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Stability of Interfaces with Mesh Refinement
By Marsha J. Berger*

Abstract. We study the stability of mesh refinement in space and time for several different
interface equations and finite-difference approximations. First, we derive a root condition
which implies stability for the initial-boundary value problem for this type of interface. From
the root condition, we prove the stability of several interface equations using the maximum
principle. In some cases, the final verification steps can be done analytically; in other cases, a
simple computer program has been written to check the condition for values of a parameter
along the boundary of the unit circle. Using this method, we prove stability for Lax-Wendroff
with all the interface conditions considered, and for Leapfrog with interpolation interface
conditions when the fine and coarse grids overlap.

1. Introduction. In solving a hyperbolic partial differential equation by finite-dif-
ference techniques, a grid with variable-mesh spacing is required to accurately
resolve the solution over the entire domain with a minimum number of grid points.
One simple way to effect this is by an abrupt mesh refinement in space, where the
mesh spacing on one side of the interface is an integral multiple of the mesh width
on the other side. A drawback of this approach is that for stability reasons, the time
step At on the coarser side is limited by the smaller mesh width. This has motivated
the use of mesh refinement in time and space, where the time step on the coarser side
of the interface is also an integral multiple of the time step on the finer side of the
interface, though possibly a different integer than for the spatial refinement.

This situation arises, for example, in the following problem. Consider the scalar
equation u, = ux, -oo < x < oo, which will be approximated using a coarse grid for
x < 0 and a fine grid for x > 0. As illustrated in Figure 1.1, the fine grid is refined
by a factor of 4 in space and time over the coarse grid. If the Lax-Wendroff
difference scheme,

C+1 = < + f (Ci - C.) + y(d - 2o¡- + d)
is used on both the coarse and fine grids, one way to match over the interface is as
follows. To get Vq on the coarse mesh, the Lax-Wendroff scheme is applied at Vq,
taking v° = u° for the missing value to the right. The values «¿, 1 < k < n - 1, are
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302 MARSHA J BERGER

obtained by linear interpolation in time using v° and t>0, or equivalently, h° and u*
(see Section 4 for another method). These values are then used in the Lax-Wendroff
formulas on the refined side. This procedure is now repeated for each coarse time
step. The numerical scheme is then completely defined.

In this paper, we present the first stability proofs for the case of an interface
where the mesh is refined in both space and time. Our result, based on the Kreiss
[16] and Gustafsson, Kreiss and Sundström [14] stablity theory for the initial-
boundary value problem, begins with the derivation of a root condition which is
equivalent to stability for this case. Using this, we can prove stability of the
Lax-Wendroff difference scheme with several different interface conditions. Öliger
[17] has an unstable example of the nondissipative Leapfrog scheme with interpola-
tory interface conditions in the case of mesh refinement by an even integer. We can
extend our method of proof to the case of mesh refinement in time and space in
which the fine and coarse grid points do not coincide, but rather where the two
meshes overlap a bit. The stability of Lax-Wendroff is (not surprisingly) preserved.
Moreover, the spatial interpolation introduced into the interface equations by the
overlapping meshes is enough to prove stability for the Leapfrog scheme as well.

hi

'-2 -1

(Vl'

Figure 1.1
Interface with mesh refinement in space and time by a factor of A

The stability of an interface under an abrupt mesh refinement in space only has
previously been considered by several authors. Ciment [8] has proved the stability of
the Lax-Wendroff difference scheme under very general interface conditions. In [9],
he extended his stability results to the case of an interface where a dissipative
difference scheme was used on at least one side of the interface. Browning, Kreiss
and Öliger [7] considered the Leapfrog scheme under an overlapping mesh refine-
ment, and proved stability using interface equations specifying continuity of the
solution and its first derivative. Goldberg and Tadmor [11] consider stability in the
case of translatory boundary equations for the outflow variables. Starius [21] proves
stability for the slightly different problem of overlapping grids with the same mesh
widths in time and space, where interpolation formulas unite the two computations.
None of these results apply in the case of mesh refinement in time and space. In fact,
Trefethen [23] shows by example that complicated boundaries and interfaces can be
unstable even when all formulas involved are dissipative.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



STABILITY OF INTERFACES WITH MESH REFINEMENT 303

There are certainly other important properties of interfaces worth considering
besides stability. The conservation properties of an interface can be crucial if one is
computing a discontinuous solution (Berger [3]). Vichnevetsky and Bowles [24] and
Trefethen [23] have studied reflection and transmission properties of an interface.

Although the theory lags, computations have been successfully done for many
years. Starius does simulations using two overlapping meshes in different coordinate
systems. This is becoming more common in the aircraft industry for problems with
complex geometries [6], More recent computations of this type have been done by B.
Kreiss [15] and by Reyna [20]. Many computations have been done using mesh
refinement in time and space, in both one dimension (Bolstad, [5]) and two
dimensions (Gropp, [12]; Berger and Öliger, [4]). These computations use locally
uniform meshes with grid spacings hx, h2, and time steps kx and k2 chosen
appropriately for each grid. This is usually done so that the mesh ratio X = kx/hx =
k2/h2 is constant on both grids. This mesh refinement technique has proven to be
very efficient.

In the rest of this section we will briefly recall the stability theory of Kreiss [16]
and Gustafsson, Kreiss and Sundström [14] that we will use here. In Section 2, we
derive what we call the root condition for stability of an interface under mesh
refinement in space and time, where the interface equations come from interpolation
in time. For this derivation, we assume the finite-difference scheme on both sides of
the interface has a three-point stencil, so that only one point in space needs a special
boundary equation. We are thus led to the root condition which unstable eigensolu-
tions (if there are any) must satisfy. In Section 3, we make use of the maximum
principle to show that the root condition cannot hold for the roots of the Lax-
Wendroff difference operator, and thus prove that Lax-Wendroff with interpolation
interface conditions is stable. In Section 4, we briefly repeat the same type of
derivation as in Section 2, but where the interface equations come from the Coarse
Mesh Approximation Method (Ciment, [9]), rather than interpolation. In this case,
the root condition is more complicated, and we resort to the computer to verify that
for the case of Lax-Wendroff, it cannot hold. Our use of the maximum principle,
however, reduces the numerical verification to values of a parameter on the boundary
of the unit circle. The use of the computer in checking stability is not new; see, for
example, Pereyra, Proskurowski and Widlund [19], Coughran [10] or Gustafsson
[13]. In Coughran's work, it was necessary to check stability for a range of values
within the unit circle. Gustafsson has reduced the problem to checking values near
the boundary of the unit circle. Neither of these approaches, however, is easily
adapted to cover the case of mesh refinement in time and space. In Section 5, we
again consider the case of interpolation in time for the interface conditions, but this
time, where the grids do not meet exactly at a grid point. If the one-dimensional
grids overlap, interpolation in space is also necessary to determine the interface
solution values. This mimics more closely the situation in two-dimensional mesh
refinement calculations. It is no surprise that this case is stable if the nonoverlapping
case is. In fact, the additional interpolation in space adds enough smoothing to
stabilize the unstable Leapfrog configuration with interpolation interface equations
when the grids do match up evenly. This has previously been observed by Reyna [20]
for the case of mesh refinement in space only.
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The stability theorems of Kreiss [16] and Gustafsson, Kreiss and Sundström [14]
can be stated roughly as follows. Consider a Cauchy stable difference scheme for the
constant coefficient hyperbolic initial-boundary value problem

u, = Aux + Bu + F(x, t),       0 < x < oo,

where A, B are constant « by « matrices, u and F e R". Denote the solution of the
difference scheme by i/™ = u(vh, mk). We will look for normal mode solutions of
the form

(1.1) < = z>,

where ¿> is the solution to the characteristic equation of the difference scheme. This
results from a discrete Laplace transform in time and the subsequent recurrence
relation in space. The solution <¡> is thus a linear combination of solutions

(1-2) <*>„=   E  P(p,J)k'j(z),       p>v0,

where the k ■ = Kj(z) are the distinct roots of the characteristic equation, and the
degree of the polynomial P with respect to v is one less than the geometric
multiplicity of the corresponding root k . An important proposition of Gustafsson,
et al. [14, Lemma 5.2, p. 660] shows that for any z with \z\ > 1, there are nl linearly
independent solutions with |k| < 1 and nr solutions with |k| > 1, where / and r are
the number of points in the difference stencil to the left and right of center
respectively. For the solution <i> to be in /2, the sum in (1.2) is taken over those roots
|Ky| < 1, and includes roots |k,| = 1 only if they are roots which approach the
boundary of the unit circle from the inside as \z\ -» 1 from outside the unit circle. If
there are no solutions of the form (1.1) and (1.2) with \z\ > 1 and j#c -| < 1 or \z\ = 1
and |Kyi «g 1 then the difference approximation is stable.

In the case of an explicit, two-level dissipative scheme applied to u, = Aux,
stability implies the estimate (Kreiss, [16])

(1.3) |«(-,OIU<^«(-.o)B,.
Under certain circumstances, results of Osher [18] give the same estimate for
nondissipative models also. But for general nondissipative or multi-level schemes, we
only get the weaker estimate (Gustafsson, Kreiss and Sundström, [14])

/ a — an \ ^.2     / a — ctr, \2,,      . „2(rT^),Ç0lle-"»-ll.+(ïT^)»e""»ii«

(f^)'¿y-"y:+ik-*«*iiL
i» = 0

for some a0 and all a > a0, and for all sufficiently small k. In this definition t = mk,
g is the boundary data, and F is a forcing function. In (1.4), the norm of the solution
in the interior of the domain is taken in both space and time. Recent results of
Gustafsson [13] give conditions so that an /2-estimate exists for nondissipative
schemes as well. See Trefethen ([22] and [23]) for a more detailed exposition of the
stability theory for initial-boundary value problems.

^Kc]
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The last point we make concerns the so-called folding trick (Ciment, [9]). Consider
a scalar problem with an interface at x = 0, with one difference scheme on the left
and a possibly different difference scheme on the right, and some interface equa-
tions. The stability of the combined scheme can be determined by folding the left
side along the line x = 0, thus transforming the problem into an equivalent 2 by 2
system of equations for x > 0, with boundary conditions determined by the interface
equations. Then, we can apply the initial-boundary value theory. For example, to
approximate ut = aux,we can approximate the equivalent system

a     0
0    -a

where ux(x) = u(x) and u2(x) = u(-x) for x > 0. It is unnecessary to actually go
through the folding before applying the initial-boundary value problem theory,
especially since it tends to confuse the notation. We point out that by using this and
definition (1.4), the solution at the interface will receive special weight that does not
appear in definitions of Cauchy stability. Trefethen [22] has shown that if one
applies the folding trick to the Cauchy problem for ut = ux, and applies Leapfrog at
all grid points including the interface point, the result has a generalized eigenvalue.

2. Derivation of Root Condition for 3-Point Difference Schemes. In this section we
derive the root condition for stability of an interface under mesh refinement in space
and time. Consider the scalar wave equation, u, = ux, with the coarse grid on the left
of the interface x = 0, and the fine grid on the right. Later, we will consider the case
m, = -ux, or equivalently, the case when the fine and coarse grid locations are
reversed. Let the coarse grid be refined by an arbitrary integral factor n. An equal
refinement factor in time and space is not an essential part of this derivation, but for
simplicity we will assume it. We will assume that the difference operator applied on
both the coarse and fine grids has a three-point stencil, so that only at the one point
where the stencil cannot be applied do we need a special boundary condition. In this
derivation, it is not necessary that the difference operator on the coarse and fine
grids be the same.

i
V-2

1
V-1

1
V0

n
U0 "3 Up_fn

3
uo

2
U0

1
"0

0
V-2

0
v-1

0    0     0    0
U0  U,   U2 U3

0
U2r

Figure 2.1
Interface with mesh refinement in space and time
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The situation we model is illustrated in Figure 2.1. In Figure 2.1, we have drawn
the intermediate time steps on the fine grid, but in fact we can view the difference
scheme on the right as being one application of Q", where Q is a three-point
finite-difference operator with mesh ratio X. The GKS theory says to look for modes
which grow geometrically in time. Let this factor in time be z", instead of z in (1.1).
The difference equations form a three-term recurrence relation for the spatial part §
in (1.2), which has two roots. By the previously mentioned proposition of Gustafs-
son, et al. there are as many roots k¡, |k -| < 1, of the characteristic equation as there
are points to the left of center in the stericil for the difference operator. Correspond-
ingly, there are as many roots with |k(,| > 1 as there are points to the right. For
example, for the Lax-Wendroff difference operator,

vr1 = < + |(Ci - «£-i) + y(Ci - 2o," + C)

the characteristic equation is

(2.1) Z = l+|(K-K"I) + y(K-2 + K-1).

The two roots of (2.1) are

z-l+X2± v/(z-l)¿ + A2(2;
(2-2) k±=-¿ X2 + X

The root k_ is inside the unit circle, k+ is outside. Henceforth, we call the roots Kin
and Kout.

Since for 3-point difference schemes, there is only one root inside the unit circle,
the normal modes (1.1) and (1.2) take a particularly easy form. Therefore, on the
coarse grid to the left of the interface we look for the modes v"' = constant(z")mT",
where for simplicity we will normalize the constant to 1. We use t for the root of the
resolvent equation for x < 0. Since the coarse grid points are numbered with
negative indices, for the solution vv to be in l2 we want the root t for which |t| > 1.

On the right of the interface, n applications of a difference operator Q has a
stencil n points to the left of center. By the lemma above, there must be n roots of
the characteristic equation inside the unit circle. Let ui¡,j = 0,1,.. .,n — 1 be the n
roots of unity; zw7 are then the n roots of z". For every value zw there is a
corresponding root k of the difference scheme. Each such mode k satisfies the
requirement that after one global repetition of the difference equations, or n steps on
the fine grid, the solution in space is multiplied by z". There are n such modes k ,
and since the mapping from the Zj = zwy with modulus > 1 to k ■ inside the circle is
one to one, the Ky are distinct. The general solution represented on the fine grid must
therefore be of the form

< = "ePjK-jiz^r\
7 = 0

where the p are constants. This is illustrated in Figure 2.2.
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Figure 2.2
Normal modes of the solution

We point out that the solution on either side of the interface must take the form of
the normal modes at all grid points up to and including the boundary point. On the
left, we have a three-point scheme which can be applied at all grid points but v0,
where we must specify one boundary condition. Similarly, at each fine grid time step
we can apply the difference operator Q at each point uv, v > 1, and specify n
conditions for the u'Q, i = 1,...,«.

We now examine the interface conditions that these modes must satisfy. The first
requirement is that the grid point at the interface belong to both the coarse grid and
the fine grid, v\ = u$, or

(2.3) Ep, = i.

Next, to compute t;0 we use a coarse mesh approximation, i.e., we use the grid
point uQn for vx. Since we are looking for normal modes, and v°, v°x, and z are already
determined, this means that the point u°n must fit into the normal mode of the coarse
grid as the point v\, or

(2.4) = L*«"-

For the remaining « - 1 grid points w¿ at the interface we will use linear
interpolation in time,

(2.5) "5 = "o° + -U-»o),       Kk<n-l,

giving us the equations

k
(2.6) 1 + ~(z" - 1) = z

j
k = \,...,n 1.
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Equations (2.3) and (2.6) together give n conditions that the constants p., j
0,...,n — 1, must satisfy. We can write this as the linear system Wo = b,

A

i i )
un-l

W,

Po

Pi

p2

Pn-1

1   ,   1 (*"-!)
z      n        z
1       2(z"-l)— + ---T-1-

1     ,  (n-1) (z"-l)
,«-i +

Since the matrix W on the left-hand side is a Vandermonde matrix, and the roots of
unity are distinct, we can solve uniquely for the p.. Furthermore, if we normalize the
matrix W, defining F = W/ 4n , then Fis unitary, F*F = F

We then solve for p = F*b to get

(2.7) Py =
1 E

A: = 0
+ (Z»-1)

k = 0    \ z

The last two terms in (2.7) can be summed explicitly. In particular, we use the
relation

n-i

E krk =-—-[r"(n - 1) - nr"1 + l].
k=o (1 - r)

Summing and simplifying finally gives the expression for the constants

('" - I)2    ";
,2,n-l(2-8) Pi =

(z - uj)   n z

There is still one equation from the interface conditions, (2.4), that we have not used.
Substituting the expression for the p7 into (2.4) gives the root condition

(2.9) r- E
j-o

"z'-ll2    w.
z — to. n2z"~l  '

Let us summarize at this point. If there are eigenvalues or generalized eigenvalues
that satisfy both the difference equations and the interface equations, they must
satisfy (2.9). If (2.9) has an l2 solution with |z| > 1, or a generalized l2 solution for
|z| = 1, then the difference equations are unstable. In the next section, we will show
that for any two-step three-point dissipative scheme, in particular, using the Lax-
Wendroff difference operator on both the fine and coarse grids, linear interpolation
for the interface equations is stable.
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3. Stability of Lax-Wendroff. In Section 2, we derived the root condition for
interpolation interface conditions assuming the difference scheme could be applied
at all points up to, but not including, the interface. In this section, we show that for
the particular choice of the Lax-Wendroff difference scheme on both the fine and
coarse grids, the root condition cannot hold. In fact, this is true for any three-point
two-step explicit finite-difference scheme. For multi-level dissipative schemes, an
additional condition must be satisfied. Since the stability proof for the special case
of Lax-Wendroff is so simple and straightforward, we prove it separately before
considering the more general dissipative case.

Theorem 3.1. For Lax-Wendroff with interpolation interface conditions, mesh
refinement in time and space by any integer is stable.

Proof. To prove this, we must show that the root condition (2.9) cannot hold for
|z| > 1. The idea of the proof is to apply the maximum principle (see, for example,
Ahlfors, [1]) to the right-hand side of the root condition (2.9), call it/(z),

We will show that for |z| > 1 there are no singularities, and that/(z) is regular at oo.
It follows that the maximum modulus of f(z) occurs for |z| = 1. We know that t, the
left-hand side of the root condition (2.9), satisfies |t| > 1. The last part of the proof
consists of showing that | /(z)| < 1 - 8, 8 > 0, for |z| = 1, and so the root condition
cannot hold.

First we check for branch points in /(z) in the region |z| > 1. This can only
happen if there are branch points in the characteristic roots k and t of Lax-Wendroff.
From (2.2), this occurs for

(z- 1)2 + A2(2z - 1) = 0.

This is a quadratic in z with roots

z±= (1 -X2)±iX^l -X2.

The modulus of the roots is

|z|2=(l -À2)2 + À2(l -À2) = l -À2<1

since for Cauchy stability for Lax-Wendroff, 0 < X < 1. Therefore, for |z| > 1 there
are no branch points.

Next we examine the expression/(z) for large z, by checking the behavior of the
k as |z| -* oo. The characteristic equation (2.1) for Lax-Wendroff shows that the
product of the two roots Kin and kou, satisfies

X- 1
KinKout        X  + 1

with sum

2(z + A2- 1)
«,n +  «ou, - A2 + x •
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Furthermore, the root Kin stays inside the circle for |z| > 1. Otherwise, there would
be a point where Kin crosses the circle, |fcin| = 1 with |z| > 1, violating the von
Neumann stability condition. Therefore, as z -> oo,

(3-2) Kout - ^

and

r^, x(x-i)
(3-3) Kin =-—-■

Recalling that k, = k(zj), and substituting (3.3) into (3.1) gives

^¿3,[(-A)(l-A)]" i M
2"«2 2 \z2

which is clearly bounded for large |z|.
Since /(z) is regular at oo and has no branch points, the maximum modulus

principle holds, which states that if /is analytic in the interior and continuous up to
the boundary of a region R, then the maximum modulus | /(z)| occurs on the
boundary. We will show that the maximum modulus of / is less than, and bounded
away, from 1 for |z| = 1.

It is easy to show, as is done in Lemma 6.1 of Gustafsson et al., that the roots of
Lax-Wendroff for u, = ux satisfy

|k¡J< 1-5,        ¡z¡> 1,
kJ*-1.    |z|>i,z#i,
Kou, =  L        Z =  1-

Therefore the root t in (2.9) satisfies |t| > 1 for |z| > 1, and all the k, satisfy
|k -| < 1 — 5. We therefore have

(3.4) |/(z)|<(l-S)nE|P,l-
j

By (2.3) we have that Ep, = 1. Using (z" - l)2 = (z" - 1)(1 - z~")zn and the fact
that z"1 = z for z on the unit circle, the expression (2.8) for the p; can be rewritten

1   \z" - ll2
Pi = ~2 -I •

n    \z - «■

Since the pj are real positive numbers, we have

(3.5) EN-i.
j

Therefore, in (2.9), the right-hand side | /(z)| < (1 - 8)", whereas the left-hand side
|t| > 1. Thus the root condition cannot hold for |z| ^ 1, and so our approximation is
stable.   D

We now assess the generality of the preceding methods. For general multi-level (in
time) but three-point (in space) explicit difference schemes, the maximum principle
still applies (Proposition 3.1). In fact, in the dissipative case, it is only necessary to
check a finite number of z values on the unit circle to determine stability. In the case
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of a two-level scheme, this can be done in general (Theorem 3.2). Note that the class
of explicit dissipative three-point two-level schemes includes only Lax-Wendroff and
various first-order schemes.

We show first that the maximum principle can still be applied. For \z\ > 1, the
roots of the characteristic equation satisfy |Kin| < 1 < |kou,|, or else the von Neu-
mann stability criterion would be violated. Thus (2.9) has no branch points for
|z| > 1. Next, the characteristic equation for an s time-level scheme is

¡*'Q-i- 'Ï*-'Q. )fl-o.

For three-point explicit schemes, this gives a polynomial

P(z, k) = z*k + zs~l(c0_x + c00k + c01k2) + • • •  =0.

As z -» oo, we must at least have k = 0(1/z). Since py = 0(znl), the expression
f(z) = T.jPjKj stays bounded. Thus, for general explicit three-point schemes, it is
again necessary to check the root condition only for values of z on the unit circle.

Since the root t always satisfies |t| > 1, and the p, are real and positive with
Lp, = 1, we can only have t = X^P/k" if |t| = |k,.| = 1, and in fact, if

(3.6) t(z") = k](zoj),      j = 0,...,n-l.

We summarize this in

Proposition 3.1. A three-point explicit finite-difference scheme (or combination of
them) is unstable for mesh refinement in time and space with interpolation interface
conditions if and only if it admits modes satisfying (3.6) for some \z\ = 1.

Various cases are now possible. If the coarse grid scheme is dissipative, the only
root |t| > 1 on the unit circle is t = 1. If the scheme is two-level, by consistency this
implies z" = 1. It is left to check the behavior of k = k(zw-), 0 <y < n — 1. If we
use the same scheme on the fine grid as the coarse grid, and note that the root at
z = 1, t = 1 is simple (see Goldberg and Tadmore, [11]), we must have k(zw; = 1)
=£ 1 for some j. By dissipativity, Ky =£ 1 implies |z| < 1. Such an instability is
therefore impossible, and we have the more general

Theorem 3.2. Any two-level three-point explicit dissipative finite-difference scheme is
stable for mesh refinement in time and space with linear interpolation at the interface.

Dissipativity guarantees that for a root |k| = 1, k # 1, its amplification |z| < 1.
For multi-level dissipative schemes it is possible to have k = 1 for z = 1 as well as
other values \z\ = 1. Therefore, in our case it is possible to have the root t = 1 with
z" # 1. It is thus necessary to check stability for the finite number of values of z for
which t(z") = 1. Goldberg and Tadmore exclude this case in their work by
requiring the boundary scheme to satisfy the sufficient condition

(3.7) P{z,k = \)±Q,       |z|=l,z#l.

For three time-level schemes, Goldberg and Tadmor show that the only case to
exclude is z = -1.

Finally, if only the fine grid scheme is dissipative, overall stability is still assured if
condition (3.7) is satisfied.
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We make two remarks about these theorems. First, for dissipative schemes the
stability results continue to hold for the equation u, = -ux. This is due to the
separation of roots k, t inside and outside the unit circle. In a dissipative scheme,
|z| = 1 implies only one of k = 1 or t = 1 holds, and the other root is off the circle.
Thus, the root condition (2.9) cannot be satisfied. For nondissipative schemes, this is
not necessarily the case. If Leapfrog is used to solve u, = ux, the parameters z = 1,
t = 1, k0j = ± 1 yield an instability. However, if Leapfrog is used to solve u, = -ux,
there is no instability for this mode, since for z = 1, we now have r = -1. There is
an asymmetry depending on whether the fine grid is on the upwind or downwind
side of the interface.

The second remark concerns the case of unequal refinement factors in space and
time. Our method of proof can be readily modified to cover this case as well. Let the
fine grid be refined by a factor n in time, but m in space. The derivation of the
constants p, j = 0,...,n - 1, remains the same. The change comes from the final
interface condition, which becomes vx = «",, or

n-\

t = E pK-
/-o

Our results for dissipative schemes continue to hold in this case. For mesh refine-
ment in space only, n = 1, we get the required matching condition t = k"'. For mesh
refinement in time only we get

«-i
(3.8) T =   E PjKj.

7 = 0

The only interesting thing in this case is that even the nondissipative Leapfrog
scheme is stable, for n > 1. As in (3.6), t(z") = k(zw;), V/, is necessary for
instability. But for Leapfrog, the mapping between z and Kin is one to one, and so
the k are distinct. For the case n = 1, (3.8) degenerates to the transparent interface
problem with no mesh refinement, which has a generalized eigenvalue.

4. Stability of the Coarse Mesh Approximation Method. We next consider the
stability of an interface where the intermediate boundary values on the fine grid are
determined by the Coarse Mesh Approximation Method (CMAM), instead of by
interpolation in time. Recall from Section 2 the method of computing the coarse grid
point at the interface: u0 is computed using the fine grid point w° for the missing vx.
The CMAM uses this same method to compute the u[\, 1 < k < n. For the case of
Lax-Wendroff, this is

(4.1) 4 = »o0 + ̂ f(-2 - »-°i) + ̂ -M - 2»o° + rfi).

The time step Atk = kAt/n < At, where At is the time step on the coarse grid, so the
boundary formulae are at least Cauchy stable. The advantage of this interface
condition is that the equations are the same order of accuracy as the integration
method, instead of the one order lower accuracy of linear interpolation.
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To examine the initial-boundary value stability of this configuration, we again
look for modes

(4.2)

(4.3)

(z"Y't\

E pjKj(ujY
¡=o

v = 0,-1,-2,...,

r-0,1,2,....

The condition u0 - v0 gives

«-1

EP;=1.
7 = 0

The CMAM interface conditions (4.1) give

zk E Pjuj = 8k'       k= \,...,n - 1,
7 = 0

where gk is the amplification factor for the Lax-Wendroff operator with mesh ratio
kX/n,

(4.4)
kX . ,.

8k = l + 2^(T"T   ) +
(kX/n)'

(t-2 + t-1).

Again, we get the linear system

/    1

Un

Wn

1
«1

«1

-r1 w.

1 \

with solution

tí«-i /

A = 0    z

p(l

Pi

P2

\P«-1

1
8iA

82/z2

?n-iA"~

The root condition comes from substituting this expression for pk into the last
interface condition, v°x = u°n, or equivalently t = T."ZIpjK", to get

«-1 n-l

(4.5) = -   E    Eg;
A = 0 7 = 0

W/tW

This double sum is a much more complicated expression than the root condition
in Section 2. As before, we know that for values of z with |z|>1,|t|>1. We would
like to show that the right-hand side of (4.5) is always strictly less than 1. Again we
use the maximum principle. To see that the right-hand side of (4.5) is bounded as
|z| -» 00, recall from Eq. (3.1) that k = -A(l - A)/2z/( so k" decays like z~". This
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is needed to balance the growth of the terms gk in (4.4), which are functions of t.
Recall that t is the root of Lax-Wendroff outside the unit circle, t"1 is inside, and
this remains true for all \z\ > 1. As z -» co, from (3.2) we know t ~ 2z"/(X2 + A),
and so gk grows like z". Thus, for each term in the sum, the growth in gk is exactly
cancelled by the decay in k . This leaves the term (1/z)', which only helps.
Therefore, the maximum modulus of the right-hand side of (4.5) occurs for |z| = 1,
where (4.5) can be written

1T = -E Eg; («**)"«*•

This sum is difficult to work with analytically, and we turn directly to the
computer to verify that for |z| = 1 it has modulus less than 1. Table 1 shows a
typical calculation checking the magnitude for two refinement ratios n = 2 and
n = 4, and three mesh ratios A = .2, A = .5, and A = .8. In this table, we evaluate
the right-hand side for 19 values of z along the boundary of the unit circle; the
modulus is nowhere close to 1. Based on numerical experiments, we are convinced
this holds for all mesh ratios A < 1.

Table 1

Modulus of right-hand side of (4.5) for several
different refinement ratios n and mesh ratios A.

X = .2 .5 .8

.3142e + 00
,6283e + 00
,9424e + 00
.1256e + 01
.1570e + 01
,1885e + 01
.2199e + 01
.2513e + 01
.2827e + 01
.3141e + 01
.3455e + 01
.3769e + 01
.4084e + 01
.4398e + 01
.4712e + 01
.5026e + 01
.5340e + 01
.5654e + 01
.5969e + 01

n =
,8337e
,1637e
6110e
,2313e
,2042e
2313e
6110e
1637e
8337e
4444e
8337e
1637e
6110e
,2313e
,2042e
,2313e
,6110e
.1637e
,8337e

2
- 01
-01
- 02
- 02
-03
- 02
- 02
- 01
- 01
+ 00
- 01
- 01
-02
-02
-03
-02
- 02
- 01
- 01

n =
.6427e
.1789e
.1789e
,6427e
.1975e
.6427e
.1789e
.1789e
.6427e
.1975e
.6427e
.1789e
.1789e
.6427e
,1975e
.6427e
.1789e
.1789e
.6427e

4
- 02
-03
- 03
-02
+ 00
-02
- 03
-03
- 02
+ 00
- 02
-03
- 03
-02
+ 00
-02
- 03
- 03
-02

ii -
.1087e
.5754e
.2020e
,7385e
.1148e
,7385e
.2020e
.5754e
.1087e
Tille
.1087e
.5754e
.2020e
.7385e
.1148e
.7385e
.2020e
,5754e
.1087e

2
+ 00
-01
- 01
- 02
- 03
-02
- 01
- 01
+ 00
+ 00
+ 00
- 01
-01
- 02
-03
-02
- 01
-01
+ 00

n = 4
.1085e - 01
.2516e - 02
.2516e - 02
.1085e - 01
1236e - 01
.1085e - 01
.2516e - 02
.2516e - 02
.1085e - 02
.1236e - 01
.1085e - 01
.2516e - 02
.2516e - 02
.1085e - 01
.1236e - 01
.1085e - 01
.2516e - 02
.2516e - 02
.1085e - 01

n = 2
1230e - 01
1148e - 01
8706e - 02
4980e - 02
,2912e - 02
,4980e - 02
,8706e - 02
,1148e - 01
,1230e - 01
,1234e - 01
,1230e - 01
,1148e - 01
8706e - 02
,4980e - 02
,2920e - 02
,4980e - 02
,8706e - 02
.1148e - 01
,1230e - 01

n =
,1425e
.6516e
.6516e
.1425e
1524e
1425e
,6516e
.6516e
1425e
1524e
1425e
.6516e
.6516e
1425e
1524e
1425e
.6516e
,6516e
1425e

4
- 03
-04
- 04
- 03
- 03
- 03
- 04
- 04
- 03
- 03
- 03
- 04
- 04
- 03
- 03
- 03
- 04
- 04
-03

It would be more satisfying to be able to prove stability analytically for all
refinement ratios n and mesh ratios A. But, since we only need to check a single
inequality for a smooth function of the one real variable 8, the computer analysis is
simple, quick, and we believe, as convincing as a complicated analytical proof.
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5. Overlapping Grids. In this final section we look at the modifications in the
interface equations and stability conditions that occur when two grids do not meet
exactly at a coordinate line. This mimics more closely the situation in two-dimen-
sional calculations. If different coordinate systems are used in different parts of the
domain (e.g., body-fitted coordinates around different parts of an airplane), it is
simpler to have each grid end a short distance past the start of the other, rather than
forcing a smooth transition from one system to another. Calculations using this
principle have been successfully done by B. Kreiss [15] and Reyna [20]. Another
example of this two-dimensional nonaligned interface is seen in Berger and Öliger,
[4]. In their work on adaptive mesh refinement in time and space, they use refined
grids which are rectangles rotated with respect to the coarse grid coordinate system.
Again, spatial as well as temporal interpolation is used in the interface equations,
since the boundaries of the fine and coarse grids do not coincide.

The situation we model in this case is the following.

V-2
1

V-1 uo

3
UO

2
UO

1
u0

n
Uo

0    0    0    0
uo u, u2 u3

o
U2n

0
V-2

0
V-1

Figure 5.1
Overlapping grids with mesh refinement in space and time

In Figure 5.1, the fine and coarse grids overlap by a distance d. It is no surprise
that if we use Lax-Wendroff to integrate the coarse and fine grids, we can prove that
this overlapping mesh configuration is stable. Instead, we show that for the Leapfrog
difference scheme, although the nonoverlapping case is unstable for the refinement
ratio n = 2 (Öliger, [17]), if the meshes overlap, the smoothing effect of linear
interpolation is enough to stabilize the system.

We first make the small modifications needed in the root condition to account for
the overlap. Proceeding as in Section 2, we look for modes v"' = (z")"V for v < 0,
and u™ = zmL"Zr)PjKj(Uj)m for v ^ 0, where we use py for the constants now. The
interface condition u0 = v0 is no longer correct. Instead, we use linear interpolation
in space to determine the fine grid value,

(5.1) u° = v\ + V^-(v°-v°x),

along with linear interpolation in time

(5.2) "o>-("o'-"o°).       0<k<n.
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This gives the same linear system as before, but with a modified right-hand side,

1

Wn

1

CO,

1 1

u«-l

to,

Po

Pi

¡»2

P„-l

1
1    ,    M*"-l)
z      n        z

1       2 (z"- 1)
-h —--
72      n       72

1 + n 1 (z'-l)
.»-i

+ (1 T"1)

Z"    ' «

As above, this system is easily solved and simplified to give, as before,

Pi"
(z"-lf (a +(1 - ö)t-') = Pj(a +(1 - «)t"1),

where the p. are the constants from the previous nonoverlapping case in Section 2.
Here we use a = (h — d)/h.

The last interface condition specifies the value to use for vx. It is set by
interpolation from the fine grid. Let the underlying coarse point vx lie between fine
points us and us+x, so s = n + [dn/h\. We have

(5-3) (1 - r)u°s + ru°s+x,
where r is the distance from vx to us, r = d — sh/n, which means 0 < r < 1. After
substituting the normal modes into (5.3) we get the modified root condition

(5-4) (a +(1 - cOt"1).t= (i-A-)Epyss + '-EP7<1
J J

We point out that in the nonoverlapping case (take r = 0, a = 1 and s = n'm (5.4)),
the characteristic roots k¡ = -1, k2 = 1 and t = 1 corresponding to z = 1 are a
solution of the root condition, and yield the generalized eigenvalue for the refine-
ment ratio n = 2.

To show there are no solutions of the root condition for |z| > 1, we again use the
maximum principle, and therefore only check for solutions to (5.4) for |z| = 1. The
characteristic roots for Leapfrog satisfy the following estimates for z = e'e (Lemma
6.2 in Gustafsson, et al. [14]),

I*,
k

K;„

< 1> koutl > 1 f°r |sin0| > A,
= 1, |kou,|=1 for|sinö|<A,

= -l,Kout = l for 8 = 0,
= 1, k   . = -1 forö = it,

Kout = +/    for sin 8= ±X.
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The left-hand side of (5.4), t. satisfies |t| > 1. The factor a + (1 - a)r~l on the
right-hand side is always less than 1, except when r = 1. Since, using (3.4), the
remaining part of the right-hand side is always less than or equal to 1, it is only
necessary to check for equality in the case t = 1. Recall that t is a function of
z" = e'"e, which equals 1 only for 8 = 2trj/n,j = 0,1,...,« - 1. For these values
of 8, we check whether

(5.5) (1 - r^PjK'j + rZPjK'j+l - 1.
j j

We can check this explicitly, using the representation (2.8) for p., and the fact that
the Py's sum to 1. Let z = uk. Then pj(z = u>k) = 8j(n_k), and so (5.5) becomes

a - o«,-*«:-* + 'p„-X-i = i.
Since pn_k = 1, it remains to check whether Kn_k = 1 for z = uk. Looking at the
characteristic equation for Leapfrog, and remembering that Kn_k is the root corre-
sponding to the amplification in time zun_k, we get

\l/2
(zco„_k)2 - 1

2X(zco„_A.) 4A2(zco„_J2 /
It is easily determined that for z = u>k, Kn_k = -1, and not 1. Thus, there are no
values z and k for which the root condition (5.4) holds, and so Leapfrog with
overlapping meshes and mesh refinement in time and space is stable.

We point out that we have not considered the case where the fine and coarse grids
overlap by a distance d where d is a multiple of the fine mesh width h/n. This
corresponds to taking r = 0 in (5.5). In this case, spatial interpolation is not needed
in computing v\. Equation (5.5) reduces to determining if Ksn_k = 1. One could
presumably find values of 5 and n for which this holds. Reyna [20] has observed that
straight injection at the interfaces in conjunction with Leapfrog is unstable in the
case of mesh refinement in space only.
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