise backward error can also be large. As Powell and Reid

discovered, the key to obtaining a small row-wise backward error is to incorporate row

interchanges: at the start of the kth stage, after interchanging columns according to the

column pivoting strategy, we interchange rows to ensure that

|a(k)
kk | = max

i≥k
|a(k)

ik |. (4.1)

(Note the importance of interchanging columns before rows.) This is what we did in

Section 1 for the matrix (1.3) before the first stage of QR factorization. The next result

slightly improves bounds of Powell and Reid [14].

Lemma 4.1 With the row interchange strategy (4.1) and column pivoting we have

max
j≥k

|a(k+1)
ij | ≤ c

(k)
i max

j≥k
|a(k)

ij |, (4.2)

where

c
(k)
i =

{√
m − i + 1, i = k,

1 +
√

2, i > k.

Consequently,

αi ≤
{√

m − i + 1(1 +
√

2)i−1 maxj |aij|, i ≤ n,

(1 +
√

2)n−1 maxj |aij|, i > n.

Proof. Since (vk)i = a
(k)
ik for i > k, from Lemma 2.1 we obtain

max
j≥k

|a(k+1)
ij | ≤ (1 +

√
2) max

j≥k
|a(k)

ij |, i > k. (4.3)

Using the fact that premultiplication by Pk preserves 2-norms of columns and alters only

elements with indices k: m we have

|a(k+1)
kj | ≤

( m∑

i=k

|a(k+1)
ij |2

)1/2

=

( m∑

i=k

|a(k)
ij |2

)1/2

(4.4)

≤ |σk|.

But |σk| ≤
√

m − k + 1 |a(k)
kk |, using (4.1), which gives the formula for c

(k)
k . The bound

for αi follows from (4.2), since for i ≤ n row i is altered on the first i − 1 stages and is a

pivot row on the ith stage, while if i > n then row i is altered on n stages (in the last of

which it becomes the zero vector) and is never a pivot row.

Lemma 4.1 shows that if both column pivoting and row pivoting are used then House-

holder QR factorization yields a bounded ratio αi/ maxj |aij|, although the bound can

be of order (1 +
√

2)n. Powell and Reid [14] give an example where the bound is nearly

attained, but suggest that the ratio is usually of order 1.
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As a result of Powell and Reid’s analysis, it is standard practice to use row and column

pivoting for badly row-scaled problems. However, as noted in Section 1, Björck [5, p. 169]

suggests sorting the rows at the start of the factorization so that

‖A(1, : )‖∞ ≥ ‖A(2, : )‖∞ ≥ · · · ≥ ‖A(m, : )‖∞, (4.5)

and then using column pivoting alone. This can be done in O(m log2 m+mn) comparisons

as opposed to the O(m2) required for row pivoting, and it may be preferable from the

programming point of view to do all the row interchanges at once, rather than to spread

them one per step through the factorization. Note that arranging for (4.5) to hold is

trivial for a problem of the form (1.1) resulting from the method of weighting. The next

lemma shows that row sorting yields the same bound on the αi as row pivoting.

Lemma 4.2 If the rows of A are ordered so that (4.5) holds then, with column pivoting,

αi ≤
{√

m − i + 1(1 +
√

2)i−1 maxj |aij|, i ≤ n,

(1 +
√

2)n−1 maxj |aij|, i > n.

Proof. Note first that (4.3) is still valid, as it depends only on Lemma 2.1. For i = k

we have, using (4.4) and (4.3),

max
j≥k

|a(k+1)
kj | ≤ max

j≥k

( m∑

i=k

|a(k)
ij |2

)1/2

≤ max
j≥k

√
m − k + 1 max

i≥k
|a(k)

ij |

=
√

m − k + 1 max
i≥k

max
j≥k

|a(k)
ij |

≤
√

m − k + 1 max
i≥k

(1 +
√

2)k−1 max
j

|aij|

=
√

m − k + 1(1 +
√

2)k−1 max
j

max
i≥k

|aij|

=
√

m − k + 1(1 +
√

2)k−1 max
j

|akj|,

by (4.5).

In our numerical experiments we have found row sorting to give very similar row-wise

backward errors to row pivoting.

5 Choice of Sign in Householder Matrix Construc-

tion

The error analysis in Section 2 rests on Lemma 2.1, which uses in its proof the assumption

(2.2) on the choice of sign in the Householder matrices. To simplify the notation, consider
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a Householder matrix P = I − βvvT , where β = 2/vT v, and recall that if v = x − σe1

and σ = ±‖x‖2, then Px = σe1. Since v1 = x1 − σ, textbooks usually recommend the

choice

σ = −sign(x1)‖x‖2, (5.1)

in order to avoid cancellation. The other choice of σ,

σ = sign(x1)‖x‖2, (5.2)

can be used in a numerically stable way provided that the computation of v1 is rearranged

as follows [12]:

v1 = x1 − sign(x1)‖x‖2 =
x2

1 − ‖x‖2
2

x1 + sign(x1)‖x‖2

=
−(x2

2 + · · · + x2
n)

x1 + sign(x1)‖x‖2

.

In practice, we might want to take a positive σ at each step of the factorization in order

to produce a matrix R normalized to have nonnegative diagonal elements, in which case

we would need to switch between the choices (5.1) and (5.2).

Theorem 1.1 on the normwise and column-wise stability of Householder QR factor-

ization holds no matter what choice of sign is made on each stage of the factorization.

Lemma 2.1, however, is not valid for (5.2). This is illustrated by the matrix

A =




2 1

0 1

0 1

ǫ 1


 , ǫ > 0.

Row pivoting, row sorting and column pivoting all leave this matrix unchanged, and for

(5.2) we have

φ
(1)
2 = β1v

T
1 a

(1)
2 = O(1/ǫ),

showing that φ
(1)
2 is unbounded as ǫ → 0. This problem can occur whenever the leading

column a1 is such that ‖a1‖2 ≈ |a11|, because then v1 = a1 − sign(a11)‖a1‖2e1 is small

and hence φ
(1)
j ≤ ‖a(1)

j ‖/‖v1‖2 can be large.

A numerical example confirms that the choice of sign (5.2) need not lead to row-wise

stability. Let A ∈ IR7×5 be the matrix with aij = 1 except that aii = λ for i = 1: 5. With

λ = 108 we obtain the backward errors and row-wise growth factors shown in Table 5.1.

This is the only situation we know in which the choice of sign in defining a Householder

matrix affects the stability of an algorithm.
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Pivoting: None Row Col. Row and col.

(5.2): Normwise (η) 2.90e-16 7.65e-16 1.32e-15 7.65e-16

Row-wise (ηR) 5.80e-9 1.08e-8 1.78e-8 1.08e-8

ρm,n 5.00e+7 5.00e+7 5.00e+7 5.00e+7

(5.1): Row-wise (ηR) 8.94e-16 8.94e-16 7.45e-16 8.94e-16

ρm,n 1.00 1.00 1.00 1.00

Table 5.1: Backward errors and row-wise growth factors for QR factorization with no

pivoting, row pivoting and column pivoting, using (5.2) and (5.1).
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