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The novel viscous fingering instability recently found in the experiments of Kowal &
Worster (2015), involving two superposed currents of viscous fluid, has been shown to
originate at the lubrication front when the fluids are of equal density. However, when
the densities are unequal, additional buoyancy forces associated with the underlying
layer act to suppress this instability and are largest at the lubrication front, which is
where the instability originates. In this paper, we investigate the interaction between the
mechanism of the instability and the stabilising influence of these buoyancy forces by
performing a global and fully time-dependent analysis, which does not use the frozen-
time approximation. We determine a critical condition for instability in terms of the
viscosity ratio and the density difference between the two layers. Consistently with the
local analysis of the companion paper, instabilities occur when the jump in hydrostatic
pressure gradient across the lubrication front is negative, or, equivalently, when the
intruding fluid is less viscous than the overlying fluid, provided the two fluids are of
equal densities. Once there is a nonzero density difference, these driving buoyancy forces
suppress the instability for large wavelengths, giving rise to wavelength selection. As the
density difference increases, the instability criterion requires higher viscosity ratios for
any instability to occur, and the band of unstable wavenumbers becomes bounded. Large
enough density differences suppress the instability completely.

Key words:

1. Introduction

The phenomenon of viscous fingering usually occurs when a less viscous fluid penetrates
a more viscous fluid in a small gap between two plates and the patterns that emerge have
been investigated extensively since the seminal work of Saffman & Taylor (1958). Such
instabilities occur in various settings in nature and in industrial applications (Orr & Taber
1984; Cinar et al. 2009; Taylor 1963; Reinelt 1995; Mullins & Sekerka 1964). Complex
fingering patterns can emerge (Saffman & Taylor 1958; Paterson 1981; Homsy 1987; Chen
1989; Thome et al. 1989; Manickam & Homsy 1993) and depend on the injection rate (Li
et al. 2009; Dias & Miranda 2010; Dias et al. 2012), gradients in the flow passage (Nase
et al. 2011; Al-Housseiny et al. 2012; Juel 2012; Dias & Miranda 2013), elasticity of the
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medium (Pihler-Puzovic et al. 2012, 2013, 2014), anisotropy (Ben-Jacob et al. 1985), and
rheology (Kondic et al. 1998; Fast et al. 2001; Kagei et al. 2005).
It has been observed experimantally by Kowal & Worster (2015) that viscous gravity

currents lubricated from below by a less viscous fluid are prone to a novel viscous fingering
instability and we have explored various physical mechanisms to explain the formation
of the instability in the companion paper Kowal & Worster (2018). We found that this is
a frontal instability and that the mechanism of instability contrasts with that of classical
Saffman-Taylor fingering (Saffman & Taylor 1958; Homsy 1987) in porous media, in
that it occurs as a result of changes in the hydrostatic rather than dynamic pressure
gradients. The latter is stabilised by gradients in the flow passage (Al-Housseiny et al.

2012), capillarity (Bretherton 1961) and elastic effects (Pihler-Puzovic et al. 2012, 2013,
2014), among others.
We devote the present paper to the analysis of another physical mechanism related to

driving buoyancy forces associated with the lower layer near its nose. This takes place in
the vicinity of the lubrication front – the location where the instability emerges – when
there is a nonzero density difference between the two layers. Such an effect is akin to
that relevant to the gravitational spreading of classical viscous gravity currents over a
horizontal substrate driven by their own buoyancy, or the Barenblatt–Pattle self-similar
solution for viscous gravity currents in the classical sense and in porous media. These
were shown to be stable by Grundy & McLaughlin (1982) for symmetric disturbances
and Mathunjwa & Hogg (2006a,b) for asymmetric disturbances. These driving buoyancy
forces are stabilising and those associated with the lower layer near its nose act to suppress
the frontal instability of lubricated viscous gravity currents. We wish to understand the
competition between this stabilising mechanism and the destabilising mechanism of the
fingering patters seen in the experiments.
In contrast to the analysis of the companion paper, the analysis presented in the

present paper is non-local, perturbations are not assumed to grow faster than the basic
state, that is, we do not use the frozen-time approximation, and the densities of the two
layers are not assumed equal. The lubrication front can no longer be considered in terms
of jump conditions as the basic state relevant to this problem is additionally singular
at the front in the presence of these driving buoyancy forces. Another difference from
the companion paper is that here the geometry of the basic state is axisymmetric, as
in the experiments, rather than two-dimensional. We find that the onset conditions for
equal-density layers are the same in these two geometries.
There are two difficulties associated with the analysis. The first is that the basic state

is both time- and space-dependent in the experiments, which complicates a traditional
linear, normal-mode stability analysis. To resolve this, we consider radially-outward
spreading currents, recast the problem in similarity coordinates and perform a stability
analysis in a transformed time variable. This approach yields normal-mode solutions in
the transformed coordinates.
The second difficulty is that the basic state is singular at the front of the lubricating

fluid and at the front of the overlying fluid. There is also a weak, logarithmic singularity at
the origin in the initially axisymmetric geometry of the experiments, which we adopt for
the basic state. The singularity at the origin can be readily resolved for the basic state, but
unfortunately becomes stronger with increasing wavenumbers for the equations governing
the perturbations. A major problem stems from the fact that the two frontal singularities
occur at moving, rather than fixed boundaries, and linearising about the unperturbed
frontal positions leads to singular boundary conditions for the perturbations, in addition
to singular terms in the governing equations.
Such problems arose previously in the study of the stability of the Barenblatt-Pattle
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Figure 1: Schematic of two superposed thin films of viscous fluid spreading horizontally
under gravity on a rigid horizontal surface. Reproduced and modified from Kowal &
Worster (2015).

similarity solution describing classical viscous gravity currents and various remedies have
been introduced, including the method of strained coordinates (Grundy & McLaughlin
1982) or transforming the dependent variable (Mathunjwa & Hogg 2006a). The first of
these methods regularizes the problem at the frontal position, at which the solution has
a singular first derivate, by formulating the problem in terms of an appropriate strained
coordinate. The second of these methods involves reformulating the problem in terms
of an appropriate function of the surface height, chosen so that its derivative remains
finite at the front. We introduce a new approach that eliminates the need to linearise
at the singular frontal positions, and use asymptotic matching conditions to couple the
governing equations to asymptotic solutions that we derive near the singular fronts. Using
this approach, we perform a linear stability analysis for this problem without employing
any local spatial or frozen-time approximations.
We begin with a theoretical development in §2 and an analysis of the problem, in-

cluding asymptotic solutions and a new approach to formulating consistent perturbation
equations in light of the frontal singularities in §3. We present the linear stability analysis
in §4 and present a discussion on the stabilising and destabilising mechanisms in §5. The
paper closes with conclusions in §6.

2. Theoretical development

Consider the flow of two superposed, thin films of viscous fluid of dynamic viscosities
µ and µl and densities ρ and ρl spreading radially outwards over a rigid, horizontal
substrate and supplied at constant fluxes Q0 and Ql0 at the origin as shown in figure
2. The subscript l denotes quantities relevant to the lower layer. We denote the surface
heights of the upper and lower layers by z = H(r, θ, t) and z = h(r, θ, t). We assume no
surface tension between the layers and consider the limit in which vertical shear provides
the dominant resistance to the flow of both layers. The following is based on the PhD
Thesis by Kowal (2016).
We use the dimensional version of the equations derived in the companion paper in

cylindrical coordinates. The fluxes of lower and upper layer fluids are

ql = −
ρg

µ

[
M

3
h3 (D∇h+∇H) +

M

2
h2(H − h)∇H

]
(0 6 r 6 rL), (2.1)

q = −
ρg

µ

[
1

3
(H − h)3∇H +

M

2
h2(H − h) (D∇h+∇H)

+Mh(H − h)2∇H

]
(0 6 r 6 rL),

(2.2)
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in the lubricated region and

q = −
ρg

3µ
H3

∇H (rL 6 r 6 rN ), (2.3)

in the no-slip region. Here,

M =
µ

µl
and D =

ρl − ρ

ρ
. (2.4a, b)

The governing mass-conservation equations become, in components,

∂h

∂t
= −

1

r

∂(rqlr)

∂r
−

1

r

∂qlθ
∂θ

(0 6 r 6 rL),

∂(H − h)

∂t
= −

1

r

∂(rqr)

∂r
−

1

r

∂qθ
∂θ

(0 6 r 6 rL),

(2.5a, b)

for the lubricated region and

∂H

∂t
= −

1

r

∂(rqr)

∂r
−

1

r

∂qθ
∂θ

(rL 6 r 6 rN ), (2.6)

for the no-slip region, where the subscript r denotes the r component and the subscript

θ denotes the θ component of a vector. We apply a constant flux at the origin r = 0

lim
r→0

2πrqlr = Ql0, lim
r→0

2πrqr = Q0. (2.7a, b)

For both D ≡ 0 and D 6= 0, the height of the upper layer as well as the sum of the
normal fluxes of both layers of fluid are continuous across the lubrication front. These
conditions are summarised by

[
q · nL + ql · nL

]
−

=
[
q · nL

]+
(r = rL). (2.8)

[
H
]+
−

= 0 (r = rL), (2.9)

In addition, the normal component of the upper layer flux vanishes at the leading edge
of the no-slip current,

q · nN = 0 (r = rN ), (2.10)

which is equivalent to

H = 0 (r = rN ). (2.11)

Both fronts evolve kinematically

nL · ṙL = lim
r→rL

nL · ql/h, (2.12)

and

nN · ṙN = lim
r→rN

nN · q/H, (2.13)

where rL = rLr̂ and rN = rN r̂ are the position vectors of the two freely moving fronts.
Explicitly,

ṙL = lim
r→rL

[
qlr − qlθ

∂rL
∂θ

]/
h, (2.14)

and

ṙN = lim
r→rN

[
qr − qθ

∂rN
∂θ

]/
H. (2.15)

These follow from conditions of zero normal component of flux and zero thickness at the
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front, which are also sufficient in determining the evolution of the frontal positions.
However, the explicit kinematic evolution conditions stated above are of use in the
numerical approach that we adopt and we will refer to these from now on.
When D ≡ 0, the nose of the lubricant does not spread under its own weight and ends

abruptly with a nonzero thickness there (equivalently, nonzero frontal flux). However, if
D 6= 0, the front of the lubricant spreads under its own weight and the flux of the lower-
layer fluid vanishes at the lubrication front. Therefore, if D 6= 0, the following additional
condition applies

ql · nL = 0 (r = rL). (2.16)

The order of the equations reduces by one when D ≡ 0 and therefore no additional
condition is necessary to fully specify the problem in this case.

3. Similarity variables

3.1. Governing equations

The description of the flow can be recast in terms of a similarity variable ξ, the
azimuthal coordinate θ and a transformed time variable τ , where

τ = log t, ξ = r/(gQ3
0ν

−1t4)1/8, (3.1a, b)

[H(r, θ, t), h(r, θ, t)] = (νQ0g
−1)1/4[F (ξ, θ, τ), f(ξ, θ, τ)]. (3.2a, b)

Here, ν = µ/ρ is the kinematic viscosity of the upper layer and g is the gravitational
constant. In what follows, ∇ denotes the gradient vector in the (ξ, θ) cylindrical polar
coordinate plane. The experiments of Kowal &Worster (2015) tend towards self-similarity
with time. The governing equations become

ql = −

[
M

3
f3 (D∇f +∇F ) +

M

2
f2(F − f)∇F

]
(0 6 ξ 6 ξL), (3.3)

q =−

[
1

3
(F − f)3∇F +

M

2
f2(F − f) (D∇f +∇F )+

+Mf(F − f)2∇F

]
(0 6 ξ 6 ξL), (3.4)

q = −
1

3
F 3

∇F (ξL 6 ξ 6 ξN ), (3.5)

∂f

∂τ
−

1

2
ξ
∂f

∂ξ
= −

1

ξ

∂(ξqlr)

∂ξ
−

1

ξ

∂qlθ
∂θ

(0 6 ξ 6 ξL), (3.6)

∂(F − f)

∂τ
−

1

2
ξ
∂(F − f)

∂ξ
= −

1

ξ

∂(ξqr)

∂ξ
−

1

ξ

∂qθ
∂θ

(0 6 ξ 6 ξL), (3.7)

∂F

∂τ
−

1

2
ξ
∂F

∂ξ
= −

1

ξ

∂(ξqr)

∂ξ
−

1

ξ

∂qθ
∂θ

(ξL 6 ξ 6 ξN ), (3.8)

lim
ξ→0

2πξqlr = Q, lim
ξ→0

2πξqr = 1, (3.9a, b)

[
(qr + qlr)−

∂ξL
∂θ

(qθ + qlθ)

]
−

=

[
qr −

∂ξL
∂θ

qθ

]+
(ξ = ξL), (3.10)
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along with

qlr −
∂ξL
∂θ

qlθ = 0 (ξ = ξL) if D 6= 0, (3.11)

and [
F
]+
−

= 0 (ξ = ξL), qr −
∂ξN
∂θ

qθ = 0 (ξ = ξN ). (3.12a, b)

Here, ξ = ξL(θ, τ) and ξ = ξN (θ, τ) are two free moving boundaries that depend on both
θ and τ and are determined by the kinematic conditions

∂ξL
∂τ

+
1

2
ξL = lim

ξ→ξL

(
qlr −

∂ξL
∂θ

qlθ

)/
f, (3.13)

∂ξN
∂τ

+
1

2
ξN = lim

ξ→ξN

(
qlr −

∂ξN
∂θ

qlθ

)/
F. (3.14)

Taking ∂/∂θ ≡ 0 and ∂/∂τ ≡ 0 gives governing equations and boundary conditions for
the similarity solutions for the two layers (Kowal & Worster 2015).

3.2. Asymptotic solutions near the fronts

Near the leading edge ξ = ξN , the thickness of the current features a frontal singularity
described by the leading order asymptotic solution

F (ξ, θ, τ) ∼



9

2
·
ξ4N + 2ξ3N

∂ξN
∂τ

ξ2N +

(
∂ξN
∂θ

)2




1/3

·

(
1−

ξ

ξN

)1/3

, (3.15)

as ξ → ξN (θ, τ). Provided the density difference D between the two layers is nonzero,
the lubrication front involves a singularity with a cube-root asymptotic spatial structure

f(ξ, θ, τ) ∼




9

2MD
·
ξ4L + 2ξ3L

∂ξL
∂τ

ξ2L +

(
∂ξL
∂θ

)2




1/3

·

(
1−

ξ

ξL

)1/3

, (3.16)

as ξ → ξL(θ, τ). The gradients of the lower layer thickness near the lubrication front
become steeper as the density difference decreases. In the limit of D ≡ 0, the frontal
singularity turns into a frontal jump discontinuity that can be quantified in terms of the
jump condition (3.10).
Both of these asymptotic solutions generalise the asymptotic results near the two fronts

found by Kowal & Worster (2015) for self-similar currents, to allow for non-self-similar
variations in the time variable τ and across the azimuthal coordinate θ, and are used as
asymptotic matching conditions for our numerical solutions.

3.3. Mathematical formulation near the singular front

As the self-similar solutions involve gradients that become infinite at the lubrication
front if D 6= 0 and at the leading edge for general D, this leads to singular terms in the
perturbation equations, preventing one from formulating consistent linearised boundary
conditions at the front. To understand why, one may consider the no-flux boundary
conditions at the two fronts, which reduce to vanishing frontal thickness conditions there.
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Consider such a condition at the lubrication front, for example. Linearising the frontal
thickness a distance δ ≪ 1 away from the lubrication front leads to

f(ξL − δ, θ, τ) = f0(ξL0 − δ, θ, τ) + ǫ

(
ξL1

∂f0
∂ξ

(ξL0 − δ, θ, τ)+

f1(ξL0 − δ, θ, τ)

)
+O(ǫ2). (3.17)

The O(ǫ) terms involve contributions from the migration of the lubrication front as well
as contributions from the layer thickness perturbations. As δ → 0, the latter of these
terms, appearing as the first term in the second group of terms on the right-hand side,
involving the gradient in the basic state frontal thickness, diverges. To balance this at first
order in ǫ, the perturbed thickness necessarily diverges at the unperturbed lubrication
front as well.
A similar problem appears while studying the stability of the Barenblatt-Pattle sim-

ilarity solution. Grundy & McLaughlin (1982) introduced a remedy in this context by
using the method of strained coordinates, while Mathunjwa & Hogg (2006a) scale out
the singularities by transforming the dependent variable so that the gradient of the self-
similar height at the front is finite.
For tractability and clarity of presentation, we introduce an approach that eliminates

the need to linearise at the singular front by transforming the spatial domain. We make
a change of variables

R = ξ/ξL (0 6 ξ 6 ξL), R = 1 + (ξ − ξL)/(ξN − ξL) (ξL 6 ξ 6 ξN ). (3.18)

with

T = τ, Θ = θ (3.19)

so that the freely deforming lubricated region 0 6 ξ 6 ξL corresponds to the fixed interval
0 6 R 6 1 and the unlubricated region ξL 6 ξ 6 ξN corresponds to 1 6 R 6 2. The
transformed equations become

ql = −
1

ξL

[
M

3
f3 (D∇f +∇F ) +

M

2
f2(F − f)∇F

]
(0 6 R 6 1), (3.20)

q = −
1

ξL

[
1

3
(F − f)3∇F +

M

2
f2(F − f) (D∇f +∇F )+

Mf(F − f)2∇F

]
(0 6 R 6 1),

(3.21)

q = −
1

3(ξN − ξL)
F 3

∇PΘF (1 6 R 6 2), (3.22)

∂f

∂T
−

R

ξL

∂ξL
∂T

∂F

∂R
−

1

2
R
∂f

∂R
= −

1

ξLR

∂(Rqlr)

∂R
+

1

ξ2L

∂ξL
∂Θ

∂qlθ
∂R

−
1

ξLR

∂qlθ
∂Θ

(0 6 R 6 1),

(3.23)

∂(F − f)

∂T
−

R

ξL

∂ξL
∂T

∂(F − f)

∂R
−

1

2
R
∂(F − f)

∂R
=

−
1

ξLR

∂(Rqr)

∂R
+

1

ξ2L

∂ξL
∂Θ

∂qθ
∂R

−
1

ξLR

∂qθ
∂Θ

(0 6 R 6 1), (3.24)
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∂F

∂T
−

1

ξN − ξL

∂ξL
∂T

∂F

∂R
−

R− 1

ξN − ξL

∂(ξN − ξL)

∂T

∂F

∂R
−

1

2
R
∂F

∂R
=

−
1

ξL + (ξN − ξL)(R− 1)

[
1

ξN − ξL

∂

∂R

((
ξL + (ξN − ξL)(R − 1)

)
qr

)

−

(
1

ξN − ξL

∂ξL
∂Θ

+
R− 1

ξN − ξL

∂(ξN − ξL)

∂Θ

)
∂qθ
∂R

+
∂qθ
∂Θ

]
(1 6 R 6 2) (3.25)

lim
R→0

2πξLRqlr = Q, lim
R→0

2πξLRqr = 1, (3.26a, b)

[
(qξ + qlξ)−

∂ξL
∂Θ

(qθ + qlθ)

]
−

=

[
qξ −

∂ξL
∂Θ

qθ

]+
(R = 1), (3.27)

along with

qlξ −
∂ξL
∂Θ

qlθ = 0 (R = 1) if D 6= 0, (3.28)

and
[
F
]+
−

= 0 (R = 1), qξ −
∂ξN
∂Θ

qθ = 0 (R = 1), (3.29a, b)

∂ξL
∂T

+
1

2
ξL = lim

R→1

(
qlξ −

∂ξL
∂Θ

qlθ

)/
f, (3.30)

∂ξN
∂T

+
1

2
ξN = lim

R→2

(
qlξ −

∂ξN
∂Θ

qlθ

)/
F. (3.31)

Here,

∇ =
1

ξL

∂

∂R
ξ̂ +

(
1

RξL

∂

∂Θ
−

1

ξ2L

∂ξL
∂Θ

∂

∂R

)
θ̂, (3.32)

and

∇PΘ =
1

ξN − ξL

∂

∂R
ξ̂ +

1

(ξN − ξL)
[
(2 −R)ξL + (R − 1)ξN

] ·

[
(ξN − ξL)

∂

∂Θ
−

(
(2−R)

∂ξL
∂Θ

+ (R − 1)
∂ξN
∂Θ

)
∂

∂R

]
θ̂. (3.33)

4. Linear stability analysis

4.1. Perturbation equations

We look for a solution of the perturbed problem by expanding about the zeroth-order
self-similar solution of Kowal & Worster (2015). The self-similar solution can be obtained
by taking ∂/∂τ = 0 and ∂/∂θ = 0 in the governing equations of §3.1 and in the asymptotic
solution of §3.2. We write

X(R,Θ, T ) = X0(R) + ǫX1(R,Θ, T ) + . . . (4.1)

for each of the variables X = f, F, q, ql and

X(Θ, T ) = X0 + ǫX1(Θ, T ) + . . . (4.2)
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for X = ξL, ξN . The first-order perturbations to the r- and θ-components of the lower
layer flux of the lubricated region are given by

ql1r = αl1Rf1 + αl2RF1 + αl3R
∂f1
∂R

+ αl4R
∂F1

∂R
+ αl5RξL1, (4.3)

ql1θ =
1

R

[
αl1θf1 + αl2θF1 + αl3θ

∂f1
∂Θ

+ αl4θ
∂F1

∂Θ
+Rαl5θ

∂ξL1

∂Θ

]
, (4.4)

and for the upper layer,

q1r = α1Rf1 + α2RF1 + α3R
∂f1
∂R

+ α4R
∂F1

∂R
+ α5RξL1, (4.5)

q1θ =
1

R

[
α1θf1 + α2θF1 + α3θ

∂f1
∂Θ

+ α4θ
∂F1

∂Θ
+Rα5θ

∂ξL1

∂Θ

]
, (4.6)

where αl1R, . . . , αl5R, αl1Θ, . . . , αl5Θ, α1R, . . . , α5R, and α1Θ, . . . , α5Θ are functions of R
and Θ that depend on the basic state, with αl1θ, αl2θ, α1θ, α2θ = 0 since the basic state
is independent of Θ, and the remaining functions are specified in the Appendix.
The perturbations to the flux components in the unlubricated region are

q1r =
F 2
0

3 (ξL0 − ξN0)
2

(
(ξL0 − ξN0)

(
F0

∂F1

∂R
+ 3

∂F0

∂R
F1

)
− F0

∂F0

∂R
(ξL1 − ξN1)

)
, (4.7)

q1θ =
F 3
0

γ

(
ξL0

∂F1

∂Θ
−R

∂F0

∂R

∂ξL1

∂Θ
+

∂F0

∂R

∂ξL1

∂Θ
− ξN0

∂F1

∂Θ
+R

∂F0

∂R

∂ξN1

∂Θ

)
, (4.8)

where

γ = 3 (ξL0 − ξN0) (−ξL0 +RξL0 −RξN0) . (4.9)

At O(ǫ), the governing equations in the lubricated region become

1

2ξL0

[
2ξL0

∂f1
∂T

− 2R
∂f0
∂R

∂ξL1

∂T
−RξL0

∂f1
∂R

]
=

1

Rξ2L0

[
− ξL0

(
R
∂ql1r
∂R

+ ql1r

)
+ ξL1

(
R
∂ql0r
∂R

+ ql0r

)
− ξL0

∂ql1θ
∂Θ

]
, (4.10)

for the lower layer and

1

2ξL0

[
2

(
∂F1

∂T
−

∂f1
∂T

)
ξL0 − 2R

∂ξL1

∂T

(
∂F0

∂R
−

∂f0
∂R

)
−RξL0

(
∂F1

∂R
−

∂f1
∂R

)]
=

1

Rξ2L0

[
− ξL0

(
R
∂q1r
∂R

+ q1r

)
+ ξL1

(
R
∂q0r
∂R

+ q0r

)
− ξL0

∂q1θ
∂Θ

]
, (4.11)

for the upper layer. The governing equations in the unlubricated region can be obtained
similarly.
The condition of zero perturbation flux in the upper layer at the origin reduces to

lim
R→0

2πR (ξL0q1r + ξL1q0r) = 0, (4.12)

and for the lower layer,

lim
R→0

2πR (ξL0ql1r + ξL1ql0r) = 0. (4.13)

As the domains of both the lubricated and unlubricated regions are mapped to fixed
intervals, the height continuity condition in the transformed coordinates does not involve
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contributions from the propagation of the perturbed lubrication front and reduces to
[
F1

]+
−

= 0 (R = 1). (4.14)

As the basic state frontal flux vanishes for D 6= 0, the perturbed zero-flux condition at
the lubrication front also does not involve contributions from the perturbed position of
the lubrication front and reduces to

qlr = 0 (R = 1−), (4.15)

which reduces to

f1 = 0 (R = 1−), (4.16)

by performing an asymptotic analysis close to the singular lubrication front for D 6= 0. By
performing a similar asymptotic analysis near the leading edge ξN , we find that the zero-
flux condition at ξN gives that the perturbed height of the current in the unlubricated
region vanishes there

F1 = 0 (R = 2). (4.17)

Rather than featuring contributions from the perturbed position of the lubrication
front explicitly, the condition of continuity of flux involves such contributions implicitly
through the definitions of the perturbed fluxes and reduces to

[
q1r + ql1r

]
−

=
[
q1r

]+
(R = 1). (4.18)

The first-order kinematic condition for the evolution of the perturbed lubrication front
reduces to

∂ξL1

∂T
+

1

2
ξL1 = lim

R→1

[
ql1r
f0

−
ql0rf1
f2
0

]
. (4.19)

Similarly, the perturbed leading edge ξN evolves according to

∂ξN1

∂T
+

1

2
ξN1 = lim

R→2

[
q1r
F0

−
q0rF1

F 2
0

]
. (4.20)

Searching for normal-mode solutions X1(R,Θ, T ) = X̃1(R)eσT+ikΘ , and dropping
tildes gives the following governing mass conservation equations for the lower layer of
the lubricated region

1

2ξL0

[
2σf1ξL0 − 2RσξL1f

′

0 −RξL0f
′

1

]
=

1

Rξ2L0

[
− ξL0(Rq′l1r + ql1r) + ξL1(Rq′l0r + ql0r)− ikξL0ql1θ

]
, (4.21)

and for the upper layer

1

2ξL0

[
2σ(F1 − f1)ξL0 − 2RσξL1(F

′

0 − f ′

0)−RξL0(F
′

1 − f ′

1)
]
=

1

Rξ2L0

[
− ξL0(Rq′1r + q1r) + ξL1(Rq′0r + q0r)− ikξL0q1θ

]
. (4.22)

The governing equation in the unlubricated region reduces to

(σβ1r + β2r)ξL1 + (σβ3r + β4r)ξN1 + σβ5rF1 + β6rF
′

1 =

β7rq1r + β8rq
′

1r + β9rξL1 + β10rξN1 + ikβ11rq1θ, (4.23)
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Figure 2: (a) Growth rates σ against wavenumber k for M = 1, 2 . . . , 5 (blue to red), and
D = 0,Q = 0.1. (b) Growth rates σ against wavenumber k for M = 5, D = 0, 1, . . . , 4
(red to violet) and Q = 0.1.

where β1r, . . . β11r are functions of P that depend on the basic state and are specified
in the Appendix. Here, the r-components of the linearised fluxes in the upper and lower
layers of the two regions are given by real functions of R alone, while the θ-components
are proportional to ik.
The structure of the input flux conditions at the origin and the height and flux

conditions at the lubrication front for the amplitudes of the normal-mode solutions to the
perturbed problem remains as the same as (4.12)–(4.18), whereas the kinematic condition
for the evolution of the perturbed lubrication front reduces to

σξL1 +
1

2
ξL1 = lim

R→1

[
ql1r
f0

−
ql0rf1
f2
0

]
, (4.24)

and

σξN1 +
1

2
ξN1 = lim

R→2

[
q1r
F0

−
q0rF1

F 2
0

]
(4.25)

for the evolution of the perturbation to the leading edge ξN . The system of differential
equations (4.21)–(4.23) along with the boundary conditions (4.12)–(4.18) and (4.24)–
(4.25) are a complete formulation for the perturbed problem.

4.2. Asymptotic solutions for perturbations

By perturbing the asymptotic solution near the lubrication front (3.16), we find that
at O(ǫ), the lower layer thickness has a cube-root singularity

f1 ∼

(
4

3MDξL0

)1/3

ξL1(σ + 1)(1−R)1/3 as R → 1, (4.26)

at the lubrication front, independently of the wavenumber k. The spatial structure of
the singularity in the perturbation to the lower layer thickness at the lubrication front
remains the same as that of the basic state, differing by the prefactor.
Similarly, perturbing the asymptotic solution (3.15), we find that the perturbation to

the thickness of the current near the leading edge ξN obeys

F1 ∼
(
(2σ + 1)(ξN0 − ξL0)ξN1 + (ξN1 − ξL1)ξN0

)
·

(
2−R

6ξ2N0
(ξN0 − ξL0)

2

)1/3

as R → 2, (4.27)

preserving the spatial structure, as before.
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Figure 3: Growth rates σ against wavenumber k forM = 2, 4, . . . , 20, andD = 2,Q = 0.1.

4.3. Numerical method

These asymptotic solutions are used as asymptotic matching conditions for our nu-
merical solutions for the system of differential equations governing the perturbations.
We solve the perturbation equations, which are singular at the two fronts and at the
origin, numerically by shooting backwards for ξL1 and ξN1 from the front of the current
of the unlubricated region at R = 2. To initiate the computations, we use the asymptotic
solution presented above at R = 2− δ1, where δ1 ≪ 1, and integrate backwards towards
the lubrication front, at which we use frontal matching conditions and the asymptotic
solution at R = 1−δ1 to initiate computations for the lubricated region. We integrate the
perturbation equations for the lubricated region numerically, backwards from R = 1− δ1
towards R = δ2 ≪ 1.
Although the singularity at the origin originates as a weak logarithmic singularity

at zeroth order and when k = 0, it unfortunately becomes stronger with increasing
wavenumbers k. To aid in resolving this singularity at the origin for all wavenumbers, we
reformulate the problem in terms of transformed functions g1,k(R) and G1,k(R) where

(f1, F1) = R−k(1− logR)−3/4(g1,k(R), G1,k(R)) (4.28)

and solve the resulting perturbation equations numerically for g1,k(R) and G1,k(R).
As the problem is 2π-periodic, only integer multiples of k are admissible. When

displaying the results, we interpolate for intermediate k.
The system of differential equations governing the perturbations admits nonzero so-

lutions only for specific growth rates, or eigenvalues, σ. For a given wavenumber, we
determine the growth rate σ and associated eigensolutions g1,k(R), G1,k(R), ξL1, ξN1

iteratively by exploiting the linearity of the system of differential equations governing
the perturbations. For each wavenumber and each choice of parameter values, we initiate
the iterative process with an initial estimate for σ and at each iteration, we solve two
perturbation problems numerically by shooting backwards as described above. Each
iteration is solved using the standard Mathematica solver for nonlinear differential
equations with default accuracy and precision.
These two perturbation problems are defined by the values of ξL1 and ξN1. The first

of these problems is defined by setting ξL1 = 1 and ξN1 = 0, yielding a solution ga1,k(R),
Ga

1,k(R), ξaL1, ξaN1, whereas the second is defined by setting ξL1 = 0 and ξN1 = 1,
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Figure 4: Spatial form of the perturbations for M = 10,D = 0,Q = 0.1 against the
originally-scaled similarity variable ξ.

yielding a solution gb
1,k(R), Gb

1,k(R), ξbL1, ξ
b
N1. These two problems yield nonzero, linearly

independent solutions that satisfy the perturbation equations and all boundary conditions
and matching conditions except for the source flux conditions. By linearity of the system
of differential equations, any linear combination of these two solutions is another such
solution. Any such linear combination does not, in general, satisfy the two source flux
boundary conditions, for the lower and upper layer of the lubricated region, and carries
with it a residual matrix

R = 2πδ2

(
ξL0q

a
l1r + ξL1q

a
l0r ξL0q

b
l1r + ξL1q

b
l0r

ξL0q
a
1r + ξL1q

a
0r ξL0q

b
1r + ξL1q

b
0r

)
. (4.29)

The columns of the residual matrix measure the departure from satisfied source flux
conditions, per test solution.
The aim of the iteration is find to an appropriate linear combination of the two test

solutions so that the determinant of the residual matrix is close to zero. The iteration
terminates when there exists a linear combination of the two test solutions for which the
two source flux boundary conditions are satisfied to within a specified tolerance. This
occurs precisely when the residual matrix has zero determinant, to within a specified
tolerance of 10−5. This is a one-dimensional root-finding problem for σ and Brent’s
method, built into Mathematica, using the determinant of the residual matrix is used to
update σ at each iteration. The process terminates when this occurs.
We are interested in the eigensolution for which the growth rate is largest. To select

this eigensolution, we plot the residual (the determinant of the residual matrix) and pick
out the root with the largest growth rate by constraining the search domain to one that
contains only this root. This is done manually for a selection of test cases and parameter
continuation is employed for intermediate values.
The spatial form of the resulting perturbations is shown in figure 4, where it is seen

that there is a buildup of the more viscous fluid ahead of the front.

5. Destabilising and stabilising mechanisms

The instability mechanism can be understood most clearly in the equal density limit
D ≡ 0. The companion paper determines the mechanism of instability in terms of a jump
in hydrostatic pressure gradient in the limit of D ≡ 0 in a two-dimensional geometry.
Here, we find a consistent criterion, despite the change to an axisymmetric geometry in
a non-fixed frame of reference.
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Figure 5: Stability region for D = 2 and Q = 0.1. The wavenumber of the maximal
growth rate is displayed as the dashed line.

If D ≡ 0, then the frontal flux condition gives

1

ξL0

[(
MF 3

0 − (M− 1)(F0 − f0)
3
)
F ′

0

]
−

=
1

ξN0 − ξL0

[
F 3
0F

′

0

]+
(5.1)

Using the height continuity condition, we obtain

1

ξL0

[(
M− (M− 1)(1− f0/F0)

3
)
F ′

0

]
−

=
1

ξN0 − ξL0

[
F ′

0

]+
(5.2)

Hence

(M− 1)

[(
1−

(
1−

f0
F0

)3
)

dF0

dξ

]
−

=

[
dF0

dξ

]+

−

(5.3)

Noting that
[(

1−

(
1−

f0
F0

)3
)

dF0

dξ

]
−

< 0, (5.4)

We find that [
dF0

dξ

]+

−

< 0 (5.5)

if and only if M > 1. We find that this is precisely when the flow is unstable as seen by
the slope of the curves of figure 2 for various M, for example. This is consistent with and
confirms one of the results of the local, frontal stability analysis of the companion paper,
namely, that a lubricated viscous gravity current consisting of layers of equal density
is prone to a viscous fingering instability in the local vicinity of the lubrication front
precisely when the viscosity ratio satisfies M > 1.
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Figure 6: Stability region for M = 10 and Q = 0.1. The wavenumber of the maximal
growth rate is displayed as the dashed line.

Figure 2a shows the dispersion relations for illustrative parameter values in the equal
density limit, where positive slopes are observed precisely for M > 1 and a uniformly
zero slope of the growth rate curve is observed when M = 1. That is, for D ≡ 0, the flow
becomes unstable (at large enough wavenumbers k) precisely when the jump in upper
surface slope, or the jump in the hydrostatic pressure gradient, across the lubrication front
is negative. This occurs when a less viscous fluid intrudes underneath a more viscous fluid
of the same density into the unlubricated region as explained in the companion paper.
In this case, the more viscous fluid spreads under a higher hydrostatic pressure gradient
in the unlubricated region than in the lubricated region, and is characterised by higher
surface gradients there. If the lubrication front is perturbed so that the less viscous fluid
migrates into the unlubricated region, then it will become subject to higher hydrostatic
pressure gradients. This will cause the less viscous fluid to advance forward, causing an
instability.
This instability mechanism competes against a stabilising effect that takes place

when D 6= 0. Figure 2b illustrates this effect for sample parameter values. Once the
density difference between the two layers is nonzero, the growth rates no longer increase
unboundedly as the wavenumber k increases, but instead decay at large wavenumbers
leaving behind a band of most unstable wavenumbers, corresponding to either positive
or negative growth rates depending on parameters. Illustrative dispersion relations for
various values of the viscosity ratio M for which the interaction between the destabilising
and stabilising mechanisms results in most unstable wavenumbers with positve growth
rates are shown in figure 3. Large viscosity ratios M promote instability, and small
density differences D give rise to weak stabilisation, promoting a large band of large,
unstable wavenumbers. Larger values of D reduce this band of unstable wavenumbers.
Stability regions showing the stable and unstable wavenumbers as a function of the
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Figure 7: Wavenumber of the maximal growth rate as a function of the flux ratio Q for
M = 10 and D = 2.

viscosity ratio M are shown in figure 5. It can been seen that the original instability
criterion derived in the D = 0 limit changes once the lower-layer buoyancy forces become
present in that larger viscosity ratios are now required for any instability to occur. In
contrast to the D = 0 limit, in which the band of unstable wavenumbers is unbounded
for large k, here the band of unstable wavenumbers is bounded to a finite interval for
each viscosity ratio that is large enough for an instability to occur and this band becomes
larger for increasing viscosity ratios.

Figure 6 shows stability regions as a function of the density difference D. The band of
unstable wavenumbers is unbounded for D = 0, becomes finite once D 6= 0 and becomes
smaller as the density difference increases. For large enough density differences, these
driving buoyancy forces are large enough to suppress the instability completely, for all
wavenumbers. The experiments of Kowal & Worster (2015) correspond to the far right
side of figure 5 and bottom left side of figure 6. In the experiments, M ∼ 5000 and
D ∼ 0.1. These results indicate a large range of unstable wavenumbers for parameters
used in the experiments.

The wavenumber of the maximal growth rate is shown as a function of the flux ratio
in figure 7. Large wavenumbers are preferred for thin underlying layers (small Q), which
decrease towards a critical value up to a finite Q ≈ 0.3. This is followed by a slight
increase in the preferred wavenumber for larger Q, in line with increasing upper-layer
slope reversals of the basic state upstream of the lubrication front.

Figures 8a, b show the bevahiour of the critical wavenumber k = kc(D) and associated
minimal viscosity ratio M = Mc(D) required for the onset of instability, as a function
of D. As the wavenumbers of interest are increasingly large as D → 0, the singularities
inherent in the problem become increasingly strong in this region, prompting the need for
a more careful numerical treatment in this region. We do not attempt to treat this large-
wavenumber regime and display results bounded away from this region. It is expected for
these results, which are calculated for an axisymmetric geometry, to be comparable to the
results of the companion paper, specifically, that Mc = 1 for D = 0, which are calculated
for a two-dimensional geometry, in the limit D → 0. Bounded away from this large-
wavenumber regime, the critical wavenumber for the onset of instability decreases with
the density difference, but increases again at large D. In contrast, the critical viscosity
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Figure 8: Critical (a) viscosity ratio Mc and (b) wavenumber kc at the onset of instability
as a function of the density difference D for Q = 0.1.

ratio Mc increases almost linearly with D, reducing the band of unstable wavenumbers
as the density difference increases.

6. Conclusions

This paper was devoted to the analysis of a stabilising physical mechanism related
to driving buoyancy forces associated with the lower layer near its nose. This effect
takes place in a neighbourhood of the lubrication front if there is a nonzero density
difference between the two layers, which was absent in the local analysis of the companion
paper, involving layers of equal density. Such gravitational spreading of a fluid under its
weight alone has been found to be inherently stable in the context of classical, single-fluid
viscous gravity currents described by the Barenblatt-Pattle similarity solution (Grundy &
McLaughlin 1982; Mathunjwa & Hogg 2006a). Additionally, in contrast to the companion
paper, the analysis of the present paper is nonlocal and does not employ the frozen time
approximation.
We have classified the behaviour depending on the density difference and the viscosity

ratio between the two layers. We find that the geometry of the problem does not change
the onset conditions for equal-density layers. When the two layers are of equal densities
and the underlying layer spreads under the weight of the fluid above it, we found that the
flow becomes unstable precisely when the jump in hydrostatic pressure gradient across
the lubrication front is negative. This is consistent with the local frontal stability analysis
of the companion paper, despite apparent differences in geometry and the use of local
approximations and the frozen time approximation in the companion paper. Further,
we found that this occurs precisely when the viscosity of the underlying layer is smaller
than that of the overlying layer of fluid, once again consistently with the results of the
companion paper.
Once the density difference between the two layers is nonzero and the lower layer no

longer ends abruptly with a nonzero thickness at its nose but instead spreads under
its own weight and becomes singular as it approaches the lubrication front, we have
shown that the driving buoyancy forces associated with the spreading nose of the under-
lying layer suppress the instability for large wave-numbers, giving wavelength selection.
Therefore, unlike for the Saffman-Taylor instability, the hydrodynamic interactions in the
lubricated system, notably the gravitational buoyancy forces, alone provide a mechanism
for wavelength selection, without the influence of interfacial surface tension. As the
density difference between the two layers increases, the driving buoyancy forces within
the underlying layer in the vicinity of the lubrication front become larger and the band of
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unstable wavenumbers reduces, whereas the viscosity-based instability criterion changes
in that the minimal viscosity ratio required for the onset of instability increases with the
density difference.
The experiments in which this instability was discovered are in line with this instability

criterion, though they exhibit a large range of unstable wavenumbers, which, on the
whole, are lower (longer wavelength) than the most unstable wavenumber predicted by
the analysis. Likely physical effects that may further stabilize the flow and reduce the
most unstable wavenumber include the effects of horizontal shear, nonlinear saturation,
diffusion across the interface between the two fluids and a secondary, internal de-wetting
instability that occurs in the experiments away from the lubrication front. We have
shown in the companion paper that the first two of these contribute to reducing the
most unstable wavenumber in two-dimensional geometries.

KNK acknowledges the support of a NERC PhD studentship. We are grateful to John
Lister and Ed Brambley for helpful discussions on the analysis.

Appendix A. Perturbation equations

The r- and θ-components of the perturbation fluxes of both upper and lower layer
fluids are given in terms of the following functions of R and Θ that depend on the basic
state:

αl1R =
M

2ξL0

[
− 2Df2

0

∂f0
∂R

+ f2
0

∂F0

∂R
− 2f0F0

∂F0

∂R

]
, (A 1)

αl2R = −
M

2ξL0

[
f2
0

∂F0

∂R

]
, (A 2)

αl3R = αl3θ = −
MD

3ξL0

f3
0 , (A 3)

αl4R = αl4θ =
M

6ξL0

[
f2
0 (f0 − 3F0)

]
, (A 4)

αl5R = αl5θ =
M

6ξ2L0

[
2Df3

0

∂f0
∂R

− f3
0

∂F0

∂R
+ 3f2

0F0

∂F0

∂R

]
, (A 5)

α1R =
1

6ξL0

[
α6 + (f0 − F0)

(
6DMf0

∂f0
∂R

− 6Mf0
∂F0

∂R

+ 6MF0

∂F0

∂R
+ 4f0

∂F0

∂R
− 4F0

∂F0

∂R

)]
, (A 6)

α2R =
1

6ξL0

[
− α6 + (f0 − F0)

(
6Mf0

∂F0

∂R
− 4f0

∂F0

∂R
+ 4F0

∂F0

∂R

)]
, (A 7)

α3R = α3θ =
MD

2ξL0

(f0 − F0) f
2
0 , (A 8)

α4R = α4θ =
1

6ξL0

(f0 − F0)

(
− 3Mf2

0 + 6Mf0F0 + 2(F0 − f0)
2

)
, (A 9)

α5R = α5θ =
1

6ξ2L0

α6 (F0 − f0) (A 10)
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where

α6 = 3DMf2
0

∂f0
∂R

− 3Mf2
0

∂F0

∂R
+ 6Mf0F0

∂F0

∂R
+ 2f2

0

∂F0

∂R
+

− 4f0F0

∂F0

∂R
+ 2F 2

0

∂F0

∂R
. (A 11)

For convenience, define P = R − 1 so that the unlubricated region corresponds also
to 0 6 P 6 1. The governing equation in the unlubricated region is specified in terms of
functions of P that depend on the basic state and are given below:

β1r = (P − 1)(ξN0 − ξL0)F
′

0, (A 12)

β2r = −
1

2
ξN0F

′

0, (A 13)

β3r = − P (ξN0 − ξL0)F
′

0, (A 14)

β4r =
1

2
ξL0F

′

0, (A 15)

β5r = (ξN0 − ξL0)
2, (A 16)

β6r =
1

2

[
(2P − 1)ξL0ξN0 − Pξ2L0 + ξ2L0 − Pξ2N0

]
, (A 17)

β7r = β11r = −
1

βr
(ξN0 − ξL0)

2, (A 18)

β8r = − (ξN0 − ξL0), (A 19)

β9r =
1

β2
r

(
− β2

rq
′

0r + (1− P )(ξN0 − ξL0)
2q0r

)
, (A 20)

β10r =
1

β2
r

(
β2
r q

′

0r + P (ξN0 − ξL0)
2q0r

)
, (A 21)

and

βr = P (ξN0 − ξL0) + ξL0. (A 22)
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