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STABILITY OF JIN-XIN RELAXATION SHOCKS

By

JEFFREY HUMPHERYS
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Abstract. We examine the spectrum of shock profiles for the Jin-Xin relaxation

scheme for systems of hyperbolic conservation laws in one spatial dimension. By using

a weighted norm estimate, we prove that these shock profiles exhibit strong spectral

stability in the weak shock limit.

1. Introduction. In this paper, we investigate the stability of shock profiles for the

Jin-Xin model [JX]

j),*c
where f,U,V £ W.N, / G C3, x G I, and A e RNxN is constant. This system falls into

the general class of relaxation systems,

Wt+F(W)WX = Q(W), (2)

and serves as the basis for an important numerical scheme for approximating solutions

of hyperbolic conservation laws

Ut + f(U)x = 0.

It is easily verified that traveling wave solutions of (1) correspond to those for the viscous

conservation laws

Ut + f(U)x = (B(U)Ux)x, (3)

where B{U) = A — s2/; see Sec. 2 below.

The stability of viscous conservation laws is an area of great interest. Recently it

has been shown that under suitable conditions, viscous shocks (3) are orbitally stable if

and only if they exhibit strong spectral stability [ZH]. This implies that orbital stability

ultimately rests on the character of the spectrum, as is the case for classical dynamical

systems. More recently yet, Mascia and Zumbrun [MZ] have extended this analysis to
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Jin-Xin relaxation shocks, hence showing that strong spectral stability for Jin-Xin shocks

is a sufficient condition for orbital stability.

In Jin and Xin's original work [JX], they showed this system to have an Ll contraction

property for scalar shocks (N — 1), which implies orbital stability. By using energy

methods, we also show that the scalar case is stable. However, a generalization of our

method to a weighted norm estimate extends our scalar result to higher dimensions for

weak shocks. H. Liu [L] recently proved orbital stability under zero-mass perturbations,

a result slightly more general than this one. However, in light of Mascia and Zumbrun's

recent work, one can get from spectral stability to orbital stability directly, and so much

of Liu's analysis can be avoided. There is a close similarity between our approach and

that of Goodman [G] for the linear stability of weak shocks in dissipative conservation

laws, under zero-mass perturbations.

Recently, Godillon [Go] carried out stability index calculations for the Jin-Xin model,

which are consistent with stability for weak shocks. While this is an encouraging result,

consistency only serves as a necessary condition for stability. Since our stability results

only hold generally in the weak limit, other techniques will need to be explored to expand

these results to stronger shocks, e.g., numerical Evans function calculations [B].

2. Preliminaries.

2.1. Assumptions. We assume Df is strictly hyperbolic at a base point (Uq, Vo). Thus,

there exists L, R, such that

L ■ Df(U0, V0) ■ R = A = diag(A!, A2,..., A*). (4)

Moreover, we assume that L, R also diagonalize A, and satisfy

L ■ (A — Df(Uo, Vo)2) •/£>(). (5)

In addition, we assume that Df is genuinely nonlinear, that is, without loss of generality

that

VAi • n > 0, (6)

at (Uo,Vo), where r\ is the right eigenvector of Df corresponding to Ai. Note that no

ordering in magnitude is assumed on Aj.

We remark that assumption (5) seems overly restrictive; however, we show in Sec.

5 that this is equivalent to symmetrizability of system (1). Moreover, we note that

simultaneous diagonalizability of Df and A is more general than the usual assumption

that A = ai, see [JX]. However, we also show in Sec. 5 that the usual assumption is

actually sharp for most choices of /.

2.2. Shock profile. By a Jin-Xin shock profile, we mean a traveling wave solution of

(1)

U(x,t) = U(x - st),

V(x,t) = V(x - st),



STABILITY OF JIN-XIN RELAXATION SHOCKS 253

with an asymptotically constant boundary (C/(±oo),V"(±oo)) = (U±,V±). By translating

x —> x — st, we can instead consider stationary solutions of

3.*(?
Thus, the shock profiles are solutions of the ordinary differential equation

—sU' + V' = 0,

—sV' + AU' = f(U) - V,

with limiting boundary values U(±oo) = U± and V(±oo) = V±. By combining and

integrating (8) we arrive at

U' = (A — s2I)~\f(U) -s(U-U-)- V-).

Since t/'(±oo) = 0, we have that f(U-) = V-. Finally, we write the profile as U,

satisfying

U' = (A- s2I)~1(f(U) - f(U_) - s(U - £/_)). (9)

Notice that this is exactly the same profile equation that comes from viscous shock

profiles of (3), satisfying t/(±oo) = U±, where B = A — s2I:

U' = B(U)-\f(U) - /(£/_) - s(U - [/_)). (10)

This observation allows us to apply the weak shock analysis of Majda and Pego [MP] for

viscous shocks to Jin-Xin shocks; see Sec. 4.

2.3. Spectral Stability. We say that a shock profile has strong spectral stability if

the linearized operator L (about the shock profile) has no spectrum in the closed right

deleted half-plane, D = {TZe(\) > 0}\{0}, i.e., no growth or oscillatory modes. One can

readily show that no essential spectrum for Jin-Xin shocks exists in D by considering

the essential spectrum of the constant states U±\ see [Ze], [Z], [MZ]. Hence, to show

strong spectral stability for the Jin-Xin system, it suffices to show that no eigenvalues

(point spectrum) exist in D. We remark that traveling wave profiles always have a zero

eigenvalue associated with its translational invariance.

By linearizing (7) about the profile U, we get the following eigenvalue problem:

<)*(-;' .ao.-U i)0 «"
Suppose that ({/, V) is an eigenfunction of (11) with an eigenvalue A 6 D. Define

U(x) = f U(z)dz.
J — OC

Then by integrating the top equation of (11), from oo to — oo, we get that U and its

derivatives decay exponentially as x —> oo. Thus, we can recast (11) in terms of (U, V)

as (suppressing the tilde)

A U-sU' + V = 0,
(12)

XV - sV' + AU" = Df(U)U' - V.
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This is the integrated eigenvalue equation. Its point spectrum differs from that of (II)

only at A = 0. Thus, to show that Jin-Xin shocks exhibit strong spectral stability, it

suffices to show that (12) has only negative point spectra.

3. Scalar case. In this section we prove that the scalar, N = 1, eigenvalue equation

(11) exhibits strong spectral stability. The integrated coordinate eigenvalue problem (12)

takes the form

Ait — su' + v = 0, (13a)

\v — sv' + Au" = f'{u)u' — v, (13b)

where u,v £ R, u is the profile, ux < 0, /" > 0, and A > /'(u,)2.

Theorem 1. Scalar Jin-Xin shocks exhibit strong spectral stability.

Proof. It suffices to show that (13) has no spectrum with lZe(\) > 0. We refer to

Lemma 1 below for the following identities, which hold for Tle(X) > 0:

r+oc r +oo/-roc r-roo

M2 < / \f'(u)u'v[
-oo J — oo

/+oo r+oc

A\uf < / |,|2.
-oo J —oo

By adding half of (ii) to (i), we get

r+oo r+oor-\-oo r + oo

- (\v\2 + A\uf)< \f'(u)u'vl
J —oo J — OO2

which by Young's inequality yields

| r+oo i r + oo

i / {\v\* + A\u'|2)<- / (|^|2+/'(u)2|u'|2).
^ J —oo ^ J — OO

This is a contradiction since A > f'(u)2; see (5). Thus TZe(X) <0. □

Lemma 1. For IZe(A) > 0, (i) and (ii) in the above proof hold.

Proof, (i) We begin by multiplying (13b) by the conjugate v and integrating from —oo

to oo. We get

/+CJO r+oo r+oo r+oo

|f|2 — s / v'v + / Au"v — / f'(u)u'v.
-oo J — oo J — oc J —oo

We take the real part and note that the second term vanishes, leaving us with

/+oo / r+oo \ / r+oo \

|t;|2 +7Ze yj Au"vJ = TZe yj f'(u)u'vj .

Finally, by replacing v with su' — Au from (13a) and appropriately integrating by parts,

we arrive at

/+oo r + oo / r + oo \

(|f|- + A[u'\2) + / M2 = 'He I / f'(u)u'v ) .
-OO J—OO \J — OO J
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Thus, for IZe(X) > 0, we have

/+oo / r + oc \ r+oc

\v\2<Ue( f'(u)u'v ]</ \f'(u)u'v\.
- oo \j — OC / «/— oo

(ii) We construct this identity by multiplying (13b) by the conjugate u and integrating

from —oo to oo. We get

/-(-oo /' + 00 r+oc p+oo

vu — s v'u + / Au"u = / f'(u)uu.
-oo J —oo «/ —oo J —oo

Integrating the second and third terms by parts and adjusting terms yields

/-(-oo /» +OO /■+00 r+OO

vu — v(X u — su') = / v4|m'|2 + / f'(u)u'u,
-oo J— oo J—oo J— oo

which gives

/-(-oo /*+oo />+oo ^ -(-oo

vu+ \v\2 = / A|u'|2 + / f'{u)u'u.
-oo J— oo J—oo J— oo

Now, take the real part:

p + OO \ /* + oo

(21Ze(X) + 1 )Ke ̂  J vu^j + J W\2
OO

p+oo -j /*+oo

A\u'\2-- f"{u)ux\u\
' —oo

By using (13a), we observe that

p-foo /• +OO /»-(-oo/-(-oo /--hoo /•-I-oo

|u|2 — S u'u + vu = 0.
- oo J —oo J —oo

Hence, by taking the real part, we have

(/• + oo \ r + oo

/ vu) = — IZe(X) / |u|2,

which goes into (14) to give

f-(-OO /'-f-OO/too /-t

|i>|2 = 7£e(A)((27?,e(A) + 1)) /
-oo «/— c

/+oo 1 p-\-oo

A\u' I2--/ /"(«KM2.
-oc ^ J —oo

Thus for TZe(X) > 0, we have

f + OO /--foo
/i-oo f-\

A\uf < /
-OO J —'

M2.

(14)

□
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4. System case. In this section we show that the eigenvalue problem (11) exhibits

strong spectral stability for weak shocks. From (12), we have

AU - sU' + V = 0,

AT/ - si" + AU" = Df{U)U' - V.

Recall from (4) and (5) that L and R diagonalize DJ(Uq, Vo), and thus there exist a C2

choice of R, L in a neighborhood of the base point (C/o,Vo) satisfying both LAR > A2

and A = LAR > A2. By transforming U —> RU and V —> RV, we have

ARU - s{RU' 4- R'U) + RV = 0,

A RV - s(RV' + R'V) + RAL(R"U + 2 R'U' + RU")

= RAL(R'U + RU') - RV.

Left multiplying by L yields

AU - s(U' + LR'U) + V = 0, (15a)

AV - a(V' + LR'V) + A(LR"U + 2LR'U' + U") (15b)

= A {LR'U + U') - V.

We apply to this the following two observations. First, following the analysis of Goodman

[G] (see also [Z], [MZ], [HuZ]), we can scale L and R so that

(LR') u=0. (16)

And secondly, since both Jin-Xin shocks and viscous shocks satisfy the same profile

equations, (9) and (10), the asymptotic analysis of Majda and Pego [MP] holds for Jin-

Xin shocks as well. Thus, we have the following lemma:

Lemma 2. In the weak shock limit, where e = |u+ — it_|, we have \UX\ — 0{e2) and

\UXx\ = 0{e\ux\), for Jin-Xin shocks profiles. Moreover, under the genuine nonlinearity

condition, A': < —9\UX\ for some 0 > 0. Strict hyperbolicity implies without loss of

generality that Aj — s ^ 0, for j > 1.

Theorem 2. Weak Jin-Xin shocks, (11) exhibit strong spectral stability.

Proof. It suffices to show that (12) has no point spectrum with lZe{\) > 0. We refer to

Lemma 3 for the following identities, which hold in the weak shock limit for lZe{\) > 0,
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where Uj,Vj denote coordinates of (U, V) in (15) and L, R chosen as in (4):

N r+OC N /> + oo

(i) E/ I2 - E / I^A'INKI
j=1 J-oo j=1 J-OO

f + OO

+ Ci ei iui i2+e ++i^j'i2)
j=l

/TOO

Itfxl
-oo

^ /»+oo   -1 /"i-oo

(ii) X]/ aj4?K'|2 + o X! / (sai ~ (ajAj)')l
j=i •/-°° Z

N r+oc r+oo

J2 aj\vj\2 + C2 / |t/*|
„■ 1 J — OO J — OO

<

j = l '

€2|ui|2 + — ^ |«j|2 + ^ |«j-|2

62 j#l J = 1

where a = diag(ai, • • •, cij\r), is a positive-diagonal matrix satisfying a\ = 1 and for

3 > 1,

= T — \Ux\otj(x),
Aj - s

aj(0) = l.

Just as with the scalar case, we add half of (ii) to (i) and simplify to get

1 N p+oo ^ 1 N r-\-oo

/ MN2 + ̂ kf) + ̂ E / K-(^a,)')KI2
zJ = l-/-oo =

/+OO

l^xl
-00

1
e3|wi|2 + — E luJ'|2 + E(N2 + lMil2)

e3 • /, 1
J = 1

(17)

/"-(-OO

+ E /
„• 1 J —OO
3= 1

We claim that for C3 sufficiently large and £3, \UX\ sufficiently small,

i N n+tx f+oa

-£/ (sa'j - (QjAj)')M2 >Ci \ux\
^ j = \ J — 00 J — OO

For j = 1 and sufficiently small £3, we have

1

€3 l^i |2 H E
63 ^

+ OO Z' + OO

A'iI^iI2 > e3C4 / \Ux\\Ul\\
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since A[ > —9\UX\. For j ^ 1 and C3 sufficiently large,

1 r+oc 1 f+00
1 / / / / A \ / \ I I 9 1

2

3 „ 1 /'+°°
- (QjA^Olwjl = - ((a - Aj)aj - ajA'^u^ ,

./— OO— OO

+ OG

^ ^+00

> -1 / |£*IW:3 J — 00

Thus, (17) becomes

1 ^ /*+oc ^ ^ /"-Hoc

/ aj(M2+4#K-i2)<c4£ / i^ki
j = l -/-OO J = 1 00

12 i 1 / 12 \vi I + |^j| )

N /»+oo

+ £ I lQiAia,Aj D; tij 11 "j I-

0=1

Now since A — A2 > 0, 3?? > 0 such that A— (1+t?)A2 > t)I. Thus, by Young's inequality,

■ N p + 00 N r+oc

-£ / a,(Ki2 + ̂ Ki2)<c4E / i^x|(ki2 + k-i2)
• 1 ./-00 „_i J —oc

9 Z— / j v i j 1 1 j 1 I ; - ^4 1

j=i

1 a /-+00

2 £ / 00'j = l •'-oo 1 + 7?
N2 + (i + ^IAjl2!^-!2

which simplifies to

, ^ r+oc r n 1 A /' + CI0 _

^Ey 1 _|_7?'Vj'2 + ^Kl2 <C4E/ I^KN2 + Kl2)1 + r?

However, since ay = 1 + 0(e), then in the weak shock limit,

—Qj » 2C4 f \Ux\=0(e),
-*•''/ J — OO

Vj. This is a contradiction. Thus TZe(X) < 0. □

Lemma 3. For lZc(\) > 0, and L,/? chosen as in (16), (i) and (ii) in the above proof

hold, for weak shocks.

Proof, (i) We begin by taking the L2 inner product of (15b) with aV to get

{aV, (A + 1)V - s{V' + LR'V) + A{LR"U + 2LR'U' + U"))

= {aV,A{U' + LR'Um

This simplifies to

(A+ \){aV,V) - s{aV, LR'V) - s(aV,V')

= (aV (ALR' - ALR")U) + (aV, (A - 2ALR')U') - (a V, AU").



STABILITY OF JIN-XIN RELAXATION SHOCKS 259

Integrating the last term by parts and simplifying gives

(A + 1)(V, aV) - s{V.i aLR'V) - s(V, oV)

= (V, a(ALR' - ALR")U) + (V, (aA - 2aALR' + (aA)')U')

+ (V',aAU').

By writing V' in terms of U and its derivatives from (15a), we have

(A + 1)(V, aV) - s(V, aLR'V) - s{V., aV')

= (V, a(ALR' - ALR")U) + (V, (aA - 2aALR' + (aA)')U')

+ (s((LR')'U + LR'U' + U") - At/', aAU').

Take the real part:

N r-\-OC

£ / [(7£e(A) + l)a>,|2 +Ke(\)ajAj\u'j\2]

J=i J~°°

= sKe{V, aLR'V) + lle(V, a(ALR' - ALR")U)

+ 1Ze(V, aAU) - 1le{V (2aALR' - M)')t/'>

+ + / a'(|uj|2 + |w^|2).

Note that in the small shock limit, a', LR' = 0(\UX\) and LR" = 0(\UXX\ + \UX\2). Thus

for 7£e(A) > 0, we have

N f+oo N /•-f-00

E/ aj\vj\2 \aJAj\\vj\\u'j\

j=1j- 00 j=ij-°°

r+00   /»+oo

+ £/ o(toi«iia + i«;ia)+E/ odu^iviWuji
j=1 •/~0° i,j •/"°°

Finally, by Young's inequality, we get

^ /' + OO /* + OC

E/ aj\yj\2 \ajAi\\vMuj\
r- 1 7 00

N/• + OO

+ Ci / |C/X eilui|2 + E + Ij'12)
i/i j=i

(ii) Now take the L2 inner product of (15b) with all. We get

(otU, (A + 1)V - s(V' + LR'V) + A(LR"U + 2LR'U' + U"))

= (aU,A{LR'U + U')).

Simplifying yields

(qC7, (A + 1)V - sLR'V) + s(a'U, V) + (sU\ aV)

= (all, {ALR' - ALR")U) + (all, (A - 2ALR')U') - (aU, AU").
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Integrating the last term by parts and simplifying gives

(U, (A + A + l)a - saLR' + sa'V) + (sU' - AU, aV)

= (U, (qALR' - aALR")U) + (U, (qA - 2aALR' + (aA)')U')

+ (U', a AU').

By writing V in terms of U and its derivatives from (15a), we have

(17, ((27£e(A) + 1)q - s(aLR')* - saLR' + sa'){s{U' + LR'U) - AC/))

+ {V,aV) = (U, {aALR' - aALR")U)

+ (U, (qA - 2aALR' + (aA)')U') + (U', aAU').

Let

E = -saLR' - s(aLR')* + sa',

N = sE + 2aALR' - (aA)',

M = (aALR' - aALR") + AE- ((2fte(A) + l)a + E)sLR'.

Then we have

(■U, ((2TZe(X) + 1)sq - aA)U') + (U, NU') + {V, aV)

= X(U, (2'7ve(A) + 1 )aU) + {U\aAU') + (U,MU).

Take the real part:

- \{U,{{2Ke(X) + 1)sq' - (aA)')U) + TZe(U, NU') + (V,aV)

= TZe(X)(2TZe(X) + 1 )([/, aU) + (U', aAU') + Tle{U, MU).

In the weak shock limit, N and M are 0(\UX\), while N' is 0(\UXX\ + ||2). Thus

by Young's inequality, all the |ui|2 terms in N can be made arbitrarily small. The

|(L/?')n||'"i|2 terms vanish by (16). Thus, all the terms can be absorbed to give

N r+oo ^ -i N /» + oo

53/ ajAj\u>i\2+o yi / (saj - (ajhjY)\uj\2
3= 1 " 2 3=1

N n-\-oo r+oc

<E/ "ilvjl 2 + C2 \Ux\
j = l <' —OG •/— OC

(2\u\\~ H ^2 I U3 12 + K'l
62 m

□

5. Remarks on Hypothesis (5). In our hypothesis, we assume that A and Df

are simultaneously diagonalizable. It seems that a more natural, general, and interesting

hypothesis would be to assume that (11) is symmetrizable; i.e., there exists some positive,

symmetric multiplier P = P(U, V) such that the following are symmetric:

P (° o) r {Dm -/)•

However the following proposition shows that these are equivalent assumptions.
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Proposition 1. Assuming hypothesis (5), the Jin-Xin model is symmetrizable if and

only if A and Df are simultaneously diagonalizable, i.e., [A.Df] = 0.

Proof. Let

P =
a (3

f3T 7,

be a symmetrizer for (11), where a, (3, and 7 are nxn matrix-valued functions in (U, V)

and moreover a, 7 are symmetric, positive-definite. Then left multiplying (11) by P gives

U\ f (3 ■ A — sa a — s(3\ fU

V) + V7 ■ A - s/3T f3T -s-yJ \V

-(3 ■ Df -i3\ (U

A P-

7 • Df -<yj \V

From the hypothesis it follows that (3, (3-A, and (3-Df must all be symmetric. In addition,

a = aT = 7 ■ A and (3 = (3T = — j ■ Df. Hence P can be written as

M-;:, 0, %"„-?)
Since 7 is positive-definite, it follows that 7 is invertible. Moreover, we have (3 • A =

—7 • Df ■ A is symmetric and hence

1-Df-A = ^-Df-A)T = AT-DfT-1 = AT-1-Df = 1-A-Df.

Therefore, since 7 is invertible, commutation follows, Df ■ A = A ■ Df. We remark that

by (18), every symmetrizer can be uniquely determined by 7.

The converse goes as follows: suppose that [A, DF] = 0 in (U,V). Then there exists

a matrix-valued function S = S(U, V) such that S ■ A ■ S~l and S ■ Df ■ Sare both

diagonal. Thus, we let 7 = ST ■ S and show that

P =
7 0\ / A -Df

0 7/ \~Df I

is a symmetrizer for (11). Note that 7 > 0 and symmetric. Left multiplying (11) by P

gives

fU\ /-S7 ■ A - 7 • Df • A -7 ■ A + S7 • Df\

'W I Sl-Df - 7 -A l-Df-s-y )\V;x

-7 -Df2 7 • Df\ fU>
7 Df -7 ;

Thus, it suffices to show that 7 • A, 7 • Df, 7 • Df ■ A, and 7 • Df2 are all symmetric and

that P is positive. Note that since S ■ A ■ S~l and S ■ Df ■ S~1 are diagonal, it follows
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that S • A ■ S'1 = (S-1)T ■Ar -ST and 5 • Df ■ S'1 = (5'-1)T ■ DfT ■ ST. Thus,

(7 . A)t = {ST ■ S ■ A)t

= (ST ■ (S ■ A ■ 5_1) • S)T

= {ST ■ {{s-1)7, ■ At ■ ST) ■ Sf

= (At- 7)t

= 7 • A.

Tlic others follow similarly. Hence, P is symmetric and makes (19) symmetric as well.

Finally, we show that P is positive: Let

S 0

Then

\y' \o sj \—Df i J V o s-

"('•(-a

where A = SAS~] and A = SAS~l are both diagonal. Thus, by reordering the coordi-

nates of y, we can write the matrix as block diagonals of the form

y=[o S) x'

. „ \ / fSTS 0 \ f A -Df ,
(x,P-x) = U(Q srs)[_Df j')-x

S OW A -Df\ (S-1 0

Hence, we have positivity if and only if each block is positive. However, a 2 x 2 block is

positive if the trace and determinant are both positive, which follows from the fact that

A is positive and condition (5), that A - A2 > 0. □

Proposition 2. Assuming that the Jin-Xin model is symmetrizable, if / is "genuinely

coupled", in the sense that there are no constant invariant subspaces other than {0} and

R™, then A = al, where a is a scalar.

Proof. By the above proposition, symmetrizability implies that A and Df commute.

Hence, because Df is diagonalizable, A is also. Moreover, every eigenspace of A is an

invariant subspace of Df. Thus, every eigenspace of A is either {0} or R". Since the

former is impossible, it follows that there is only one eigenspace, R™, and since A is

diagonalizable, it can be written as A = al. □
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