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The stability of axisymmetric liquid bridges spanning two equal-diameter solid disks subjected to 
an axial gravity field of arbitrary intensity is analyzed for all possible Uquid volumes. The 
boundary of the stability region for axisymmetric shapes (considering both axisymmetric and 
nonaxisymmetric perturbations) have been calculated. It is found that, for sufficiently small 
Bond numbers, three different unstable modes can appear. If the volume of liquid is decreased 
from that of an initially stable axisymmetric configuration the bridge either develops an 
axisymmetric instability (breaking in two drops as already known) or detaches its interface from 
the disk edges (if the length is smaller than a critical value depending on contact angle), whereas 
if the volume is increased the unstable mode consists of a nonaxisymmetric deformation. This 
kind of nonaxisymmetric deformation can also appear by decreasing the volume if the Bond 
number is large enough. A comparison with other previous partial theoretical analyses is 
presented, as well as with available experimental results. 

I. INTRODUCTION 

A liquid bridge is an idealization of the fluid configu­
ration appearing in the crystal growth technique known as 
floating zone melting. The configuration analyzed consists 
of an isothermal, initially axisymmetric, mass of fluid held 
by surface tension forces between two parallel, coaxial, 
solid disks of the same diameter, as sketched in Fig. 1. The 
configuration is considered to be subject to a constant, ax­
ial gravity field. If the interface is assumed to be anchored 
to the sharp disk edges, the configuration can be uniquely 
characterized by the following dimensionless parameters: 
the slenderness, defined as the ratio of gap separation to 
disk diameter, A=L/(2R), L being the separation be­
tween the disks and R being the common disk radius; the 
dimensionless volume of Uquid, V=V/(TTR2L), defined as 
the ratio of the physical volume V to the volume of a 
cyUnder of the same L and R; and the Bond number, 
Bo= | Apg\R2/a, where Ap is the difference between the 
liquid density and the surrounding medium density, g the 
axial acceleration (positive when it has the direction of the 
—z axis), and a the surface tension (both Ap and a are 
assumed to be constant). Notice that modulus is used in 
the definition of Bo, because for equal disks the stability 
limits are the same no matter the sign of the effective axial 
mass force. 

The availability of flight opportunities to carry out 
fluid and material sciences experiments in microgravity is 
giving rise to interest in the study of the behavior of Uquid 
masses under microgravity conditions, the Uquid bridge 
being one of the fluid configurations that is receiving in­
creasing attention in those experiments.1"8 The mechanical 
aspects of the liquid bridge problem have received the at­
tention of many investigators during the last two decades 
and, leaving apart dynamic effects, one can find in the 
Uterature a large number of papers deaUng with the equi­

librium shapes and the static stability Umits of Uquid 
bridges. A comprehensive review of these works has been 
done by Myshkis et al.9 Early studies dealt with Uquid 
bridges between equal disks under gravitationless 
conditions,10-17 whereas the influence of Bond number has 
been the subject of more recent pubUcations.18-26 The in­
fluence on stability limits of disks of different diameters has 
also been considered.17'26-29 Although the behavior at the 
stability limit is qualitatively similar no matter if the diam­
eters are equal or slightly unequal, only Uquid bridges be­
tween equal disks are considered in the following. 

The problem of stability of liquid bridges under axial 
gravity has been investigated in some particular cases 
which are important for the floating zone melting tech­
nique. For cylindrical volumes (V= 1) the loss of stabihty 
with respect to axisymmetric perturbations has been stud­
ied by Coriell et al.19 and Meseguer.30 Analytical approxi­
mations for smaU Bond numbers have been calculated by 
Vega and Perales.20 The stability with respect to arbitrary 
(both axisymmetric and nonaxisymmetric) perturbations 
has been studied by Slobozhanin.21'22 He showed that for 
Bo > 3.06 the nonaxisymmetric perturbations bound the 
stability region instead of the axisymmetric ones. In other 
works, the contact angle Px in the bottom disk or contact 
angle /?2 in the top disk is fixed, that is, a constant wetting 
angle ir—Pi at the bottom disk or /32 at the top disk is 
considered. The case of a 90° angle has been considered by 
Heywang31 and for arbitrary perturbations by Coriell and 
Cordes.18 In the works of Slobozhanin21,22 the values of the 
angle 90°, 80°, and 75° at each disk were investigated and it 
was shown that the particular value of the angle /?]=90° 
becomes a singular case as Bo tends to 0. 

The subject of the present investigation is the stability 
of a liquid bridge for arbitrary volumes, slendernesses, and 
Bond numbers. In the limiting case Bo=0 (see Fig. 2), the 



V 

FIG. 1. Geometry and coordinate system for the liquid bridge problem. 

region of stability with respect to axisymmetric perturba­
tions has been constructed by Gillette and Dyson12 and 
Martinez,27 and with respect to arbitrary perturbations by 
Slobozhanin14 (all the above-mentioned works of 
Slobozhanin were collected later in English9). According 

FIG. 2. Typical stability diagram of liquid bridges between equal disks 
subjected to a small constant axial acceleration [measured by Bond num­
ber: Bo=0.1 (solid line), Bo=0 (dashed line)]. The sketches indicate the 
different types of instability appearing on the different parts of the stabil­
ity curve. A, maximum of volume; B, maximum of slenderness; C, tran­
sition between axisymmetric and nonaxisymmetric instabilities; D, zero 
angle at the top disk; E, local minimum in pressure; F, local minimum of 
the angle at the top disk; G, local maximum of the angle at the top disk; 
H, local maximum of the pressure. 

to the last work, the boundary of stability region in A-V 
plane is unclosed and consists of three parts. On the upper 
boundary the bridge loses its stability with respect to non­
axisymmetric perturbations, on the right part of the lower 
boundary with respect to axisymmetric perturbations and 
on the left part of the lower boundary a detachment of 
wetting lines from the edges of disks appears. It was shown 
that for the case of zero wetting angle the latter part coin­
cides with the boundary with respect to nonaxisymmetric 
perturbations and that in general the position of the left 
part of the lower boundary is determined by the value of 
the wetting angle. 

The calculation of this boundary for nonzero wetting 
angles was carried out for the first time by Sanz and 
Martinez15 and more complete results can be found in 
Slobozhanin.32 The calculation of the upper boundary with 
respect to arbitrary perturbations and its experimental 
checking was also carried out by Russo and Steen.16 

The influence of axial gravity on the character of de­
formation of the first and second parts of the boundary 
corresponding to Bo=0 was determined by Barmin et al.23 

According to the above-mentioned results, for each 
nonzero value of Bond number the stability diagram of 
capillary liquid bridges can be represented by a single 
closed piecewise curve on the A-V plane. Liquid bridge 
configurations represented by points inside of the region 
bounded by this curve are stable whereas those lying out­
side are unstable. A typical stability limit curve for small 
Bond numbers (Bo=0.1) is shown in Fig. 2. In such a 
stability limit curve it is possible to distinguish three dif­
ferent parts. For volumes V< 1 and small slendernesses, 
the instability is governed by the detachment of the inter­
face (the wetting line) from the edges of the top disk 
(curve OD in Fig. 2 corresponds to zero wetting angle). 
Another part of the stability limit curve, corresponding to 
a minimum in the volume, is characterized by the axisym­
metric breakage of the liquid bridge (curve DC where 
point C is always below the point of maximum slenderness, 
B), such a part of the stability curve being known in the 
literature as the minimum volume stability limit. Finally, 
the last part of the curve (curve OABC) is characterized 
by the loss of axisymmetry of the equilibrium shapes, i.e., 
a nonaxisymmetric deformation appears. 

For rather small Bond numbers, the minimum volume 
stability limit with respect to axisymmetric perturbations 
has been determined by Meseguer and Sanz,24 Martinez 
et al.,25 and Perales et al.26 The stability limits of minimum 
volume are well documented both theoretically and exper­
imentally, and there are no relevant discrepancies in the 
results reported by different authors. 

To our knowledge, apart from the mentioned work of 
Barmin et al.,23 there is only one theoretical analysis deal­
ing with the influence of Bond number on stability limits of 
maximum volume of general configurations (Martinez 
et al.25). In Fig. 7 of that paper the stability regions for 
different values of the Bond number are shown. However, 
the stability curves were calculated by considering only 
axisymmetric perturbations, and, although the minimum 
volume stability limits presented there are applicable, the 



maximum volume stability limit shows discrepancies with 
experiments. For very short liquid columns (with slender-
nesses close to zero) only liquid bridges with volume very 
close to the cylindrical one can be stable in practice. 

This paper aims to clarify the above-described situa­
tion, to determine the influence of Bond number on the 
stability limits of capillary liquid bridges, and to compare 
the theoretical results with the experimental ones which 
can be found in Perales et al.26 and Bezdenejnykh et a/.33 

The boundary of the stability region with respect to arbi­
trary (both axisymmetric and nonaxisymmetric) perturba­
tions is calculated and the transition point between these 
two types of perturbations is determined. 

II. MATHEMATICAL FORMULATION OF THE 
PROBLEM 

The geometry and notation used are shown in Fig. 1. It 
is assumed that the axial acceleration g is directed down­
wards. The origin of the reference system is at the center of 
the lower disk and the z axis points to the liquid. The 
arclength, s, of the meridian curve (outer shape) is mea­
sured from the point where z—0. 

In the following, unless otherwise stated, all lengths 
are made dimensionless with Lc = ^a/\ Ap-g\, a dimen­
sionless radius rQ=R/Lc, and disk separation h = L/Lc, 
are defined. Axisymmetric equilibrium shapes of liquid 
bridges anchored to the sharp edges of the supporting disks 
are characterized by the dimensionless coordinates of the 
meridian curve as a function of the curve arclength, 
r=r(s), z=z(s) , which are functions of the configuration 
and stimuli applied, namely: slenderness A, liquid volume 
V, and residual acceleration in the axial direction of the 
column measured by the Bond number, Bo. Then, assum­
ing the set of parameters (A,F,Bo) given, the equilibrium 
shape can be computed by numerically integrating the set 
of second-order differential equations: 

r"{s) = ~Z'{sW(s), 

z"(s)=r'(s)p'(s), 

(1) 

(2) 

where /3=/3(s) is the angle between the tangent to the 
meridian of the equilibrium shape and the horizontal, and 
primes denote derivation with respect to arclength s. The 
angle f3 can be computed from 

p'(s)=ez(s)+C- (3) 

In the last equation, C is the dimensionless pressure differ­
ence between the reference pressure, P, inside the liquid 
bridge at z = 0 and that of the surrounding medium, P0, 

C = -
P - P n 

\Ap-g\ -or 

and e stands for the direction of the effective gravity 

e = - s i g n ( A p - g ) . 

The set of differential equations must be solved with the 
boundary conditions (Sy is the final value of the arclength) 

2(0) =0 , 

z(s f) =h=2 A A/Bo, 

(4) 

(5) 

(6) 

(7) 

and the unknown constant C must be adjusted to fulfill the 
volume preservation condition 

V= 
jy(s)z'{s)ds 

(8) 

The problem can be solved as an initial-value problem by 
using a shooting method. The boundary conditions ( 4 ) -
(7) must be replaced by the initial conditions 

K0)=r0, 

r'(0)=cosl3l, 

z(0)=0 , 

z ' (0)=sin)3i , 

(9) 

(10) 

( I D 

(12) 

and Eq. (3) can be integrated by using as initial condition 

0(0) =j8, ; (13) 

C, pu and Sf must be adjusted to fulfill the conditions (5), 
(7), and (8). 

Following the method described by Myshkis et al.9 to 
find the stability boundaries during the numerical integra­
tion of the system ( l ) - (3 ) with initial conditions ( 9 ) -
(13), the functions <po\{s), cp02(s), and ^1(5) must be cal­
culated from the differential equations 

r'(s) 
-Voi(s) —^y <p'Ql(s) +a(s)<p0l(s) =0 , (14) 

r'(s) 
-cpo2(s)—^y(po2(s)+a(s)Vo2{s)=0, (15) 

r'(s) I 1 
-<P"(s) —rf-j <Piis) +1 a(s) + ^ y !<?,(*) =0 , 

with 

a(s)=er'{s)-P'2(s) 

and the initial conditions 

P0i(0)=0, f&(0) = l, 

<p02(0) = l, <Po2(0)=0, 

<p,(0)=0, ?{ (0 )=1 . 

U*) J 

(16) 

(17) 

(18) 

Besides, the following function is to be calculated during 
the integration process: 



9O) =<Poi(s) (cos0i J r (5)(p 0 2(s)*-2 [»*(*) ~H>]) 

+ [r'(s)-cp02(s)cospl] \ r(s)<p0l(s)ds. (19) 
Jo 

Depending on which function, 3) (s) or q>\ (s) vanishes 
first during the integration, the perturbation which desta­
bilizes the axisymmetric equilibrium state is axisymmetric 
or nonaxisymmetric, respectively. 

According to the election of the reference system, in 
the following the value e = — 1 is assumed. By integrating 
Eq. (2) taking into account Eq. (3) the following useful 
expression, valid for any liquid bridge between equal disks 
is obtained: 

s in j8 2 =sin j8 1 +ABo(F- l ) . (20) 

III. NUMERICAL ALGORITHM 

For integrating the systems of equations ( l ) - (3 ) and 
(14)—(16) a Runge-Kutta method with a constant ad­
vancing step 8 has been used. Let us fix a value of r0, i.e., 
of Bb, and assume a value for 0^ (say (31=0\1^) in the 
interval — ir/2<j8p'<ir. For this value p[l) a value for 
C=Cg is guessed. For given values of Px=p\l) and C=Cg 

the integration of Eqs. ( l ) - (3 ) and (14)-(16) with initial 
conditions (9)—(13) and (18), and the calculation of the 
function 2>{s), are carried out. The integration process 
continues until the point s=s* for which either of the func­
tions 0{s) or (p^s) becomes equal to zero for the first 
time after the initial point 5=0. 

During the integration, the value r(s*) is calculated. 
The condition 

\r(s*)-r0\<t (21) 

is controlled (usually a value 1=8 is taken). If this condi­
tion is not satisfied and r(s*;r0,p[l),Cg) > r0, then it is nec­
essary to choose a value C> Cg for.the next iteration (with 
the same value of Pi=P[1)). The iteration process is con­
tinued until a value C=Cgfor which /•(s*;r0,j3P),Cg)

 <ro is 

found. On the contrary if r(s*;r0,p\X) ,Cg) <r0 then it is 
necessary to decrease the value of C with respect to Cg. 

In this way, an interval of values of the parameter C 
with their extremes having different signs of r(s*)—rQ is 
determined. Then a value C=C* for which condition (21) 
is satisfied can be determined by a bisection root finder. 
The corresponding equilibrium shape (C=C*,0<5<s*) is 
the critical one (the one corresponding to the stability 
limit) for the given Bo=/^ and pl=p{1). 

For each critical equilibrium shape the following val­
ues are monitored: 

r0, Pi(=P{l)), C=C*, h=z(s*), 

p2(=p(s*)), A=h/2r0, V(s*). 

It must also be distinguished which of the two func­
tions 3 (s) and q>\ (s) changes the sign at the point s=s* 
(loss of stability with respect to axisymmetric or nonaxi­
symmetric perturbations). 

FIG. 3. Sketch of the situation appearing when the limiting equilibrium 
shape has a negative value of the angle in the top disk, /?2 < 0; (a) when 
a solid disk is considered, (b) when a tube is used as the upper support of 
the liquid column. 

The above values A and V(s*) determine a point of the 
stability boundary in the (A, V) map. To find another point 
of this boundary it is necessary to change the value of Pi 
(say Px =/?i2)) and repeat the whole procedure. By such a 
way the whole boundary is constructed for a given value of 
Bo. 

If P(s*) <0, the critical profile contains a point m [see 
Fig. 3(a)], for which 

r'{sm) = \, z"(sm)<0 (with 0<sm<s*). 

Such profile cannot be realized between flat solid disks 
although it could be obtained if a tube were used as upper 
support [see Fig. 3(b)]. In this case of edge detachment it 
is necessary to find the shape of the limiting profile for 
given Bo and px as well. In the results presented below it 
has been assumed that the liquid has a perfect wetting, i.e., 
that any angles P\<JT, P2>0 are possible. The limiting pro­
file (0<5<sm) is characterized by the equality r(sm)=r0. 
The limiting profile is obtained by an analog iteration pro­
cedure on the parameter C until the condition 

kCsm)->o|</ 
is satisfied. Nevertheless, by using Eq. (20), it can be de­
duced that, if 0<j8t<7r and F>1 then P2>0, and thus the 
above-described situation cannot be reached. 
Slobozhanin21,22 (see also Myshkis et al.9) also deduced 
that 02>O for the critical profile if —rr/2<Px<0. 

IV. RESULTS AND ANALYSIS 

Following the above-described method, the stable re­
gion in the A-V diagram has been computed for different 
Bond numbers in the range 0.005 < Bo < 7.0. The results 
have been plotted in Fig. 4 assuming that the liquid bridge 
is held between solid disks, that is, wherever necessary, the 
stability limit has been substituted by the curve for jS2=0. 
Besides these stability limits for nonzero Bond numbers, 
the distinguished case Bo=0 has also been plotted after 
Slobozhanin.14 
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FIG. 4. Influence of the Bond number on the stability limits of liquid 
bridges between equal disks. Numbers on the curves indicate the value of 
the Bond number. Curve labeled A shows the locus of the points with 
maximum volume for a given value of Bo, curve B shows the locus of the 
points with maximum slenderness for a given value of Bo, and curve C the 
transition between axisymmetrical breakage and nonaxisymmetric defor­
mation. 

FIG. 5. Maximum stable slenderness (for any volume) and maximum 
stable volume as a function of Bond number. Dashed lines correspond to 
asymptotic approximations given by Eqs. (22) and (23). 

The calculations show that in the part of the boundary 
which bounds the largest possible volume for a given slen­
derness and Bond number (Fig. 2, curve OAB), the loss of 
stability is always due to nonaxisymmetric perturbations, 
i.e., function q>\{s) has its smallest zero for a smaller 
arclength than 3) (s). 

One of the characteristic points of this segment of the 
boundary is the point where the maximum possible vol­
ume, Vm&v for a given Bond number is obtained (Fig. 2, 
point A). The locus of these points has been determined 
(curve A on Fig. 4). The values of the relevant parameters 
for this curve have been collected, for different values of 
the Bond number, in Table I. On curve A it can be proved 
that the minimum value of (3X for each Bond number is 
reached. 

The value of Vmax as a function of Bond number has 
been plotted in Fig. 5. It can be observed that for Bo<l, 
Fmax behaves as Bo~2/3. 

The analytical approximation 

r m a x = ( i ) 1 / J B o -2/3 (22) 

deduced after Myshkis et al? (Sec. 2.4.3) by assuming the 
shape of a pendant drop has also been plotted. The error of 
this approximation is smaller than 10% for Bo<0.1. 

TABLE I. Values of the parameters for the maximum possible volume, Vmw for different Bond numbers (point A in Fig. 2). 

Bo ft ft 
0.005 
0.01 
0.02 
0.05 
0.10 
0.20 
0.50 
1.00 
2.00 
5.00 
7.00 

8.19 
6.44 
5.02 
3.53 
2.65 
1.96 
1.29 
0.93 
0.67 
0.43 
0.36 

36.009 
22.338 
14.077 
7.977 
5.426 
3.865 
2.663 
2.124 
1.770 
1.474 
1.398 

27.2 
24.4 
21.8 
18.9 
17.2 
16.0 
14.8 
14.2 
13.8 
13.5 
13.4 

102.6 
105.8 
109.7 
115.1 
118.8 
121.9 
124.9 
126.4 
127.5 ... 
128.3 
128.5 

4.16 
3.86 
3.53 
3.20 
2.97 
2.77 
2.53 
2.37 
2.24 
2.11 
2.07 



TABLE II. Values of the parameters for the maximum possible slenderness, Amax, for different Bond numbers (point B in Fig. 2). 

Bo 

0.005 
0.01 
0.02 
0.05 
0.10 
0.20 
0.50 
1.00 
2.00 
4.9 

8.443 
6.782 
5.457 
4.098 
3.297 
2.642 
1.950 
1.526 
1.169 
0.79 

34.55 
20.93 
12.77 
6.79 
4.33 
2.87 
1.80 
1.37 
1.12 
1.00 

-25.6 
-22.1 
-18.8 
-14.8 
-12.1 
- 9 . 6 
- 6 . 8 
- 5 . 0 
- 3 . 3 

0.0 

80.0 
77.4 
74.1 
68.0 
62.9 
55.3 
41.9 
28.4 
13.1 
0.0 

4.17 
3.84 
3.55 
3.21 
2.99 
2.80 
2.57 
2.43 
2.31 
2.16 

The second characteristic point in the maximum vol­
ume stability limit is the point where the maximum length, 
Amax, for a given Bond number is achieved (point B in Fig. 
2). The locus of these points has been plotted in Fig. 4 
(curve B) and their relevant parameters have been listed in 
Table II. The dependence on Bond number of the maxi­
mum slenderness (not necessarily for V= 1) has been plot­
ted in Fig. 5. For Bo<l Amax behaves as Bo""1/3. The as­
ymptotic expression 

Amax=V3Bo-"3 (23) 

was suggested by Langbein34 who considered only axisym-
metric perturbations of the equilibrium state. The compar­
ison of numerical results with the above-mentioned asymp­
totic expression (see Fig. 5) shows that they agree almost 
perfectly (the error is smaller than 6% for Bo<0.1). Al­
though for point B the destabilizing perturbations are al­
ways nonaxisymmetric, the agreement can be explained by 
the fact that point B is placed very close to the transition 
between axisymmetric and nonaxisymmetric destabiliza-
tion for Bo < 3.06. 

Curve B coincides with V= 1 for Bo>4.9 (A<0.79). It 
was shown by Slobozhanin21'22 that critical profiles for 
F = l and Bo>3.0618 (A<0.9763) have the property 
Px= /?2=0. Besides, /?2>0 for any critical profile with 
V> 1. Consequently, the point where /32=0 (point D of 
Fig. 2) lies on the line V=\ for Bo>3.0618 (A<0.9763) 
and thus, for Bo>4.9 point D coincides with point B. Tak­
ing into account the importance of the dependence of the 
maximum slenderness for cylindrical volumes (it coincides 
with curve B for Bo>4.9 and with the locus of point D for 
Bo>3.0618), this limit has been plotted in Fig. 6 based in 
numerical results of Slobozhanin.21 

Point C (see Fig. 2) separates the part of the boundary 
where the loss of stability is due to axisymmetric pertur­
bations from where it is due to nonaxisymmetric ones. 
Curve C corresponding to these points has been plotted in 
Fig. 4 and the values of their parameters have been col­
lected in Table III. Curve C crosses V= 1 for A=0.9763 
which coincides with the results obtained for V=\ by 
Slobozhanin.21'22 

Curve C can be continued in the region V< 1 only if 
the constraint /?2>0 is relaxed and a configuration like the 
one sketched in Fig. 3(b) is permitted. A detail of the 
region has been plotted in Fig. 7. Nevertheless the value of 

/?2 is negative in the stability boundaries plotted for V< 1 
and should be replaced by the lines /?2=0 if solid disks [see 
Fig. 3(a)] were considered. Curve C is tangent to the sta­
bility limit for Bo = 3.595 and thus, for larger values of Bo 
there is no transition and all breakages or deformations 
beyond the stability limit are nonaxisymmetric. 

It is interesting to pinpoint the behavior of the solution 
in the vicinity of point C. A typical situation is represented 
in Fig. 8 (Bo=0.05). In the A-Vplane, close to the neigh­
borhood of point C, the line l-C-B-2 [Fig. 8(a)] determines 
the loss of stability with respect to nonaxisymmetric per­
turbations [q>l(s*)=0] and the line 3-C-4 with respect to 
axisymmetric perturbations [&(s*) =0] . These lines touch 
each other in point C. The angle of inclination of the com­
mon tangent with respect to the A axis is acute (it means 
that in point B the loss of stability occurs with respect to 
nonaxisymmetric perturbations). It could seem that by 
considering arbitrary perturbations the stability will always 
be lost on the section l-C-B-2, i.e., with respect to nonaxi­
symmetric perturbations. Nevertheless, the analysis shows 
that along the same integral curve of the problem (1)-(3) , 
(9)-(13) the zero of function &{s) appears earlier (for 
smaller s*) than the zero of the function q>i(s) if V< Vc 

and later if V> Vc, see Fig. 8(b). Thus, the boundary is 
determined by curve 3-C if V<VC and by curve C-B-2 if 
V>VC. 

The lines /3i=const and /32=const have been plotted in 
the A- V plane in Figs. 9 and 10, respectively. The points of 
crossing of the lines Pi = const with the stability boundaries 
allow one to solve the problem of bridge stability under a 
fixed value of Pi for different values of Bond number. The 

AXISYMMETRIC BREAKAGE -3—|—E* NON-AXISYMMETRIC BREAKAGE 

10' 

A it 

10" 
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Bo 

FIG. 6. Maximum stable slenderness for cylindrical volume ( V = 1) as a 
function of Bond number (after Slobozhanin21). 



TABLE III. Values of the parameters at the point where the stability lossing changes from that due to axisymmetric perturbations to that due to 
nonaxisymmetric perturbations (point C in Fig. 2). 

Bo 

0.005 
0.01 
0.02 
0.05 
0.10 
0.20 
0.50 
1.00 
2.00-
3.00 
3.0618 
3.20 
3.40 
3.595 

8.43 
6.77 
5.45 
4.09 
3.29 
2.64 
1.95 
1.53 
1.17 
0.99 
0.9763 
0.96 
0.93 
0.90 

33.90 
20.52 
12.50 
6.61 
4.23 
2.81 
1.77 
1.34 
1.10 
1.00 
1.00 
0.99 
0.97 
0.93 

ft 
-24.8 
-21.4 
-18.2 
-14.2 
-11.5 
- 9 . 1 
- 6 . 4 
- 4 . 6 
- 2 . 7 
- 0 . 3 

0.0 
0.7 
2.1 
7.3 

75.3 
73.0 
70.2 
65.2 
59.9 
52.8 
39.7 
26.3 
10.3 
0.5 
0.0 

- 1 . 2 
- 2 . 9 
-5.9 

4.19 
3.86 
3.57 
3.23 
3.01 
2.81 
2.58 
2.44 
2.31 
2.25 
2.25 
2.24 
2.23 
2.22 

7.5 

lines /32=const may be used for solving the analog problem 
of a given value of /?2. The two above problems are of 
interest in the study of the stability of a melting zone. The 
comparison of the obtained results with the stability inves­
tigation for/?!=90°, 80°, 75° and#,=90", 100°, 105° which 
was carried out earlier by Slobozhanin21'22 (see also 
Myshkis et a/.9) leads to a complete agreement. 

The relationship (20) is useful for analysis of behavior 
of these lines. In particular, it is deduced that /?! =/?2 on 
the straight line V= 1. The behavior of ft along the stabil­
ity limit for a given Bond number is quite simple. In point 
O (see Fig. 2) j8i=0, its value decreasing with increasing 
volume up to a minimum which coincides with the point 

1.05 

0.95 

FIG. 7. Detail of the stability limit in the neighborhood of the point 
where the transition between axisymmetric to nonaxisymmetric breakages 
(curve C) happens for V=L Curve C has been dashed in the points 
where j32<0. Curve B is the locus of points with maximum slenderness. 
The stability limits (nonaxisymmetric instability if V> Vc or axisymmet­
ric instability if V< Vc) have been dashed if/?2 <0 and substituted by the 
limiting shapes with /32=0. Numbers on the curves indicate the value of 
Bond number, Bo. 
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FIG. 8. Transition between axisymmetric and nonaxisymmetric modes of 
instability for £=0.05. (a) In the K-V plane, (b) Arclength of the crit­
ical profile as a function of volume. Point B corresponds to maximum 
length and point C to the transition between axisymmetric and nonaxi­
symmetric instabilities. 



FIG. 9. Values of the angle in the bottom disk ft at the stability limit. 
Numbers on the dashed curves indicate the value of the Bond number. 
Curve A is the locus of minimum value of ft for each Bond number. 

for maximum volume (point A, for values of B, see val-
1min 

ues of /?! in Table I), and then increasing monotonically up 
to point D. If a nonperfect wetting were considered there 
would be an upper limit for Bx. Remarkable values are 
BX=TT/2, which coincides with the minimum volume sta­
bility boundary for Bo=0, A>2.13 (see Myshkis et al.9) 
and Pi=0, which coincides with the maximum volume 
stability boundary for Bo=0. 

The behavior of /?2 is quite different. For a fixed Bond 
number the value for point O is ir, it decreases up to a local 
minimum (point F in Fig. 2 and curve F in Fig. 10), 

FIG. 10. Values of the angle in the top disk ft at the stability limit. 
Numbers on the dashed curves indicate the value of the Bond number. 
Curve F is the locus of the local minimum of ft for each Bond number 
and curve G that of the local maximum. 

TABLE IV. Values of the parameters in the point of the stability bound­
ary where ft=0 (point D in Fig. 2). 

Bo 

0.005 
0.01 
0.02 
0.05 
0.1 
0.2 
0.5 
1.0 
2.0 

A 

0.361 
0.362 
0.363 
0.365 
0.368 
0.376 
0.401 
0.450 
0.629 

V 

0.165 
0.165 
0.166 
0.166 
0.170 
0.178 
0.197 
0.231 
0.329 

ft 
179.9 
179.8 
179.7 
179.1 
178.2 
176.5 
170.7 
159.8 
122.4 

C 

-6.26 
-4.39 
-3 .06 
-1 .84 
-1 .19 
-0 .67 
-0 .09 

0.41 
1.36 

increases to a local maximum (curve G), and finally de­
creases up to the point where /?2=0 (point D) . The pa­
rameters for this limiting situation when solid disks are 
considered have been collected in Table IV. It must be 
pointed that there are no positive extremes for /82 if Bo>3. 
Remarkable values are /?2=7r/2, which coincides with the 
minimum volume stability boundary for Bo=0, A > 2.13 
(see Myshkis et al.9) and Bi=^, which coincides with the 
maximum volume stability boundary for Bo=0 and any 
length. 

To help in further calculations, the lines C= const in 
the stability limit have been plotted in Fig. 11 and the local 
extremes of Bx, /?2, and C have been collected in Table V. 
The dimensionless pressure difference reaches a local min­
imum (curve E) and a local maximum (curve H). 

The analysis of stability when arbitrary (both axisym­
metric and nonaxisymmetric) perturbations are taken into 
account leads to a shortening of the stability region for a 
given Bond number compared with the analysis of stability 
with respect to axisymmetric perturbations only. This fact 
explains the difference between present results and those 

FIG. 11. Values of the constant Cat the stability limit. Numbers on the 
dashed curves indicate the value of the Bond number. Curve E is the locus 
of the local minimum of C for each Bond number and curve H that of the 
local maximum. 



TABLE V. Local extremes of ft, ft, a n d C f° r n x e d Bond number on the 
stability boundary. 

Bo 

0.005 
0.01 
0.02 
0.05 
0.1 
0.2 
0.5 
1.0 
2.0 
5.0 

ft rain 

-27.24 
-24.36 
-21.78 
-18.92 
-17.24 
-15.96 
= 14.79 
-14.21 
-13.81 
-13.49 

ft max 

84.67 
82.49 
79.42 
73.51 
67.13 
58.42 
42.30 
25.48 

3.67 

ftmin 

74.46 
72.43 
69.74 
64.78 
59.47 
52.31 
38.66 
23.71 

2.91 

c 
^max 20.837 

14.807 
10.558 
6.820 
4.971 
3.721 
2.778 
2.495 
2.334 
2.166 

C • 

4.141 
3.803 
3.501 
3.149 
2.914 
2.702 
2.458 
2.301 
2.170 
2.033 

obtained by Martinez et al. considering only axisymmet-
ric perturbations, both of which have been plotted in Fig. 
12. Although in the region corresponding to axisymmetric 
breakages the results match perfectly (as it happens when 
compared with the results of Perales et al.26 for the mini­
mum volume stability limit), they are difiFerent for the 
maximum volume stability limit (for A-»0 when only axi­
symmetric perturbations are considered V->ir, while if ar­
bitrary perturbations are considered F-»l) . 

The present results have been compared with the ex­
perimental results reported by Bezdenejnykh et al.33 (Fig. 
13). The qualitative agreement is excellent but it is difficult 
to obtain quantitative agreement. The authors used a nom­
inal value for surface tension of a= 0.072 N m _ 1 to calcu­
late the Bond number, which seems to be rather optimistic 
(water is easily contaminated and the surface tension de­
creases significantly with contamination). A good agree­
ment might be obtained if a lower value for surface tension 
(approximately a=0.06 N m _ I ) had been used in reduc­
ing experimental results. 

FIG. 12. Influence of the Bond number on the stability limits of liquid 
bridges between equal disks according to Martinez et al.25 (dashed lines) 
and according to the present method. Numbers on the curves indicate the 
value of the Bond number. 

FIG. 13. Comparison with the experimental stability limits of liquid 
bridges between equal disks reported by Bezdenejnykh et a/.33 The sym­
bols indicate experimental results for the Bond numbers quoted in the 
legend. Numbers on the curves indicate the value of Bond number, Bo. 

Finally, note that* the loss of stability with respect to 
nonaxisymmetric perturbations may lead either to estab­
lish a new stable liquid bridge which has a nonaxisymmet-
rical shape or to the breakage of the bridge. This question 
has not been theoretically solved yet. 

V. CONCLUSIONS 

The stability region for arbitrary Bond numbers of Hq­
uid bridges spanning equal disks have been obtained. Three 
different kinds of instability can be observed; namely, axi­
symmetric breakage, nonaxisymmetric deformation, and 
interface detachment from the disk edge. 

The behavior of the stability limit has been analyzed in 
detail in the regions where an extreme in any parameter 
appears, and the point where the transition between axi­
symmetric, and nonaxisymmetric destabilization occurs 
has been determined. 

The results obtained have been compared with other 
existing theoretical and experimental results, the agree­
ment being good. 
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