Stability of lightweight structural sandwich panels exposed to fire

Gordon Cooke

International Fire Safety Consultant and Visiting Professor, City University, London, UK gordon@cookeonfire.com

Sandwich panel data

- A composite product comprising flat outer thin rigid metal sheet (usually coated steel or aluminium alloy) either side of a bonded core of insulating material
- Panel width normally 1.2m
- Panel span up to 12m
- Cores can be EPS, PUR, PIR and stonewool
- Unequalled high thermal insulatione with stone wool core
- Fire resistance of more than 2 hours possible with stonewool core

Hans Timm Fensterbau, Germany

- Paroc Original-E
- 2 700 m²

Saku Arena, Tallinn, Estonia

• Multi-purpose arena, Paroc stone wool cored panels

The delamination problem

- Panel faces are not mechanically attached to each other
- Delamination temperature can be in range 140 to 290 C according to tests by FRS, BRE,UK
- Delamination can therefore occur very early in a fire
- Falling face can act as missile before fully developed fire occurs
- Can be a hazard to fire-fighters
- Caused the death of two firemen in food processing factory in the UK

Change in flexural behaviour of panel

- No flexure, no delamination.
- Flexure, no delamination. Plane sections remain plane. Note flexure caused by self weight

• Flexural strength lost at delamination

Safe applications

- external wall or roof cladding when <u>both</u> facings mechanically attached to supporting structure. Facing cannot detach and act as missile if fire inside or outside the building
- Internal wall if both facings suspended from top
- Ceiling if at least lower face is restrained. Calculation or fire test needed

Potentially unsafe applications

- Free-standing internal walls ie walls not suspended from the top
- Ceiling panels with unrestrained lower face. Face can drop down

Sandwich panel uses in buildings

• External cladding. OK

• Supported internal walls and ceilings. OK

• Unsupported internal walls and ceilings. Generally not OK

A preferred suspension method

Calculation procedure for ceilings

- Calculate catenary sag, D. Take account of delamination temperature and flexibility of panel assembly. The larger the D at delamination, the smaller the H.
- 2 **Calculate catenary force, H.** This requires assessment of dead load for lower face
- Check panel-end fastenings. Are they capable of resisting pull-out force H at appropriate temperature?

Note. Calculation only needed if span greater than fire tested span

Catenary force equation

• Taking moments about point A

$$\frac{wL}{2} \times \frac{L}{2} = H.D + \frac{wL}{2} \times \frac{L}{4}$$

Hence

$$H = \frac{wL^2}{8D}$$

2-layer catenary

Bow due to end movement

From geometry

$$D = \sqrt{0.375 L \Delta}$$

Longitudinal expansion of length L is

$$\Delta = \alpha LT$$

Considering end movement as longitudinal expansion and substituting for delta we have

$$D = L\sqrt{0.375\,\alpha T}$$

Equations used for fire condition

$$H = wL^2/8D \tag{1}$$

where w = uniformly distributed load per unit length

L = span of panel

D = central deflection

$$D = L \sqrt{(0.375\alpha T)} \tag{2}$$

Where α = coefficient of linear thermal expansion T= temperature rise

Sample calculation for fire condition

Assume panel is 1000 mm wide, 4000 mm long with a facing 0.6 mm Volume of one facing = $4 \text{x} 1 \text{x} 0.0006 \text{ m}^3$ Density of steel = 7850 kg/m^3 Weight of one facing = 4 x 1 x 0.0006 x 7850 = 18.84 kg Weight per unit length = 18.84/4 4.71 kg Load per unit length (w) = 4.71 x 9.81 = 46.2 N/m

From equation (1)
$$H = 46.2x4^2/8D$$
 (3)

Substituting values of D calculated from equation (2) gives force data i.e.

$$D = 4000(0.375 \times 0.000014 \times T)^{1/2} \text{ assuming steel face}$$
 (4)

Substituting values for T in equation (4) and then substituting in equation (3) gives values of H

Variation of H and D with temperature

Spectrum of calculation conditions

- H at room temperature small sag, large H, large tensile strength, high fastening pull-out strength needed
- H at elevated temperature large sag, small H, low tensile strength, low fastening pull-out strength needed
- Checks needed at number of temperatures
- Remember H increases as the square of L

Strength of facings at elevated temperature

- •The reduction in strength properties of steel at elevated temperature may be assumed to vary according to the relevant ENV or Euronorm. Information in ENV 1993-1-2 ('Fire design of steel structures') and ENV 1991-2-2 ('Actions on structures exposed to fire') may be used.
- Strength reduction factors for other metals can be obtained from national standards or laboratory tests
- •When a European standard is not available a national standard may be used, e.g. in the United Kingdom by reference to BS 5950: Part 8: 1980 which gives strength reduction factors for hot rolled steel and cold formed steel.

A preferred suspension method

Conclusions

- Ensure that in all roof, external wall and internal wall applications <u>both</u> panel facings are mechanically attached and restrained by the supporting structure
- Ensure that <u>at least</u> the lower face of a ceiling panel is mechanically attached and restrained by the supporting structure. Calculation needed if beyond firetested span

Further reading

Lightweight sandwich construction, (chapter 5 'Fire'), edited J M Davies, published Blackwell Science, Oxford, UK, 2001

Cooke G M E, Stability of lightweight structural sandwich panels exposed to fire, Proc 'Structures in Fire' SiF 02 International

Workshop, Univ of Canterbury, New Zealand, March 2002

Cooke G M E, Sandwich panels for external cladding - fire safety issues and implications for the risk assessment process, Published by Eurisol UK Ltd, UK, Nov 2000, pp 60