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Abstract: This paper gives necessary and sufficient conditions for stationarity and

existence of second moments in mixtures of linear vector autoregressive models with

autoregressive conditional heteroskedasticity. Sufficient conditions are also provided

for a more general model in which the mixture components are permitted to exhibit

limited forms of nonlinearity. When specialized to the corresponding non-mixture

case these sufficient conditions improve on their previous counterparts obtained

for nonlinear autoregressions with nonlinear conditional heteroskedasticity. In this

context, a previous conjecture is also disproved. The results of the paper are proved

by using the stability theory of Markov chains. Stationarity, existence of second

moments of the stationary distribution, and β-mixing are obtained by establishing

an appropriate version of geometric ergodicity.
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1. Introduction

Most of the traditional time series analysis assumes that the underlying data

generation process is stationarity or stable in the sense that the possible nonsta-

tionarity is only due to transient effects caused by initial values. For conventional

linear time series models, necessary and sufficient conditions for stationarity are

well known and straightforward to obtain. However, for nonlinear time series

models the situation is much more difficult. For such models, the most conve-

nient approach for studying stationarity is based on the theory of Markov chains.

When the considered model has a Markovian structure it suffices to establish a

property known as geometric ergodicity. Once this has been done the desired sta-

tionarity or stability follows, along with useful mixing results. Chan and Tong

(1985), Chan, Petrucelli, Tong and Woolford (1985), Feigin and Tweedie (1985)

and Pham (1986) were among the first authors to use this approach for such non-

linear time series models as threshold autoregressive models, random coefficient

autoregressive models, and bilinear models.
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In more recent work, Le, Martin and Raftery (1996) and Wong and Li (2000)

introduced nonlinear time series models that can be viewed as mixtures of conven-

tional linear autoregressive models. Wong and Li (2001) extended these models

to allow for autoregressive conditionally heteroskedastic (ARCH) errors. In these

papers necessary and sufficient conditions for second order stationarity were also

obtained in some simple special cases. A major purpose of this paper is to provide

necessary and sufficient conditions for geometric ergodicity and existence of sec-

ond moments in a multivariate extension of the model considered by Wong and Li

(2001).

Our sufficient conditions for geometric ergodicity are based on an approach

already used by Feigin and Tweedie (1985) for random coefficient autoregressive

models. It turns out that this approach also applies to mixtures of certain non-

linear autoregressive models with a nonlinear ARCH term. The most general

model considered in the paper is therefore a multivariate mixture extension of

the univariate models studied by Masry and Tjøstheim (1995), Lu (1998) and

Chen and Chen (2001). The nonlinearity assumed in the previous work, and

hence also in this paper, is rather limited, for a number of commonly used non-

linear models are ruled out. However, it is still reasonable to include mixture

extensions of these nonlinear models in the paper because, when specialized to

the corresponding non-mixture case, our sufficient condition for geometric ergod-

icity provides a clear improvement on those of Masry and Tjøstheim (1995), Lu

(1998) and Chen and Chen (2001). Furthermore, we are able to disprove Lu’s

(1998) conjecture on a sufficient condition for the existence of second moments

in his model.

The paper is organized as follows. Section 2 presents the considered model

and related assumptions. Section 3 contains the main results and Section 4

concludes. Proofs of the theorems are deferred to an appendix.

The following notation is used throughout the paper. The symbol vec de-

notes the usual column vectorizing operator which stacks the columns of a matrix

in a column vector. The half vectorization operator, denoted by vech, stacks only

the columns from the principal diagonal of a square matrix downwards in a col-

umn vector. For any symmetric k × k matrix A, the symbol Dk is used for the

k2× [k (k + 1) /2] duplication matrix defined by vec(A) = Dkvech(A) whereas Lk

signifies the [k (k + 1) /2]×k2 elimination matrix such that vech(A) = Lkvec(A) .

The symbol ⊗ is used for Kronecker’s product. The largest and smallest eigen-

values of a square matrix A are denoted by λmax (A) and λmin (A) , respectively,

whereas ρ (A) = |λmax (A)| is the spectral radius of A. Furthermore, tr(A) and

det(A) signify the trace and determinant of the square matrix A, respectively.

Finally, 1 (·) denotes the indicator function and ‖·‖ is used for the Euclidean

norm defined by ‖B‖ = [tr (B ′B)]1/2 when B is a matrix.
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2. Model and Assumptions

We start with a very general mixture of nonlinear vector autoregressions

with a nonlinear ARCH term. Let ηt be a sequence of independent, identically

distributed random variables with a discrete probability distribution given by

P (ηt = s) = πs, s = 1, . . . ,m, (1)

where each πs > 0 and π1 + · · · + πm = 1. The random variable ηt determines

which one of m autoregressions at time t generates the value of the considered

n-dimensional stochastic process zt (t = 1, 2, . . .) . Specifically, suppose zt is gen-

erated by

zt =
m
∑

s=1

1 (ηt = s)
(

fs (zt−1, . . . , zt−p) + Hs (zt−1, . . . , zt−p)
1

2 ε
(s)
t

)

, (2)

where fs: R
np → R

n and Hs: R
np → R

n×n are (possibly) nonlinear functions

with Hs positive definite, and ε
(s)
t (n × 1) is a sequence of independent and

identically distributed random vectors with zero mean and identity covariance

matrix or, briefly, ε
(s)
t ∼ i.i.d. (0, In) . Moreover, the sequences ε

(s)
t , s = 1, . . . ,m,

and ηt are independent and zt−j is independent of ε
(s)
t and ηt for all t, s and

j > 0. Notice that the same number of lags p can be assumed in (2) because this

case can always be achieved by an appropriate redefinition of the functions fs

and Hs (cf., Lu (1998)).

For m = 1 the indicator function can be dropped from (2) and the model

becomes a conventional nonlinear vector autoregression with a nonlinear ARCH

term. The stability of the model in this special case was recently studied by

Lu and Jiang (2001) without assuming that the errors ε
(1)
t have finite second

moments. Assuming the existence of second moments is convenient and mostly

not restrictive. The existence of second moments was assumed by Lu (1998) and

Chen and Chen (2001, Corollary 4.2) who obtained stability results for univariate

models similar to (2) with n = m = 1. These results extended the previous results

of Masry and Tjøstheim (1995, Lemma 3.1). Our work makes use of ideas similar

to those employed by these previous authors.

When m > 1, (2) becomes a mixture of nonlinear vector autoregressions

with a nonlinear ARCH term. Models of this kind have recently been considered

by Le, Martin and Raftery (1996) and, more generally, by Wong and Li (2000,

2001). This previous work has been confined to the scalar case n = 1 with the

error terms ε
(s)
t , s = 1, . . . ,m, identically distributed. Moreover, the fs have been

linear and the Hs have been either constant or they have specified a conventional

ARCH structure for the regression errors zt − fs (zt−1, . . . , zt−p). These special
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cases presumably have most practical interest although our results also apply to

more general mixtures of nonlinear models. However, as mentioned in the intro-

duction, the nonlinearity permitted is rather limited. As in Masry and Tjøstheim

(1995), Lu (1998) and Chen and Chen (2001), it is assumed that the functions

fs and Hs are (strictly) dominated by a linear function and a quadratic function,

respectively, at regions sufficiently far away from the origin (see conditions (4)

and (5) below).

We assume that the error terms ε
(s)
t have (Lebesgue) densities φ

(s)
ε . Then

setting Zt =
[

z′t · · · z
′
t−p+1

]′
, it straightforwardly follows from the imposed as-

sumptions that the conditional distribution of zt given its past only depends on

Zt−1 and, given Zt−1 = x, this conditional distribution is characterized by the

density

φz (zt |x) =

m
∑

s=1

πs det
(

Hs (x)−
1

2

)

φ(s)
ε

(

Hs (x)−
1

2 (zt − fs (x))
)

. (3)

This conditional density corresponds to the definition of the mixture autoregres-

sive models adopted by Le, Martin and Raftery (1996) and Wong and Li (2000,

2001). The definition based on (2) makes it explicit that the models considered

by these authors can be viewed as random coefficient autoregressive models and,

therefore, their stability can be studied by using methods developed for such mod-

els. Well known references are Nicholls and Quinn (1982), Feigin and Tweedie

(1985) and Pham (1986).

We now discuss assumptions imposed on the above model. Set x=[x′
1 · · · x

′
p]
′

where xi ∈ R
n (i = 1, . . . , p) . Similarly to Masry and Tjøstheim (1995) and Lu

(1998) we assume that the functions fs satisfy

fs (x) =

p
∑

j=1

Bsjxj + o (‖x‖) as ‖x‖ → ∞ (s = 1, . . . ,m) . (4)

Here Bsj (j = 1, . . . , p) are n × n matrices which may all be zero. Thus, for ‖x‖

large, the functions fs are dominated by linear functions.

As for the functions Hs, we assume that

Hs (x) =

k
∑

i=1

Ksixx′K
′

si + o
(

‖x‖2
)

as ‖x‖ → ∞ (s = 1, . . . ,m) , (5)

where Ksi (i = 1, . . . , k) are n × np matrices, possibly all zero. This implies

that for ‖x‖ large the functions Hs are dominated by quadratic functions similar

to those used in the so called BEKK formulation of the multivariate ARCH
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model (see Engle and Kroner (1995)). Indeed, in our context, this special case
corresponds to choosing

Hs (x) = Φs0 +

l
∑

i=1

p
∑

j=1

Φsijxjx
′
jΦ

′
sij, (6)

where Φs0 and Φsij (i = 1, . . . , l, j = 1, . . . , p) are n×n parameter matrices with
Φs0 (typically) positive definite, and the lag length p has been used to make the
formulation conformable to that in (2). The latter term on the right hand side of
(6) can be written as

∑l
i=1

∑p
j=1 Ksijxx′K ′

sij , where Ksij = [0 : · · · : 0 : Φsij : 0 :
· · · : 0] and Φsij is located in the jth position. Thus for the BEKK model (6),
condition (5) holds and the term o(‖x‖2) therein is only due to the constant
matrices Φ0s. Note that if the conditional heteroskedasticity appears in the
regression errors zt −fs (zt−1, . . . , zt−p) , a redefinition of the functions fs and Hs

is required to make (2) with the same lag length p appropriate.
The matrices Bsj and Ksi in (4) and (5) are required to satisfy suitable

assumptions. To this end, define the companion matrices

Bs =















Bs1 Bs2 · · · Bs(p−1) Bsp

In 0 · · · 0 0

0 In · · · 0 0
...

...
. . .

...
...

0 0 · · · In 0















(np × np) (7)

and the matrices

Ksi0 =

[

Ksi

0

]

(np × np) . (8)

We also need the duplication matrix Dnp of dimension n2p2 × (1/2)np (np + 1)
and the elimination matrix Lnp of dimension (1/2)np (np + 1) × n2p2.

Now we can introduce our assumptions. We call a function locally bounded
if it is bounded on compact subsets of its domain.

Assumption 1. (i) For each s = 1, . . . ,m, the i.i.d.(0, In) random vectors ε
(s)
t

have Lebesgue densities φ
(s)
ε and, for some s = s0, φ

(s)
ε is bounded away from

zero on compact subsets of R
n.

(ii) For each s = 1, . . . ,m, the functions fs: R
np → R

n and Hs: R
np → R

n×n are
Borel measurable and locally bounded with Hs positive definite. In addition, for
the same s = s0 as in (i), λmin (Hs (x)) is bounded away from zero on compact
subsets of R

np.
(iii) The functions fs and Hs satisfy (4) and (5) for all s = 1, . . . ,m and,
furthermore,

ρ
(

m
∑

s=1

πsLnp

(

B′
s ⊗ B′

s + K ′
s0

)

Dnp

)

< 1, (9)
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where Ks0 =
∑k

i=1 (Ksi0 ⊗ Ksi0) and πs is as in (1).

In the case m = 1, Assumptions 1(i) and (ii) or their close variants have

previously been used by several authors to study the stability of nonlinear time

series models (see e.g., Lu (1998), Cline and Pu (1998), Chen and Chen (2001)

and Lu and Jiang (2001)). From a practical point of view they are mild and met

in most applications. The eigenvalue condition in Assumption 1(ii) usually holds

because an additive positive definite constant part is typically included in models

for conditional covariance matrix (cf. the matrix Φs0 in (6)). Theoretically

it is interesting that the additional conditions imposed in the latter parts of

Assumptions 1(i) and (ii) are only required to hold for the single choices φ
(s0)
ε

and Hs0
.

Conditions (4) and (5) in Assumption 1(iii) are similar to those employed

by Masry and Tjøstheim (1995), Lu (1998) and Chen and Chen (2001, Corollary

4.2). They restrict the class of permitted nonlinearity and actually rule out cases

of interest. For instance, condition (4) does not hold for the general threshold

autoregressive model studied by Chan and Tong (1985, Section 3) or its smooth

variants introduced by Chan and Tong (1986) and Luukkonen, Saikkonen, and

Teräsvirta (1988). However, as will be demonstrated in the next section, the

eigenvalue condition (9), and hence Assumption 1(iii) as a whole, is still consid-

erably weaker than its analogs used by the aforementioned authors.

An eigenvalue condition akin to (9) has previously been employed by Nicholls

and Quinn (1982, Chap.2) in linear random coefficient autoregressive models.

These authors point out (see p.35 of their monograph) that an equivalent al-

ternative condition is obtained by suppressing the matrices Lnp and Dnp from

(9). This alternative condition was subsequently adopted by Feigin and Tweedie

(1985). We prefer the form in (9) because it appears more convenient in some

derivations and because, due to a smaller dimension, the involved eigenvalue is

easier to compute in practice. Notice that the elimination matrix Lnp on the left

hand side of (9) can be replaced by D+
np =

(

D′
npDnp

)−1
D′

np, the Moore-Penrose

inverse of Dnp (see the definition of the matrix Ks0 and result 9.6.5(1)(a) in

Lütkepohl (1966)). From this fact it can be deduced that the transpose signs

could be suppressed from (9).

The eigenvalue condition (9) can also be formulated by using concepts em-

ployed by Pham (1986) in the context of generalized random coefficient autore-

gressive models. As in that paper, let (Rnp)�2 be the space of (np)2 vectors

(xij, i, j = 1, . . . , np) which are invariant with respect to any permutation of

the subscripts i and j. Clearly, (Rnp)�2 can be identified with the space of

symmetric matrices of order np. If M is a square matrix of order np its sym-

metric tensor product with itself, M�2, is defined on (Rnp)�2 by the operator
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which, in obvious matrix notation, maps the symmetric matrix X to the sym-

metric matrix Y = MXM ′. Well-known properties of the vech operator (see

Lütkepohl (1996, Chap.7.3)) imply that this mapping can be identified with

vech(Y ) = Lnp(M ⊗M)Dnpvech(X) and, consequently, Lnp(M ⊗M)Dnp can be

identified with a matrix representation of the operator M�2 (cf. the proof of

Lemma 3 of Pham (1986)). Thus, it follows that condition (9) can be expressed

as

ρ
(

m
∑

s=1

πs

(

B′�2
s +

k
∑

i=1

K ′�2
si0

))

< 1, (10)

where the transpose signs could again be omitted.

3. Results

The following theorem shows that Assumption 1 guarantees the existence of

initial values which make the process zt stationary. The proof and formulation

of this theorem is based on the theory of Markov chains. To this end, we cast

the model into state space form. Recall that Zt =
[

z′t · · · z
′
t−p+1

]′
and define

F1 (Zt−1, ηt, εt) =

m
∑

s=1

1 (ηt = s)
(

fs (Zt−1) + Hs (Zt−1)
1

2 ε
(s)
t

)

,

Fi (Zt−1, ηt, εt) = zt−i, i = 2, . . . , p,

where εt = [ε
(1)′
t · · · ε

(m)′
t ]′. Setting F (Zt−1, ηt, εt) = [F1 (Zt−1, ηt, εt)

′ · · ·Fp(Zt−1,

ηt, εt)
′]′, we have Zt = F (Zt−1, ηt, εt) and zt = Υ′Zt, where Υ′ = [In : 0 : · · · : 0]

(n × np) . Since εt and ηt are independent of Zt−1 this shows that Zt is a Markov

chain on R
np.

In what follows, the concept of V -geometric ergodicity of a Markov chain

will be employed (see Meyn and Tweedie (1993, p.355)). Here V signifies a real

valued measurable function defined on the state space of the considered Markov

chain and such that V (·) ≥ 1. For such a function V, the Markov chain Zt is

said to be V -geometrically ergodic if there exists a probability measure π on the

Borel sets of R
np and a constant % > 1 such that

∞
∑

t=1

%t sup
h:|h|≤V

∣

∣

∣

∣

E (h (Zt) |Z0 = x) −

∫

Rnp

π (dy)h (y)

∣

∣

∣

∣

< ∞ for all x ∈ R
np. (11)

The definition also assumes that the function V is integrable with respect to the

probability measure π. The weakest form of this definition results when V ≡ 1.

Then the Markov chain Zt is said to be geometrically ergodic. Geometric er-

godicity entails that the t-step transition probability measure P t (x, ·) defined on

the Borel sets of R
np by P t (x,A) = P (Zt ∈ A |Z0 = x) converges at a geometric
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rate, and for all x ∈ R
np, to the probability measure π (·) with respect to the

total variation norm.

As is well known, geometric ergodicity implies stationarity of the process Zt

if the distribution of the initial value Z0 is defined by the probability measure π

(see Meyn and Tweedie (1993, pp.230-231)). Of course, in this case the process

zt is also stationary. These results are contained in the following theorem.

Theorem 1. Suppose the process zt (t = 1, 2, . . .) is generated by (2). If As-

sumption 1 holds, the process Zt =
[

z′t · · · z
′
t−p+1

]′
is a V -geometrically ergodic

Markov chain with V (x) = 1 + ‖x‖2.

Theorem 1 and our previous discussion imply that, in addition to being

strictly stationary, the process zt is also second order stationary when initialized

at the stationary distribution. A further convenient implication of Theorem 1 is

that it provides known conditions for second order stationarity in simple special

cases. In particular, when m = 1 and when (2) defines a linear homoskedastic

vector autoregressive model, the eigenvalue condition (9) in Assumption 1(iii)

is necessary and sufficient for the existence of a causal second order stationary

solution of the stochastic difference equation defining the process zt (see e.g.,

Brockwell and Davis (1991, p.418)). This can be seen by observing that in this

case the eigenvalue in (9) can be written as ρ (Lnp (B1 ⊗ B1)Dnp) = ρ (B1)
2 < 1

(see results 9.5.4(2) and 9.5.5.(1)(a) in Lütkepohl (1996)). Choosing m = 1 and

f1 (x) = 0 shows that a similar result is obtained in the special case of the BEKK

model (6) (cf. Proposition 2.7 and the subsequent discussion in Engle and Kroner

(1995)). The previous conditions employed by Masry and Tjøstheim (1995), Lu

(1998) and Chen and Chen (2001, Corollary 4.2), in models similar to ours with

m = 1, are different in this respect. For instance, when applied to a linear ho-

moskedastic vector autoregressive model, they are considerably more restrictive

than (9). A further advantage of Theorem 1 over these previous results is that

it also applies to mixture models.

Thus, (9) has some advantages over its previous counterparts. This point

can even be strengthened by considering the model

zt =

m
∑

s=1

1 (ηt = s)
(

p
∑

j=1

Bsjzt−j +
(

Σs +

k
∑

i=1

KsiZt−1Z
′
t−1K

′
si

)
1

2

ε
(s)
t

)

, (12)

where Σs (s = 1, . . . ,m) are positive semidefinite n× n matrices and Σs0
is pos-

itive definite with s0 the same as in Assumption 1. The remaining notation is as

before. This model is clearly a special case of our general model and subsumes

conventional linear autoregressive models with ARCH errors and their mixture

extensions. For this model we can prove the following theorem where (9) assumes

that the matrices Bs and Ks0 are obtained from (12).
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Theorem 2. Suppose the process zt (t = 1, 2, . . .) is generated by (12) where

ε
(s)
t , s = 1, . . . ,m, satisfy Assumption 1(i). Then the following results hold for

the Markov chain Zt =
[

z′t · · · z
′
t−p+1

]′
:

(i) if (9) holds, Zt is V -geometrically ergodic with V (x) = 1 + ‖x‖2;

(ii) if Zt has a stationary distribution with finite second moments, (9) holds.

Thus, given Assumption 1(i), (9) is necessary and sufficient for the (1 +

‖x‖2)-geometric ergodicity of the Markov chain associated with zt in (12). It is

worth noting, however, that in the case of the general model (2), the conditions

used in Theorem 1 are far from necessary for geometric ergodicity and existence

of second moments of the stationary distribution, as examples on first order

threshold autoregressive models in Chan, Petrucelli, Tong and Woolford (1985)

show. Further examples on this, confined to geometric ergodicity, can be obtained

from Battacharya and Lee (1995).

Eigenvalue conditions similar to ours have previously been employed by

Nicholls and Quinn (1982), and Pham (1986) although, due to differences in

models, the precise forms of these conditions and obtained results vary from case

to case and, as already mentioned, Pham (1986) formulates his eigenvalue condi-

tion in an alternative way (see (10)). In Theorem 2.5, Nicholls and Quinn (1982)

give necessary and sufficient conditions for the ‘stability’ of a random coefficient

autoregressive model with the term ‘stability’ referring to nonvanishing impact of

initial values on the first and second conditional moments of the process. Pham

(1986) studies geometric ergodicity of a generalized random coefficient autore-

gressive model. His Lemma 3 is similar to part (ii) of Theorem 2 and his Theorem

(on p.295) shows that the employed eigenvalue condition (with some other as-

sumptions) is sufficient for geometric ergodicity and existence of second moments

(see also Feigin and Tweedie (1985)).

The sufficiency part of Theorem 2 extends Theorem 1 of Hansen and Rahbek

(1998), where a similar result is obtained for a multivariate first order ARCH

model with Gaussian errors. Theorem 2 also extends the results of Wong and Li

(2001), who obtained necessary and sufficient conditions for the second order

stationarity of a linear real valued mixture autoregressive model with ARCH er-

rors. Similar results were previously obtained by Le, Martin and Raftery (1996)

and Wong and Li (2000) for models without an ARCH term. All these previous

results on mixture models were explicitly presented in simple special cases.

Although the result of Theorem 2 is of interest in its own right, it is also useful

because it readily shows that previous alternatives to our eigenvalue condition

(9) are generally inferior. Consider a univariate special case of our general model

without any mixtures so that, in (2), n = m = 1 and xj, a typical component of
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the vector x, is scalar. For convenience, take f1 = f and H1 = h, and rewrite (4)

and (5) as

f (x) =

p
∑

j=1

bjxj + o (‖x‖) as ‖x‖ → ∞, (13)

h (x) =

p
∑

j=1

φ2
jx

2
j + o

(

‖x‖2
)

as ‖x‖ → ∞, (14)

respectively. In this special case, (9) is obtained as follows. First, set m = 1 and

π1 = 1 and define the matrix B1 (p × p) by using (7) with n = 1 and B1j = bj

(j = 1, . . . , p) . Then choose k = p in the definition of the matrix K10 and define

the matrix K1i0 (p × p) in (8) by setting K1i = [0 · · · 0φi0 · · · 0] (1 × p) where φi

is in the ith position. Thus the matrix K1i0 (p2 × p2) has zero elements except

for φ2
i in column (i − 1) p+ i of the first row (i = 1, . . . , p). The matrices Lnp and

Dnp are defined as explained at the end of the introduction or, if desired, they

can be suppressed without changing (9) (see the discussion at the end of Section

2).

The preceding special case of our general model is considered in Theorem 1

of Lu (1998), where it is shown that a sufficient condition for geometric ergodicity

and existence of second moments of the stationary distribution is

(

p
∑

j=1

|bj|
)2

+

p
∑

j=1

φ2
j < 1. (15)

This condition is different from (9). Since arguments used in the proof of Theorem

1 also apply in the context of Lu’s (1998) Theorem 1, it is straightforward to show

that (15) is even sufficient for (1 + ‖x‖2)-geometric ergodicity. Thus, since both

Lu’s (1998) result and our Theorem 1 also apply to (12) with n = m = 1, it follows

from Theorem 2 that our eigenvalue condition is implied by (15). However, in

general these conditions are not equivalent, for it is easy to find examples in which

(9) holds but (15) fails. For instance, suppose p = 2 and b1 = 0.8, b2 = −0.7,

φ2
1 = 0.2, and φ2

2 = 0.15. Then the left hand side of (15) is 2.6 whereas the left

hand side of (9) is 0.965. However, it is worth noting that, especially for large

values of p, (15) is considerably easier to apply in practice than (9), and the

same is true for the multivariate analog of (15) given by Lu and Jiang (2001).

In practice, these previous conditions can thus be used as simple first checks to

complement our computationally more complicated (9).

In Theorem 3 and Remark 4.1 of Lu (1998) it is (essentially) shown that

replacing (9) by (15) yields a necessary and sufficient condition for the (1+‖x‖2)-
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geometric ergodicity of the Markov chain associated with the model

zt = bizt−i +
(

σ2 +

p
∑

j=1

φ2
jzt−j

)
1

2

εt, (16)

where 1 ≤ i ≤ p, σ2 > 0, and εt ∼ i.i.d.(0, 1). Thus, for this model (15) is

equivalent to our eigenvalue condition.

Based on the above mentioned result on model (16), Lu (1998) made the

conjecture that, in the general univariate model defined by (2) with n = m = 1,

(15) could be replaced by the condition ρ (B)2 +
∑p

j=1 φ2
j < 1, where B is an

analog of the companion matrix Bs defined in terms of b1, . . . , bp. As with (9),

this condition would subsume several known results on geometric ergodicity. Our

Theorem 2 can be used to shed light on this conjecture, which has also been

discussed by Liebscher (2005). Consider model (12) with n = m = 1 and p = 2,

and choose b1 = 1.4, b2 = −0.7, and φ2
1 = φ2

2 = 0.1, where the notation is as

in (13) and (14). Then, the left hand side of (9) is 1.056 which, by Theorem 2,

means that the Markov chain associated with the considered model cannot have

a stationary distribution with finite second moments. However, if Lu’s (1998)

conjecture were true the opposite would hold because ρ (B)2+φ2
1+φ2

2 = 0.7+0.1+

0.1 = 0.9. Note that this example only disproves the part of Lu’s (1998) conjecture

concerning existence of a stationary distribution with finite second moments. It

is still possible that Lu’s conjectured condition can be sufficient for geometric

ergodicity. Indeed, in a recent paper, Ling (2006) obtains necessary and sufficient

conditions for geometric ergodicity in a model that is a special case of (12) with

n = m = 1. He presents an example in which the region in the parameter

space guaranteeing geometric ergodicity and finiteness of second moments of the

stationary distribution is strictly contained in the region guaranteeing geometric

ergodicity.

Our result improves not only on Lu (1998), but also on Corollary 4.2 of

Chen and Chen (2001), where (15) is used in essentially the same model as

Lu’s. A model similar to (2) with n = m = 1 is considered in Theorem 2 of

Chen and Chen (2000) where, however, a slightly different formulation of (13)

is used and the corresponding analog of (14) is formulated for h1/2 instead of

h. This latter difference makes a general comparison of our result with that of

Chen and Chen (2000) somewhat difficult, but when φ1 = · · · = φp = 0 com-

parisons are straightforward. Then Theorem 2 of Chen and Chen (2000) applies

in our setting and (15) is relevant. For instance, when p = 2, b1 = 0.8, and

b2 = −0.7, the left hand side of (15) is 2.25 whereas the left hand side of our

eigenvalue condition (9) is 0.7. Thus, our Theorem 1 implies (1+‖x‖2)-geometric

ergodicity, whereas Theorem 2 of Chen and Chen (2000) is inconclusive. It may
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be noted that the same is true even for Theorem 1 of Chen and Chen (2000),

which only assumes existence of the expectation of εt.

In addition to the papers discussed above, results on geometric ergodicity of

nonlinear autoregressions with an ARCH term are also obtained in Cline and Pu

(1999) and Liebscher (2005). Neither of these papers allows for mixtures and

the former assumes an ARCH term which, when specialized to our case, satisfies

(5) only with K11 = · · · = K1k = 0 (assuming m = 1). This is also the case in

some of Liebscher’s (2005) results. An exception is his Theorem 4 which, in a

special case, provides a result rather close to Lu’s (1998) conjecture. Because this

theorem involves an auxiliary matrix that needs to be chosen, other interesting

special cases are more difficult to find. This feature also hampers the application

of this result in practice.

In addition to Theorems 1 and 2, useful mixing results can also be obtained.

We use the concept of β-mixing, also known as absolute regularity (for a definition

of β-mixing and its relation to other mixing concepts, see e.g., Doukhan (1994)).

Theorem 3. Suppose the conditions of Theorem 1 or 2 hold and that the distri-

bution of the initial value Z0 has finite second moments. Then the process zt is

β-mixing with geometrically decaying mixing numbers.

Theorem 3 is useful because it makes it possible to apply conventional limit

theorems needed in the development of asymptotic estimation and testing proce-

dures. Although strong mixing is often sufficient for this purpose, there are cases

where the stronger concept of β-mixing is needed. Some results in the theory of

empirical processes provide examples on this (see Hansen (1996, 2000)).

4. Conclusion

This paper provides necessary and sufficient conditions for (1 + ‖x‖2)-geo-

metric ergodicity of mixtures of linear vector autoregressive models with a con-

ventional ARCH term. Stationarity, existence of second moments of the sta-

tionary distribution, and β-mixing are consequently obtained. Similar sufficient

conditions are also provided for more general models in which the mixture com-

ponents exhibit limited forms of nonlinearity. When specialized to the corre-

sponding non-mixture case these sufficient conditions improve on their previous

counterparts. The results of the paper are useful in the development of asymp-

totic estimation and testing theory for the considered models.
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Appendix

Before proving Theorem 1 we state the following auxiliary lemma.

Lemma 4. If condition (9) holds, the sum

vec (Ut) =
t
∑

j=0

(

m
∑

s=1

πs

(

B′
s ⊗ B′

s + K ′
s0

)

)j
vec (S) (17)

converges for any symmetric np× np matrix S and the limit can be expressed as
vec(U) where U is a symmetric matrix which is positive definite (semidefinite) if
S is positive definite (semidefinite). The same conclusions hold with the matrices
B′

s and K ′
s0 replaced by Bs and Ks0, respectively.

Proof. The convergence statement can be proved by using arguments similar to
those in the proofs of Theorems 2.4 and 2.5 of Nicholls and Quinn (1982). Next
note that (17) implies

vec (Ut) =

m
∑

s=1

πs

(

B′
s ⊗ B′

s + K ′
s0

)

vec (Ut−1) + vec (S)

=

m
∑

s=1

πsvec
(

B′
sUt−1Bs

)

+

m
∑

s=1

πs

k
∑

i=1

vec
(

K ′
si0Ut−1Ksi0

)

+ vec (S) , (18)

where U0 = 0 and the latter equation is based on the definition of the matrix Ks0

and well-known properties of the vec operator (see Lütkepohl (1996, Chap.7.2)).
Since U1 = S is symmetric, it follows by induction that each Ut is symmetric as
is the limit of (17). If S is positive definite (semidefinite) it follows similarly that
each Ut is positive definite (semidefinite) and, since λmin (Ut) ≥ λmin (S) > 0
(≥ 0) , the limit of (17) is positive definite (semidefinite). The proof of the final
statement is similar because in (9) the transpose signs can be suppressed (see
the discussion at the end of Section 2).

Proof of Theorem 1. The idea of the proof is to apply Theorem 15.0.1 of
Meyn and Tweedie (1993). First we demonstrate that the Markov chain Zt is
an irreducible and aperiodic T -chain. To this end, conclude from the definition
of the model (cf.(3)) that the transition probability kernel of Zt, denoted by
PZ (x,A) , satisfies

PZ (x,A) =

m
∑

s=1

πsPs (x,A) ≥ πs0
Ps0

(x,A),
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where Ps (x,A) signifies the transition probability kernel of the Markov chain

Z
(s)
t = [z

(s)′
t · · · z

(s)′
t−p+1]

′ associated with the model

z
(s)
t = fs

(

z
(s)
t−1, . . . , z

(s)
t−p

)

+ Hs

(

z
(s)
t−1, . . . , z

(s)
t−p

)
1

2

ε
(s)
t .

Iterating the preceding inequality it can be seen that the corresponding t-step

transition probabilities satisfy P t
Z (x,A) ≥ πt

s0
P t

s0
(x,A) for all t ≥ 1. Assump-

tion 1 and Theorem 2.2(ii) of Cline and Pu (1998) imply that the Markov chain

Z
(s0)
t is an irreducible and aperiodic T -chain (see also Example 2.1 of the same

reference). From this and the inequality P t
Z (x,A) ≥ πt

s0
P t

s0
(x,A), t ≥ 1, it then

readily follows that the same is true for Zt (for irreducibility and aperiodicity,

see Proposition 4.2.1(ii) of Meyn and Tweedie (1993) and Proposition A1.1 of

Chan (1990), respectively, and for the T-chain property, see the definition in

Meyn and Tweedie (1993, p.127). This also implies that all compact sets of R
np

are small (see Theorems 5.5.7 and 6.2.5 of Meyn and Tweedie (1993)). Given

these facts, it suffices to establish condition (15.3) of Meyn and Tweedie (1993,

p.355).

We proceed by making use of ideas employed in the proof of Theorem 3

of Feigin and Tweedie (1985). First, let W (np × np) be an auxiliary positive

definite matrix, and define the matrix U (np × np) by the equation

vec(U) =
∞
∑

j=0

(

m
∑

s=1

πs

(

B′
s ⊗ B′

s + K ′
s0

)

)j

vec(W ), (19)

where Bs and Ks0 are as in Assumption 1. By Lemma 4 the right hand side is well

defined and the matrix U is positive definite. Next, define the real-valued function

q (x) = 1+x′Ux. Since the matrix U is positive definite we clearly have q (x) ≥ 1

for all x ∈ R
np. We also define the compact set C = {x ∈ R

np : x′Ux ≤ M1} ,

where M1 is a constant to be determined later.

We show that there exist constants 0 < ρ < 1 and 0 < M2 < ∞ such that

E (q (Zt) |Zt−1 = x) < ρq (x) , x /∈ C, (20)

E (q (Zt) |Zt−1 = x) < M2, x ∈ C. (21)

It is easy to see that then condition (15.3) of Meyn and Tweedie (1993, p.355)

holds with the function V (·) therein given by V (·) = q (·) . This implies that

the Markov chain Zt is q-geometrically ergodic. Thus, since we clearly have

1+‖x‖2 ≤ Mq (x) for some 1 ≤ M < ∞, and since conditions (20) and (21) hold

with q (·) replaced by Mq (·) , the desired (1+ ‖x‖2)-geometric ergodicity follows

(see (11)).
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To establish conditions (20) and (21), first write Zt = F (Zt−1, ηt, εt) as

Zt =

m
∑

s=1

1 (ηt = s)
(

BsZt−1 + Rs

(

Zt−1, ε
(s)
t

))

, (22)

where

Rs

(

Zt−1, ε
(s)
t

)

=

[

fs (Zt−1) −
∑p

j=1 Bsjzt−j

0

]

+

[

Hs (Zt−1)
1

2 ε
(s)
t

0

]

≡ Rs1(Zt−1) + Rs2

(

Zt−1, ε
(s)
t

)

.

Using the independence of Zt−1 on ε
(s)
t and ηt, and the independence of ε

(s)
t and

ηt, we find from (22) that

E (q (Zt) |Zt−1 = x) = 1+
m
∑

s=1

πsE

(

(

Bsx + Rs(x, ε
(s)
t )
)′

U
(

Bsx + Rs(x, ε
(s)
t )
)

)

.

It follows from the definitions that E(Rs2(x, ε
(s)
t )) = 0. Thus, simple calculations

show that the preceding equation can be written as

E (q (Zt) |Zt−1 =x) = 1+

m
∑

s=1

πs

(

x′B′
sUBsx+2x′B′

sURs1 (x)+Rs1 (x)′ URs1 (x)

+tr
(

Hs (x) U
)

)

, (23)

where Hs (x) = diag[Hs (x) 0] . Writing

Rs3 (x) = tr
((

Hs (x) −

k
∑

i=1

Ksi0xx′K ′
si0

)

U
)

,

we can express (23) as

E (q (Zt) |Zt−1 = x) = 1+
m
∑

s=1

πs

(

x′B′
sUBsx+tr

(

k
∑

i=1

Ksi0xx′K ′
si0U

)

+Rs4 (x)
)

,

where Rs4 (x) = 2x′B′
sURs1 (x) + Rs1 (x)′ URs1 (x) + Rs3 (x) . In parentheses

on the right hand side we can use the definitions and well-known properties
of the vec operator (see Lütkepohl (1996, Chap.7.2)) to obtain x′B′

sUBsx =
(x′ ⊗ x′) (B′

s ⊗ B′
s)vec(U) and tr(

∑k
i=1 Ksi0xx′K ′

si0U) = (x′ ⊗ x′)K ′
s0vec(U).

Thus, setting R4 (x) =
∑m

s=1 πsRs4 (x) we can conclude that

E (q (Zt) |Zt−1 = x) = 1 +
(

x′ ⊗ x′
)

m
∑

s=1

πs(B
′
s ⊗ B′

s + K ′
s0)vec(U) + R4 (x)

= 1 +
(

x′ ⊗ x′
)

(vec(U) − vec(W )) + R4 (x)

= q (x) − x′Wx + R4 (x) .
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Here the second equality is based on the definition of the matrix U in (19) and

the third one on the definition of the function q. Thus, we have shown that

E (q (Zt) |Zt−1 = x) = q (x)

[

1 −
x′Wx − R4 (x)

q (x)

]

. (24)

Now suppose that x /∈ C so that x′Ux > M1. Then, assuming M1 > 1,

q (x) ≤
x′Ux

M1
+ x′Ux =

M1 + 1

M1
x′Ux ≤ 2x′Ux,

and therefore

x′Wx − R4 (x)

q (x)
≥

x′xλmin (W )

2x′Ux
−

R4 (x)

1 + x′Ux

≥
λmin (W )

2λmax (U)
−

|R4 (x)|

‖x‖2 λmin (U)
.

From the assumed asymptotic behavior of the functions fs and Hs and the def-

inition of R4 (x) , it follows that |R4 (x)| = o(‖x‖2) as ‖x‖ → ∞. Thus, there

exists a value of M1 > 1 such that for ‖x‖ > M1 the last expression above can

be bounded from below by a positive constant ε < 1. Setting ρ = 1 − ε we can

see from (24) that (20) holds.

As for (21), since the functions fs and Hs are locally bounded, Rs1 (x) and

Hs (x) (s = 1, . . . ,m) are bounded for x ∈ C, and we can conclude from (23)

that (21) also holds. Thus, the proof is complete.

Proof of Theorem 2. Part (i) follows directly from Theorem 1, so we only

need prove part (ii). The process Zt is now generated by

Zt =
m
∑

s=1

1 (ηt = s)

(

BsZt−1 +

[

Hs (Zt−1)
1

2

0

]

ε
(s)
t

)

,

where Hs (Zt−1) = Σs+
∑k

i=1 KsiZt−1Z
′
t−1K

′
si. Straightforward calculations show

that

ZtZ
′
t =

m
∑

s=1

1 (ηt = s)
(

BsZt−1Z
′
t−1B

′
s + Hs (Zt−1) + Rs5

(

Zt−1, ε
(s)
t

))

, (25)

where Hs (x) = diag[Hs (x) 0] as before, and

Rs5

(

Zt−1, ε
(s)
t

)

= BsZt−1ε
(s)′
t

[

Hs (Zt−1)
1

2

0

]′

+

[

Hs (Zt−1)
1

2

0

]

ε
(s)
t Z ′

t−1B
′
s

+

[

Hs (Zt−1)
1

2

0

]

(

ε
(s)
t ε

(s)′
t − In

)

[

Hs (Zt−1)
1

2

0

]′

.



STABILITY OF MIXTURES OF VECTOR AUTOREGRESSIONS 237

Let Σs = diag[Σs 0] , and define the matrices Ksi0 and Ks0 from Ksi in the

same way as before. By the definitions, we can then rewrite (25) as

ZtZ
′
t =

m
∑

s=1

1 (ηt = s)
(

Σs + BsZt−1Z
′
t−1B

′
s +

k
∑

i=1

Ksi0Zt−1Z
′
t−1K

′
si0

+Rs5

(

Zt−1, ε
(s)
t

)

)

.

Now assume that Zt is second order stationary. From the definition of Rs5(Zt−1,

ε
(s)
t ) and the independence assumptions imposed on zt, ε

(s)
t and ηt, it straightfor-

wardly follows that E(1 (ηt = s) Rs5(Zt−1, ε
(s)
t )) = 0. Thus, taking expectations

from both sides of the preceding equation yields

Γ =

m
∑

s=1

πsΣs +

m
∑

s=1

πsBsΓB′
s +

m
∑

s=1

πs

k
∑

i=1

Ksi0ΓK ′
si0, (26)

where Γ = E (ZtZ
′
t) is independent of t.

We show next that the (positive semidefinite) matrix Γ is positive definite.

Suppose this is not the case and let a =
[

a′1 · · · a
′
p

]′
be a nonzero np × 1 vector

such that a′Γa = 0 (each component ai is of dimension n× 1). From (26) it then

follows that
∑m

s=1 πsa
′Σsa = 0. By the definition of Σs and the assumption that

Σs0
is positive definite, this entails a1 = 0 and, if p = 1, we have the contradiction

a = 0. Thus, assume p > 1. By the preceding discussion the vector a is of the form

a =
[

0′ a′2 · · · a
′
p

]′
and, hence, a′Bs =

[

a′2 · · · a
′
p0

′
]′
≡ b1 (see (7)) and a′Ksi0 = 0

(see (8)) for all s. Since we also have a′Σs = 0 for all s we find from (26) that

b′1Γb1 = 0. As above this implies that a2 = 0 so that, if p = 2, we again get the

contradiction a = 0. If p > 2 we have a =
[

0′ 0′a′3 · · · a
′
p

]′
and, continuing as

above, it can be seen that a3 and the possible remaining vectors a4, . . . , ap are all

zero. Thus we get the contradiction a = 0 and, hence, the matrix Γ is positive

definite. In the same way it can be seen that any positive semidefinite matrix

satisfying (26) must be positive definite.

Because (26) admits a positive definite solution the sum

t
∑

j=0

(

m
∑

s=1

πsLnp

(

B′
s ⊗ B′

s + K ′
s0

)

Dnp

)j
vech

(

m
∑

s=1

πsΣs

)

(27)

converges as t → ∞ (see Pham (1986, pp.294-296) or Pham (1985, Theorem

4.1)). Denote the limit by vech(Γ∗) . Using the fact that the Σs are positive

semidefinite, and arguments similar to those in the proof of Lemma 4, it can

be seen that the matrix Γ∗ is positive semidefinite and satisfies (26). By the

above discussion, Γ∗ is thus positive definite. That (9) holds follows from the



238 PENTTI SAIKKONEN

facts that the sum at (27) converges and that the limit Γ∗ is positive definite. A

justification of this can be obtained from Lemma 3 of Pham (1986) by observing

that the formulation therein only seems different from the formulation used here.

Indeed, in the proof of Lemma 3, Pham (1986) uses a formulation which is similar

to that in (27) except for a slight (and inessential) difference in the definition of

the vech operator. In our notation, the proof makes use of the Jordan canonical

form of the matrix
∑m

s=1 πsLnp (B′
s ⊗ B′

s + K ′
s0) Dnp, but the precise form of

this matrix is only needed to ensure that the image of the mapping vech(S) →
∑m

s=1 πsLnp (B′
s ⊗ B′

s + K ′
s0) Dnpvech(S) with S (np × np) positive semidefinite

and vech defined as in Pham (1986) corresponds to a positive semidefinite matrix.

This, however, can be seen in the same way as in the case of the matrix Γ∗ or

the matrix Ut in the proof of Lemma 4, so further details will not be given. This

completes the proof.

Proof of Theorem 3. The proof is obtained from Proposition 4 of Liebscher

(2005), because under the stated assumptions the Markov chain Zt is (1+‖x‖2)-

geometrically ergodic and hence Q-geometrically ergodic in Liebscher’s (2005)

sense with Q (x) = 1 + ‖x‖2.
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