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ABSTRACT

Using the frequency map analysis (FMA) method we investigate the stability properties of

Trojan-type orbits in the proximity of the L4 and L5 Lagrangian points of Jupiter. This study

is part of the MATROS project. The orbits of about 2 × 104 virtual Trojans with random

initial conditions have been computed numerically and for each body the diffusion rate in

frequency space has been determined by spectral analysis. The diffusion portraits show where

stable orbits are located in the space of proper elements for different values of inclination.

For low inclined orbits we reproduce the stability region outlined by Levison, Shoemaker &

Shoemaker and, due to our fast sampling capability, we find additional resonant features in

the libration amplitude versus proper eccentricity space. At higher inclinations, the stability

region gradually shrinks and it disappears for inclinations of about 40◦. The maximal Lyapunov

characteristic exponent is computed for a limited number of Trojan orbits in our sample and

the predictions concerning the chaotic behaviour of each orbit are compared with those given

by the FMA method. A good agreement is obtained and the value of the Lyapunov exponent

may be used to tune the results of the FMA analysis. A synthetic secular theory for the proper

frequencies of Jupiter Trojans is obtained by numerically fitting the outcome of the frequency

map analysis.

Key words: celestial mechanics – minor planets, asteroids.

1 I N T RO D U C T I O N

The stability of Jupiter Trojans, a consistent group of asteroids or-

biting about the L4 and L5 Lagrangian points of Jupiter, has been

investigated by several authors using different models (see Marzari

et al. 2003 for a review). This interest is motivated by the intrin-

sic complexity of the resonant motion of these bodies and by the

difficulty of developing an analytic predictive theory able to out-

line their stability properties. The Trojan motion at the Lagrangian

points of Jupiter can, in fact, be perturbed by additional dynami-

cal mechanisms such as secular resonances with the fundamental

frequencies of the Solar system, secondary secular resonances and

three-body mean motion resonances related to the great inequality

between Jupiter and Saturn. Even the overlapping of resonances

close to the planet can contribute to the erosion of the volume in

phase space where stable Trojan orbits can exist.

In this paper we adopt a numerical approach based on the fre-

quency map analysis (FMA) method described in Laskar, Froeschlè

& Celletti (1992), Laskar (1993a,b) and subsequently improved

by Šidlichovský & Nesvorný (1997). The major advantage of this

⋆E-mail: marzari@pd.infn.it

method is to require short-term numerical integration of test Trojan

orbits to outline the stability properties. It allows a rich sampling

of the phase space without demanding a heavy CPU-time load. Our

work extends that of Levison et al. (1997) since we consider differ-

ent slices in inclination while the sample of Levison et al. (1997)

was started in the same orbital plane of Jupiter. Moreover, taking

full advantage of the power of the FMA method, we can describe

in more detail the features of the stability regions by studying the

dynamical properties of more than 2 × 104 virtual Trojans against

the 270 analysed by Levison et al. Their results stand, however, as

a reference for the long-term behaviour within the stability regions

which we outline with the FMA method. For some significant cases

we also compare the predictions of the FMA method with the es-

timated values of the maximal Lyapunov characteristic exponent.

The comparison indicates that the two methods are in very good

agreement, which supports the reliability of the FMA approach as

an indicator of chaos.

The stability of Jupiter Trojans is described by their diffusion

in a phase space defined by proper libration amplitude and proper

eccentricity for fixed proper inclination. The resulting figures are

called diffusion maps. It turns out that the stability regions decrease

with increasing inclination. Multiplet structures that represent a mix-

ture of regions with different dynamical lifetimes appear at low
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1092 F. Marzari, P. Tricarico and H. Scholl

inclinations. We discuss critically the various features found in

the diffusion maps. In order to investigate the influence of Saturn,

Uranus and Neptune on the stability of Jupiter Trojans, we inte-

grated some cases in the Sun–Jupiter–Trojan model and compared

the resulting diffusion maps with the full model including all outer

planets.

Using the proper elements and proper frequencies estimated by

the FMA method, we have built an ‘empirical’ secular theory for

Jupiter Trojans. We fit the main frequencies, i.e. the circulation pe-

riod of the perihelion longitude and of the node, and the libration

frequency with polynomial expressions in the proper orbital ele-

ments as in Milani (1994). This synthetic theory may be used as

reference for more sophisticated fully analytical theories (Beaugé

& Roig 2001).

2 T H E N U M E R I C A L I N T E G R AT I O N

We used the WHM integrator (Wisdom & Holman 1991) to perform

all the numerical integrations which is part of the SWIFT software

package (Levison & Duncan 1994). Each virtual Trojan orbit is

computed over a time-span of 2.5 Myr within a six-body model

including the four major outer planets Jupiter, Saturn, Uranus and

Neptune. This time-span is long enough for the FMA method to

determine with high precision the diffusion rate in the action space

using the running window method. It also allows a good determi-

nation of the proper frequencies g and s of each orbit by analysing

the non-singular variables h, k and p, q. In parallel, we integrated

the same initial conditions but for only 2 × 105 yr and with a short

interval of time between two subsequent output sets in order to com-

pute the libration frequency f L. Additional simulations within the

full three-body problem (Sun–Jupiter–asteroid) were also carried

out for comparison with the six-body model results. The time series

of the orbital elements are digitally filtered in order to remove all the

short periods smaller than 100 yr (Carpino, Milani & Nobili 1987;

Marzari, Tricarico & Scholl 2002b). In this way we attenuate the

short-period terms related to the orbital period of Jupiter, Saturn and

Uranus, and we do not affect the libration period of Trojan orbits,

which are longer than 150 yr.

The computation of the initial orbital element list for the virtual

Trojans is based on a preliminary short-term integration of random

initial conditions lasting 105 yr. The starting semimajor axis for each

Trojan is selected within an interval ranging from 0.9 to 1.1aJ, where

aJ is equal to the initial semimajor axis of the orbit of Jupiter; the

eccentricity is chosen randomly between 0 and 0.25; all the orbital

angles are selected at random between 0◦ and 360◦. Five different

sets of initial conditions are computed, each for a fixed value of

inclination: 0◦, 10◦, 20◦, 30◦ and 40◦. This preliminary integration

allows one to avoid computation over a long time-span of Trojan

orbits, which would become unstable after a short period. At the

end of this pre-integration only those orbits with a librating critical

argument λ − λJ are included in the sample of virtual Trojans for the

main integration, which covers 2.5 Myr. The preliminary integration

takes about 20 h of CPU time to produce a list of 1000 Trojan orbits,

while the main integration of 1000 orbits over 2.5 Myr takes about

4 d of CPU time on a pentium IV at 2 GHz. The size of the output

files to be analysed with the FMA method is about 800 MB. For

each slice of fixed initial inclination we compute about 5000 bodies

with the exception of the cases at high inclination where the stability

region is narrower and fewer bodies are necessary.

The initial orbital elements of the planets are taken from the

JPL ephemeris and are referred to the invariable plane of the Solar

system.

3 TO O L S F O R T H E S TA B I L I T Y A NA LY S I S

3.1 The FMA method

The FMA technique was introduced by Laskar et al. (1992); Laskar

(1993a,b). The basic idea behind this method is to analyse the evolu-

tion in time of one or more fundamental frequencies of a dynamical

system from the outcome of a numerical integration. Measuring

the diffusion rate of a frequency with the running windows method

yields a measure of chaos. Being much faster than the Lyapunov ex-

ponent computation, the FMA method is better suited to estimating

the size and shape of the chaotic zones of a dynamical system.

We briefly recall here the FMA theory and the numerical algo-

rithm we have implemented to evaluate the frequencies and their

variations. Given a quasi-periodic complex function f (t), we can

represent it as a Fourier expansion in the following form:

f (t) =
∞

∑

n=1

anei(νn t+φn ), (1)

where an are real amplitudes decreasing with n while νn and φn are

the corresponding frequencies and phases, respectively.

The FMA method consists in finding a set of N peaks {a′
n, ν

′
n, φ

′
n}

so that the reconstructed signal f ′(t), given by

f ′(t) =
N

∑

k=1

a′
nei(ν′

n t+φ′
n ) (2)

approximates the original f (t) up to a fixed accuracy. If the function

f (t) is the numerical solution of a dynamical system, we have the

tabulated values of f (t) at evenly spaced intervals of time dt over a

time-span �T . We can compute with high precision the frequencies

νn over a running window [T i, T i+1] covering the interval �T . The

dispersion of the frequencies estimated by the standard deviation of

νn calculated on the running windows measures the diffusion rate

of the solution f (t) in the action space.

A recursive algorithm to perform the frequency analysis of a

signal is described in detail by Šidlichovský & Nesvorný (1997).

High precision in the computation of each frequency is achieved

by the use of Hanning windowing. Gramm–Schmidt orthogonaliza-

tion enables one to efficiently subtract each peak step by step from

the signal. Šidlichovský & Nesvorný (1997) even extend the orig-

inal method by Laskar (labelled MFT in their paper), by applying

linear corrections to the frequency of the peaks (FMFT, frequency

modified Fourier transform). We implemented both the algorithms,

but in the testing phase the MFT has proven to be more stable than

the FMFT, especially when the function f (t) is quite far from being

quasi-periodic, i.e. in the case of fast diffusing orbits. For this reason

we preferred the MFT version of the FMA for the analysis presented

in this paper. The computer algorithm we have used is available as

part of the ORSA framework at http://orsa.sourceforge.net.

To analyse the outcome of the integrations of Jupiter Trojan or-

bits using the FMA method, we concentrated on the non-singular

variables h and k, defined as h = e cos(ω̃) and k = e sin(ω̃). For

each orbit we compute the proper frequency g and its amplitude,

the proper eccentricity ep (Milani 1993), over running windows of

2 × 105 yr over the 2.5 Myr of numerical integration. As a measure

of the diffusion rate, we use the negative logarithm of the standard

deviation sg of g over the 24 windows: σ = −log10(sg/g). Typi-

cal values of σ range from 5 for stable orbits down to 1 for highly

chaotic orbits.

The variables p and q have also been analysed to derive the proper

frequency s and its amplitude, the sine of the proper inclination

C© 2003 RAS, MNRAS 345, 1091–1100
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Stability of Jupiter Trojans 1093

sin(I p). Since s is smaller than g, we have used the full time-span

of the integration (2.5 Myr) to estimate s from the spectrum of

p and q. The quantities ep and sin(I p) are also referred to as free

eccentricity and free inclination, to distinguish them from the forced

components.

When the FMA analysis is concluded, each orbit is labelled by

the value of ep computed in the first window [T 0, T 1] and adopted

as the proper eccentricity of the orbit, by sin(I p) computed over

2.5 Myr, and by the dispersion σ of the proper frequency g. The

libration amplitude D is computed independently from the FMA

method. Instead of following the recipe of Milani (1993, 1994) we

have slightly modified his procedure in order to compute D on a

shorter time-scale. Some of the orbits in our sample are chaotic and

the libration amplitude can change within some Myr. We need an

algorithm, even if less sophisticated than that of Milani, allowing

us to compute D over a short time-span so that D does not vary

significantly for the chaotic nature of some of the orbits. We estimate

the proper D for each Trojan orbit as the mean of the maximum

libration amplitude computed on running windows of 2 × 104 yr

over the first 2 × 105 yr of our 2.5 Myr numerical integration. Taking

into account that most of the short-term perturbations had already

been removed by the digital filter that cuts all perturbations with

periods of less than 100 yr, with our algorithm we indeed obtain

a good estimate of the proper D. To check the accuracy of our

procedure for computing proper D values, we have compared our

values for real Trojans with those determined by Milani (1993). The

agreement was within 8 per cent for the smaller values of D (notice

that, by definition, our value of D corresponds to twice that given

by Milani) and steadily decreased to 2 per cent for larger libration

amplitudes; in other words, the difference was always less than

1◦. Taking into account that there are also slight differences in the

initial osculating orbital elements and in the integration methods,

this appears to be a good match with Milani’s estimates.

Our sample of fictitious Trojans include orbits with various dif-

fusion rates and hence different degrees of chaotic behaviour. There

are orbits that are stable over some Gyr and orbits that evolve on

time-scales of some Myr. If by the term ‘proper elements’ we mean

quantities related to possible constants of motion, then they are well

defined only for stable orbits. In this paper we use the term in its

broader sense, i.e. elements related to the proper frequencies of the

motion. They are, in fact, used to label the initial position of an orbit

in the action space and, for chaotic orbits, they are constant only over

a limited interval of time. Our definition appears to be consistent

in terms of continuity. Indeed, all the Trojan orbits in our sample

appear to have some degree of chaotic evolution, even those with

a lower diffusion rate. Consequently, proper elements can indeed

change even for what we term stable orbits, possibly on time-scales

longer than the age of the Solar system.

In principle, the best way to select the initial conditions would

be to define slices in proper rather than in initial inclination. This

would be very expensive and inefficient in terms of CPU time since

it requires the integration of thousands of orbits and the application

of the FMA to all of them to derive the proper inclination. Finally,

we should group them around particular values in inclination, throw-

ing away those orbits with intermediate values of I p. However, the

method of fixing the initial inclination is also viable since in our

integrations the proper values I p are in most cases clustered within

a band around the initial inclination I 0 ± 1◦. The orbits outside the

bands, apart from the case with I 0 = 0◦, have a value of I p lower

than I 0. This is a dynamical effect: very often these orbits are located

close to the location of a nodal secular resonance where the forced

term is large and contributes significantly to I 0. This phenomenon

Figure 1. Spectrum of the p, q variables for a body close to the s6 secular

resonance. The peak of the forced component is not negligible with respect

to the proper one and, consequently, I p is lower than I 0.

is illustrated in Fig. 1 for a body with an initial inclination of 10◦

located close to the s6 secular resonance. The forced peak is very

close to the proper one and both of them contribute significantly to

the initial I 0 value. The cases with I 0 = 0◦ differs in the sense that

I p will be larger than I 0 for those cases where I p is comparable to

the forced term. In Fig. 3 (top plot, the case with I 0 = 0◦) later,

we notice that all the data with I p > 1◦, marked by a black dot, are

located along the s6 secular resonance.

In other cases, the difference between I p and I 0 is caused by the

highly chaotic nature of the orbit. The diffusion is so fast that even

the proper frequency s changes over a short time-scale, causing

a broadening of the peak in the spectrum of the p, q variables.

Consequently, the proper inclination is not well defined. There is

nothing to be done for this since we need a time-span of at least

2.5 Myr to precisely retrieve the frequency s in the spectrum while

the orbit is chaotic on a shorter time-scale. An extreme example of

this behaviour is shown in Fig. 2 where the proper frequency passes

through different secular resonances.

What should we do with these orbits? Should we keep them in the

sample labelled by the initial inclination I 0 or should we reject them?

We decided to keep these orbits but when we draw the diffusion

maps, we distinguish them with a different symbol.

Figure 2. Spectrum of the p, q variables for a body on a highly chaotic orbit.

The forced components of different secular resonances dominate while the

proper component is spread over a range of frequencies.

C© 2003 RAS, MNRAS 345, 1091–1100
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Figure 3. Diffusion portraits of Trojan orbits for different initial inclinations. The colour coding refers to different values of the diffusion coefficient σ =
−log10(sg/g). From top to bottom, I 0 = 0◦, 10◦, 20◦. The black dots mark those orbits with I p outside the band I 0 ± 1◦. Continued on next page: from top to

bottom, I 0 = 30◦, 40◦. The last plot on the bottom shows orbits with I 0 = 0◦ and fixed frequencies in ω̃ with periods: 3465 ± 8, 3527 ± 8, 3587 ± 8, 3645 ±
8, 3740 ± 8 yr. These orbits correspond to the finger-like structure of less stable orbits for the case with I 0 = 0◦.

While the proper frequencies g and s are computed directly with

the FMA method, the libration frequency f L is calculated from

the angle θ , the polar angle of the point with Cartesian coordinates

[0.2783 × (λ − λJ − χ ), a − aJ] with χ = π/3 for L4 and χ = 5π/3

for L5 (Milani 1993). The circulation frequency of θ is computed

from the short-term integrations lasting only 2 × 105. A linear fit

to the time series of θ , passed through a digital filter that cuts the

frequencies below 15 yr, gives the value of the circulation frequency

of θ corresponding to the libration period of the critical argument

λ − λJ.

3.2 The Lyapunov exponent method

To calculate the Lyapunov exponents for some selected cases we

have used the ORBIT9 integrator described in Milani & Nobili (1988)

and available at the site tycho.dm.unipi.it/∼planet/software.html.

C© 2003 RAS, MNRAS 345, 1091–1100
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Figure 3 – continued

The numerical code solves both the equation of motion and the

corresponding variational equation that is the linearized differen-

tial equation of the relative motion between two nearby orbits. An

estimate of the maximal Lyapunov characteristic exponent (LCE)

that characterizes the rate of exponential divergence between two

orbits, is computed as the coefficient of a least-squares linear fit to

the function γ (t) = log [D(t)/D(0)], where D(t) is the solution of

the variational equation and D(0) is its initial value – a randomly

chosen displacement value (Milani & Nobili 1992; Milani 1993).

The variation vector is renormalized when it becomes too large.

This method allows one to detect a positive LCE over an integra-

tion time-span that is between six and seven times the 1/LCE =
T L, where T L is the Lyapunov time. For 75 selected bodies in our

sample of virtual Trojans we compute the LCEs with an integra-

tion of 100 Myr using a time-step for ORBIT9 of 40 d to avoid

the accumulation of rounding-off errors. A value for the slope of

γ (t) larger than 7 × 10−8 is considered as detection of a positive

LCE.

C© 2003 RAS, MNRAS 345, 1091–1100
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1096 F. Marzari, P. Tricarico and H. Scholl

4 R E S U LT S

In the colour scale used to represent the local diffusion rate we set an

upper limit to the values of σ . All the orbits with σ � 4 have the same

colour coding, i.e. red. We set such a threshold because, as shown in

Marzari et al. (2002b), it reproduces well the stability area presented

by Levison et al. (1997). In other words, the diffusion rate of the

orbits coded with red should grant stability at least over the lifetime

of the Solar system. We include in each diffusion portrait both L4

and L5 orbits since we did not observe any significant asymmetry,

in terms of stability, by comparing separately the diffusion portraits

for L4 and L5.

4.1 Diffusion portraits

The diffusion portraits of the Trojan orbits for different initial incli-

nation I 0 are collected in Fig. 3. As outlined in Section 3, the orbits

with I p out of the band I 0 ± 1◦ are marked by a black dot within

the coloured data point. In the plot for I 0 = 0 the shape of the s6

secular resonances is clearly marked by the dotted data points and

the fast diffusion rate may be attributed to this resonance. At higher

inclinations, other nodal secular resonances come into play with

linear combinations containing the frequencies s6 and s7 (Marzari

& Scholl 2002). These resonances introduce peaks that subtract a

signal from the proper inclination and, at the same time, contribute

to destabilize those orbits with I 0 � 20◦ and s ∼ −2 × 10−5 to

∼ −4 × 10−5. Other orbits with I p < I 0 − 1 are chaotic on their

own and the low value of I p is due to the broadening of the proper

peak (see Section 3.1 and Fig. 2). In either case, an orbit with I p

significantly different from I 0 is chaotic and the dotted orbits have

a fast diffusion rate.

The plots of Fig. 3 show that chaos is also present for non-dotted

orbits, while the most stable and compact regions are distributed at

low proper values of inclination, libration amplitude, and eccentric-

ity. For I 0 = 0◦ the stability area reproduces that found by Levison

et al. (1997) with an additional small stable area for libration am-

plitudes between 60◦ and 75◦. In contrast to what Milani (1993)

assumed, chaos occurs more often for increasing inclination. At

I 0 = 30◦ the low diffusion area shrinks to a small stripe for libration

amplitudes between 45◦ and 50◦. For I 0 ∼ 40◦ all orbits present

a high diffusion rate that is characteristic for chaos. The critical

question is whether this chaotic behaviour leads the Trojan orbit

into an escape route over the lifetime of the Solar system. The FMA

method and the Lyapunov exponent computation measure the speed

of the chaotic diffusion but cannot predict the size and shape of the

stochastic region and, hence, the time-scale for the escape out of

the Trojan region. As argued by Milani (1994), orbits with a high

diffusion rate in the Trojan regions could be an example of stable

chaos, in the sense that the orbits are chaotic but the time-scale for

escape is long compared with the diffusion rate. In our previous

paper (Marzari et al. 2002b), we integrated the orbits of some high

inclined real Trojans that had a high diffusion rate in the proper fre-

quency g. All of their trajectories showed large chaotic variations in

the libration amplitude but only one was ejected out of the Trojan

swarms after 3.5 Gyr (asteroid 12929 TZ1). All the others survived

for over 4.5 Gyr. As for other Jovian resonances, this behaviour

might be an example of stable chaos where the orbit is ‘sticky’ to

a lower-dimensional torus (Tsiganis, Varvoglis & Hadjidemetriou

2002a,b). To test this possibility we computed the autocorrelation

time τ c(L) and τ c(G) for the Delaunay ‘actions’ L =
√

a and

G =
√

a(1 − e2) of all those orbits for which we also computed

the LCE (about 30 cases). Apart from a non-significant minority of

cases, we did not find the characteristic behaviour of ‘sticky’ chaos

as described in Tsiganis et al. (2002a,b) with τ c(G) ≫ τ c(L), where

τ c(L) ∼ τLCE. This seems to indicate that the stable chaos of Trojans

is not consistent with the ‘stickness’ hypothesis.

A closer look at the plot for I 0 = 0◦ reveals several ‘finger-like’

fine structures of higher diffusion rate within the stable ‘red’ region.

They correspond to very precise frequencies of the perihelion lon-

gitude ω̃T of the Trojan orbit for different values of ep and D. Fig. 3

shows a detailed view of these features obtained by selecting bodies

with a circulation period ω̃ equal to 3465, 3527, 3587, 3645 and

3740 yr with a tolerance of ±8 yr. There are two possible sources of

the faster diffusion within these narrow structures: secondary reso-

nances or three-body resonances. Secondary resonances (Lemaitre

& Henrard 1990) are commensurabilities between the libration fre-

quency of the critical argument f L and the circulation frequency

of either the argument of perihelion ωT or the difference between

the perihelion longitude of the asteroid and the planet ω̃T − ω̃J. For

Jupiter Trojans this interpretation seems unlikely as the libration

frequency f L of the critical argument is significantly faster than

the circulation frequency of both the perihelion argument and the

longitude. Moreover, it is not possible to reproduce the multiplet

structure observed in Fig. 3 with the values of g and f of the Trojan

orbits.

Three-body mean motion resonances (Nesvorný & Morbidelli

1999) are probably the best interpretation of the narrow unstable

structures. By definition, three-body resonances are described by the

relation mJλ̇J + mSλ̇S + mTλ̇T ∼ 0, where λJ, λS and λT are the

mean longitudes of Jupiter, Saturn and the Trojan, respectively.

The mean motions of Jupiter and Saturn are close to a 5:2 res-

onance, the great inequality. Therefore, we expect that a mixed

mean motion resonance of the type 1λ̇J − 5λ̇S + 1λ̇T ∼ 0 may

indeed be found within the Trojan orbits since the mean motion

of a Trojan orbit is close to that of Jupiter. The critical angles

associated with this resonance are any combination of the form

ψ = 1λJ − 5λS + 1λT + pJω̃J + pSω̃ + pTω̃T, with pJ + pS + pT =
k = 3 to satisfy the d’Alembert rules. The multiplet structure we

observe in the eP–D plane occurs at precise frequencies of ω̃T and,

consequently, the splitting in this case is related to different combi-

nations of the perihelia, i.e. different values of the integers pJ, pS

and pT. By playing with the frequencies of the orbits located within

the ‘finger-like’ structure, we find that the two combinations 3,

−2, −4 and 4, −3, −4 may be related to the two main patterns

in Fig. 3. Nesvorný & Dones (2002) proposed a different combina-

tion of angles, −7λJ + 4λS + 5λT + pJω̃J + pSω̃ + pTω̃T with pJ +
pS + pT = k = −2. We inspected the critical angles of the k = 3

and −2 three-body resonances, respectively. We found that the k =
3 resonances have a circulation period around 5000 yr, while that of

k = −2 is faster. The multiplet structure then appears to be related to

the k = 3 resonances. At higher inclinations, the multiplet structure

disappears as the frequency of ω̃ moves to lower values. A trace of

this structure may be seen at libration amplitudes between 30◦ and

45◦ in the plot of I 0 = 10◦.

In the two plots at inclinations I 0 = 0◦ and 10◦ a large V-shaped

chaotic zone cuts through the compact stable red region. This chaos

is not related to a single frequency of the perihelion longitude cir-

culation or of the critical libration argument. It is integrated over a

range of frequencies of these two angular variables. The V-shaped

zone in fact covers a large range in D and, consequently, a wide

range in both g and f . It cannot entirely be attributed to nodal secu-

lar resonances, even if at 10◦ most of the bodies within the V-shaped

structure are marked by a dot and at I 0 = 0◦ the s6 secular reso-

nance is clearly visible at the border of the unstable region. In fact,
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Stability of Jupiter Trojans 1097

in many cases the low value of I p can be due to the broadening

of the peak in p, q generated by the chaotic wandering of the fre-

quency s: the chaos is not necessarily caused by a nearby secular

resonance.

By inspecting the results of the three-body integration (see Sec-

tion 4.3), a trace of this structure appears when Jupiter is on a highly

eccentric orbit. However, additional perturbing terms must come

into play in the full six-body model to justify the extent of the

V-shaped unstable area. Marzari & Scholl (2002) showed that per-

turbations by Saturn not related to low-order resonant frequencies

can indeed destabilize Jupiter Trojans. Why non-resonant? Because

similar escaping rates were found even when Saturn was shifted

from its present orbit further away from the 5:2 resonance with

Jupiter within a ‘static’ four-body model with Jupiter and Saturn on

fixed elliptical orbits. Three-body mean motion resonances also con-

tribute to the chaotic evolution, as suggested by Nesvorný & Dones

(2002). The multiplet structure at I 0 = 0◦ is strong evidence for

their involvement. At higher inclinations, nodal secular resonances

begin to grow in strength and they possibly explain the enlargement

of the chaotic zone until, at I 0 = 40◦, no stable orbits are found.

4.2 Comparison between the FMA and the Lyapunov

exponent method

A common feature of the FMA method and of the computation of

the maximal LCE is that they both measure the rate at which a

chaotic orbit separates from its initial position in the action space.

We then expect that the two indicators of diffusion rate, the value

of σ for the FMA method and the estimated maximal LCE χ , are

in agreement. We selected 75 virtual Trojan orbits from our sample

and computed both σ and χ for each. Out of these, 25 are coded

red with the FMA method, i.e. they have a slow diffusion rate (σ >

4.0) and are possibly stable on a long time-scale. They are randomly

chosen within the stability regions shown in Fig. 3 and they belong

to different slices in inclination. Another 25 are coded green (2.8 <

σ < 3.2) and have a faster diffusion rate. The remaining 25 are

coded blue (σ < 2.0) and are highly chaotic according to the FMA

method.

In Fig. 4 we show a histogram of the maximal LCEs for the

same 75 orbits using a different shadowing according to the colour

Figure 4. Histogram showing the number of virtual Trojans with a given

value of maximal LCE. The three groups characterized by different values

of σ computed with the FMA method, are also well separated in terms of

maximal LCE value. The dashed vertical line is the minimum value of χ

required for positive detection of chaos in our integrations lasting 100 Myr.

coding of σ . We notice that the orbits with smaller values of σ are

also those with a lower value of χ . The green coding of the FMA

method shows larger values of χ , and the blue orbits have Lyapunov

times T L smaller than 1 × 104 yr. The two indicators of diffusion rate

are in very good agreement and we can associate to the red areas

of Fig. 3, where the real Trojans are located, maximal Lyapunov

exponents smaller than 1 × 10−6.

4.3 The three-body model

In order to test to what extent the stability of Jupiter Trojans is due to

the presence of the outer planets, we integrated the orbits of Jupiter

Trojans within three three-body models with a fixed eccentricity of

Jupiter equal to 0, 0.048 (the mean value) and 0.065 (the maximum

value), respectively. In addition, we considered two different initial

inclinations for the Trojans: 0◦ and 40◦. The outcomes in term of

diffusion rates are shown in Fig. 5. The diffusion rates are coded as

in Fig. 3 and all orbits with σ greater than 4, and possibly stable

over a long time-scale, are red. However, by comparing the values

of σ for Trojan orbits in the six-body model and in the three-body

model, we noticed that in many cases in the three-body case the

value of σ was significantly larger, even 6 or 7, indicating a higher

orbital stability. The perturbations by the outer planets increase the

diffusion rate even in the more stable regions.

As in the six-body case, also in the three-body case, the stability

region is limited in the D–ep plane, which is possibly due to the

complete overlap of resonances of first order in eccentricity that

sequentially accumulate to create a stochastic region around the

orbit of the planet (Wisdom 1980). The Lagrangian points of Jupiter

are embedded in this stochastic layer that grinds the outer edge of

the Trojan stability region. For the higher eccentricity of Jupiter

the chaos is stronger around the orbit of the planet and this further

narrows the stable area around L4 and L5. In particular, in the case

with I 0 = 0◦, a fast diffusion region begins to pierce the stable area

for libration amplitudes around D ∼ 60◦. In Fig. 5 we notice that

the case with eJ = 0.065 begins to show the above quoted V-shape

unstable area that is not present in the case with eJ = 0. The same

V-shape structure is present in the case with eJ = 0.048 but it is

slightly less extended. For highly inclined orbits (I 0 = 40◦) the

stability is strongly affected by the eccentricity of Jupiter. If eJ =
0 the stable region is only slightly smaller than the corresponding

case with I 0 = 0◦ and eJ = 0. When the eccentricity of Jupiter is

set equal to eJ = 0.048 the stable region is crossed by stripes of

fast diffusion and the area where stable orbits are located is strongly

reduced.

The existence of stable high-inclination orbits in the three-body

model suggests that the corresponding lack of stable orbits in the six-

body case is possibly due to the perturbations of the outer planets,

in the form of secular resonances or three-body resonances.

5 A S E M I - A NA LY T I C A L M O D E L F O R

S E C U L A R B E H AV I O U R

The FMA analysis has provided us with a list of the proper ele-

ments and the corresponding proper frequencies for a large number

of Trojan orbits. An immediate step is to perform a numerical fit

to the proper frequencies with a polynomial expression to build up

a semi-empirical secular theory for the Trojan motion. This study

was already performed by Schubart & Bien (1987) with 40 Trojan

orbits, and it was subsequently improved by Milani (1994) who used

a sample of 174 real Trojans. We have adopted the same polyno-

mial form of Milani and we have tested the fitting algorithm on a
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Figure 5. Diffusion portraits of Trojans orbits integrated within the three-body model. From top to bottom: I 0 = 0◦ and eJ = 0, I 0 = 0◦ and eJ = 0.065, and

I 0 = 40◦ and eJ = 0.048.

sample of real Trojan orbits similar to that used by Milani. The co-

efficients of the polynomial expressions we found were very similar

to those obtained by Milani giving reliability to the procedure. We

then analysed about 10 000 Trojan orbits well sampled in the proper

elements space D, ep and I p, also covering regions of the action

space where real Trojans are not found. In the sample of orbits to

be fitted we include only those bodies that are within the previously

defined bands in inclination (I 0 − 1◦ < I p < I 0 + 1◦). In this way we

neglect orbits not having well-defined values of I p or having the fre-

quency s changing chaotically on a short time-span. The analytical
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Stability of Jupiter Trojans 1099

expression adopted by Milani (1994) has been used and our best fit

is

s = −8.56 − 8.07x2 + 17.39y2 − 28.72z2 − 0.42x2 y2

− 2.46y4 + 3.83x4 + 4.69y2z2 + 6.60z4

g = 364.81 − 13.60x2 − 138.30y2 + 61.52z2 + 2.31x2 y2

+ 10.75y4 − 13.52x2z2 − 78.99y2z2 − 7.18z4

fL = 8856.60 + 76.26x2 − 2045.31y2 − 675.50z2 − 239.54x2 y2

+ 951.75y4 − 33.40x2z2 + 43.75y2z2 + 42.16z4

with

x =
ep

0.15
y =

sin Ip

0.6
z =

da

0.15au
. (3)

The relative error in each coefficient was less than 1 per cent. The

frequencies g, s and f L are expressed in arcsec yr−1. We do not

compute da directly from our numerical integration, but rather D.

However, to compare with Milani’s best fits we transform D to da

using the formula D = da/0.2783 (Erdi 1988; Milani 1993). The

coefficients are of the same order of magnitude but significantly

different from those of Milani (1994), possibly because the real

Trojans cover only a limited region of the phase space. Moreover, our

sample is about 50 times more populated than that used by Milani.

Given the proper frequencies, in particular s, we can identify the

main secular resonances within the Trojan regions. In Fig. 6 we

plot in the space D–ep the major secular resonances for different

inclinations, s6, s7 and s8. In Fig. 7 we concentrate on the case with

I 0 = 40◦ and we outline possible secular resonances that can explain

the high diffusion rate of the high inclined Trojan orbits.

6 D I S C U S S I O N

The FMA method is a powerful tool for measuring the diffusion

rate of orbits in the action space and it can be successfully used for

outlining the regions where stable or chaotic orbits can be found.

We have applied the FMA to Trojan-type orbits of Jupiter to detect

where primordial bodies may have survived from the origin of the

Solar system until the present. The stable regions are characterized

by low diffusion rates and stability is granted over 4.5 Gyr. At low

inclination the stablity we outline with the FMA method matches

that found by Levison et al. (1997) by direct numerical integration.

It remains an open question for Jupiter Trojans, and maybe for

Trojans in general, whether a fast diffusion rate, and then chaos,

0 20 40 60 80

0

0.1

0.2

0.3

Figure 6. Major secular resonances in the D–ep plane. The continuous line

marks the location of the s6 resonance for different inclinations, the dashed

line the location of the s7, and the dotted line that of the s8.

0 20 40 60 80

0

0.1

0.2

0.3

s=0

Figure 7. Secular resonances location in the D–ep plane for I 0 = 40◦.

always implies a quick escape from a Trojan orbit. Milani (1993,

1994) argued that some Trojan orbits may be examples of stable

chaos: their evolution is chaotic but the size of the stochastic layer

may be limited or, perhaps, its structure may be very complex. This

seems to be the case for some high-inclination Trojans. According

to the FMA method all orbits with an inclination of I 0 = 40◦ are

chaotic with a fast diffusion rate but, at present, we know some real

Trojans (three numbered and two unnumbered) with inclinations

around 40◦. They may not be primordial and may be the results of

recent collisional events that ejected them into their present orbits.

However, the orbits of three of these bodies have been numerically

integrated by Marzari et al. (2002b) for 4.5 Gyr and two of them

survive, even showing strong chaotic variations of the libration am-

plitude and eccentricity. Their diffusion rate is similar to that of

low-inclination and large libration amplitude (or high-eccentricity)

Trojan orbits which, on the other hand, escape on time-scales of the

order of 107–108 yr.

Marzari et al. (2002b) identified different routes that take a

Trojan out of the resonant region: the libration amplitude D grows,

Figure 8. Survival times for bodies with I 0 = 40◦, proper eccentricity

ep < 0.1, σ ∼ 2 and D0 distributed between 0◦ and 70◦. Bodies initially

having a lower value of D0 survive longer.
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1100 F. Marzari, P. Tricarico and H. Scholl

Figure 9. Chaotic evolution with time of the libration amplitude D for a

body with I 0 = 40◦, ep < 0.1 and σ ∼ 2. The escape from the Trojan orbit

occurs at t = 2.3 Gyr after a close encounter with Jupiter.

while on average the proper eccentricity is constant, until the as-

teroid encounters the planet and is ejected out of the resonance, or

the eccentricity increases, while D is constant, and again a close

encounter pushes the asteroid out of the libration region. There is

a simple interpretation that allows one to comply with the FMA

predictions that highly inclined Trojan orbits are unstable while real

Trojans such as (29976) 1999 NE9 and (24449) 2000 QL63 sur-

vive over 4.5 Gyr. In spite of their high diffusion rate, these two

bodies start on a low libration amplitude and low-eccentricity orbit.

It would take them more time to cover the chaotic route that leads

to high values of eccentricity and libration amplitude and then to a

close encounter with Jupiter.

In order to test this hypothesis we integrated 35 of our virtual Tro-

jans over a long time-span. The bodies are selected among those with

inclination I 0 = 40◦ with the following properties: a fast diffusion

rate σ ∼ 2, proper eccentricity lower than 0.1, libration amplitude

evenly distributed between 0◦ and 70◦. In Fig. 8 we show the time

survived by each test body as a function of the initial proper libra-

tion amplitude D0. The linear trend (in logarithmic scale) seems

to confirm that bodies with lower D0 take more time to escape

notwithstanding the fact that they have the same diffusion rate. The

scattering of the data may be enhanced by the fact that the bodies

do not have initially exactly the same proper eccentricity. Moreover,

we expect that the chaotic route to escape is a random walk, as il-

lustrated in Fig. 9, an example of a high-inclination chaotic orbit.

The location of the libration centre is displaced for the equilateral

configuration due to the high inclination of the orbit. This behaviour

is described in detail in Namouni & Murray (2000) and Nesvorný

et al. (2002).

In conclusion, the FMA method works well to determine the

chaotic nature of Trojan orbits. However, the relationship between

the diffusion rate and the escape time must be handled with care due

to the complexity of the Trojan motion.
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