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Abstract. The design of a bilateral teleoperation system remains chal-
lenging in cases with high-impedance slave robots or substantial commu-
nication delays. Especially for these scenarios, model-mediated teleoper-
ation offers a promising new approach. In this paper, we present a first
stability discussion. We examine the continuous behavior using general
control principles and discuss how the model structure and its predictive
power affects system lag and stability. We also recognize the unavoidabil-
ity of discrete model jumps and discuss measures to isolate events and
prevent limit cycles. The discussions are illustrated in a single degree of
freedom case and supported by single degree of freedom experiments.
Key words: Teleoperation - Model-mediation - Stability

1 Introduction

Bilateral teleoperation systems allow the human operator to act on a remote
environment via a robotic slave device while providing force feedback through
a master device. Typically, the user’s desire to feel directly connected to the
environment is opposed to the need for stable interactions under all operating
conditions. This well-known trade-off between transparency and stability is most
challenging for systems characterized by either (1) limited response times, or (2)
substantial communication time-delays.

The most conservative approaches, e.g. based on wave variables, can achieve
stability even with large response times and long communication delays, but fail
to provide transparency [1]. At the other extreme, more transparent approaches,
e.g. the traditional position-force architecture, can hide the slave dynamics from
the user’s perception, but are prone to instability and often need high damping
or low scaling factors [2,3]. Other methods vary the transparency versus stability
trade-off in realtime monitoring for instabilities [4,5,6], most often by temporarily
adding damping to provide stability at the cost of loosing transparency.

In the above works, controllers communicate position, force, or combined sen-
sory information between master and slave. A fundamentally different approach
involves transmission of models for the environment [7,8]. This has been called
impedance reflecting, virtual-reality based or model-mediated teleoperation and
proposes to achieve transparency with an indirect connection. Models of var-
ious complexity have been used, including a mass-spring-damper model [9], a
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spring-damper model [10], a pure spring model [11,12] or merely a rigid wall
with variable location [8]. By choosing the model structure consistent with the
environment, most previous works have been able to focus on transparency with
limited stability considerations.

In this work we concentrate on the closed-loop stability of the model-mediated
framework proposed in [13], which defines a bilateral controller communicating
abstracted model and task information: the model captures the environment
while the task encodes the user intent. At the slave side, the model estimation

uses sensory data to continuously estimate a model of the environment. At the
master side, this model is used by the model rendering to generate the haptic
feedback. The human response to the haptic rendering is monitored by the task

estimation to generate a task description. Back at the slave side, the task exe-

cution regulates the slave to accomplish the incoming task as well as possible
using the current model of the environment.

As the model should estimate the actual environment, many works implicitly
assume the existence of a single correct or best model fit. For an unchanging
environment and with sufficient excitation, the model estimator converges and
stability is achieved by assumption. However, any model is a simplification and
the value of teleoperation is highest for operations in unstructured environments
which are at best difficult to model. Therefore, model convergence can not be
expected. Instead the model should be treated as a time-varying signal. It should
capture the currently most salient aspect of the environment and continuously
adjust as the user explores and operates.

We examine closed-loop stability, allowing environments to differ from

the assumed model structure. This encompasses two aspects: First, model
errors lead to continuous model adjustments which close the loop with appro-
priate stability needs. We use classic loop gain and phase principles to review
the behavior and discuss the implications of model structure. Second, discrete
model jumps need to occur and have the potential to disturb the user or trig-
ger limit cycles. We implement appropriate mitigation strategies. We guide and
illustrate the discussion via a single degree of freedom case study and use the
same framework to confirm the conclusions in experiments.

2 Model and Task Signals

To examine system stability, we must view the model and task descriptions
as time-varying, continuous signals. To further illustrate and understand this
perspective, let us consider a case study in a single degree of freedom. We first
select a model structure and then present the corresponding controller elements,
following the high-level model-task loop.

2.1 Model Structure

The underlying motivation for this study is the use of teleoperation in daily life
scenario’s. When considering daily life scenario’s, many environments consist
of moderately hard objects and tasks usually require moving, manipulating, or
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(a) (b)

Fig. 1. (a) The model: the simple, rigid contact model is represented by the
thick gray line: forces are zero for x < xobj while they are positive if x = xobj.
(b) The experimental setup: the slave is the left 7-d.o.f. arm of the PR2 robot
and the master is a 3-d.o.f. haptic device designed at the University of Leuven.

assembling these objects. Hence we select a model that contains the location
of a hard object. The model is very simple while capturing the most salient
environment feature, being the combination of and transition between free-space
and object contact. We already see that as objects in the real world change or
are moved, this model will need to adjust and becomes time-varying.

The model, as shown in Fig. 1(a), allows free space motion along a single
degree of freedom up to a rigid, immovable object located at xobj. The model is
quasi-static, relating force F only to position x: the force is zero if the position
falls in front of the object (F = 0; x < xobj), while it is positive if the position
matches the object location (F > 0; x = xobj).

2.2 Model Estimation

An instance of the model is maintained at the slave side to estimate the current
environment. To update its parameter xs

obj, the model estimation first has to
decide whether the slave is in contact or in free space, corresponding to the
vertical and horizontal branch of the model as shown in Fig. 1(a). To do so, the
model estimation uses the following basic contact detector:

contact state

{

‘in contact’ if Fe ≥ Fthreshold

‘free space’ if Fe < Fthreshold
, (1)

where Fe stands for the measured or estimated interaction force with the en-
vironment and Fthreshold has to be chosen depending on the noise level of the
measured or estimated interaction force Fe. While in contact, the object location
is updated and estimated using a first order low-pass filter of bandwidth λ:

ẋs
obj =

{

λ(xs − xs
obj) if ‘in contact’

0 if ‘free space’
. (2)
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2.3 Model Rendering

A separate model instance is maintained at the master side for rendering the
haptic feedback, with an object location xm

obj. The master model is updated
with the most recent incoming slave model

xm
obj(t) = xs

obj(t− Td), (3)

where Td is a possible communication delay. The object is rendered as a one-
sided pure stiffness, which means that the master device only exerts forces on
the human operator if he/she has virtually penetrated the object. To define this
behavior, a haptic proxy is used:

Fm = Km
p (xproxy − xm) with xproxy =

{

xm if xm ≤ xm
obj

xm
obj if xm > xm

obj

, (4)

Because the model represents a infinitely stiff object, the gain Km
p should be set

as high as practically possible.

2.4 Task Estimation

We employ a simple task representation to encode the user’s intent, namely a
pair of position and force values (x, F )task. The force value Ftask is set to the
human force acting against the model, while the position value xtask is set to
the master proxy location. The proxy location maps the user’s position onto
the model, i.e. it creates a position that is consistent with the displayed model.
As such, the task is feasible against the model, independent of any practical
limitations on the gain Km

p .

2.5 Task Execution

The task (x, F )mtask estimated by the master is communicated to the slave

(x, F )stask(t) = (x, F )mtask(t− Td), (5)

and compared against the most recent environment model. If the task lies in
the grey zone in Fig. 1(a), i.e. if F s

task > Ktask(x
s
obj − xs

task −∆x0), the user is
most likely expecting contact and the slave is placed under force control using
a natural-admittance type controller [14]. Otherwise, the slave is operated in
position control mode.

3 Continuous Closed-loop Stability

Model mediated systems are nonlinear and preclude simple analyses. Neverthe-
less we can gain substantial insight by examining the high-level loop between
master and slave. We see why model mediation can provide real improvements
and how the model selection and its predictive power affects the stability.
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3.1 Classic Stability: Gain Stabilization

Consider the classic stability problem of a telerobot with direct force feedback
contacting a stiff environment [2,3]. The user’s movements are measured and
commanded to the slave, executed, causing the environment forces, which com-
municated back to and displayed to the user. From a linear system’s perspective,
an overall transfer function maps user motion to force feedback. Its gain is the
environment stiffness. Its phase lag stems from two sources: (a) communication
delay and (b) slave controller response lag. So if the slave tracking or communi-
cation are slow and the environment contact is stiff, the transfer function shows
both large gain and phase and predicts instability. Commonly, to stabilize this
system, the force feedback gain is lowered. Equivalently, the transfer function
gain is reduced, equivalent to gain stabilization.

3.2 Model-Mediated Stability: Phase Stabilization

Model mediation can be seen as phase stabilization. Phase stabilization requires
phase lead, which provides signals earlier in time, and hence is achieved by
prediction. Model mediation effectively predicts and displays the environment
interaction force that will happen when the task is executed, by assuming knowl-
edge of the environment. Stability is thus determined by the model’s predictive
power, i.e. over which time horizon and how accurately predictions of environ-
ment interactions can be made.

Consider the model-mediated loop: user tasks are sent to the slave and even-
tually lead to feedback of model adjustments. The loop gain describes the size of
model adjustments that result from a given task. Following the case study, when
the user advances, an object may slide or deflect. Thus a model adjustment in
the form of a shifted object location is necessary. The loop gain describes the
size of the location shift for the size of the user’s movement.

More generally, model adjustments occur when the predicted motions and/or
forces differ from the observed values. Larger prediction errors require larger
adjustments. Thus the size of prediction errors correlate to the loop gain. A
model with greater predictive power lowers the loop gain and improves stability.

Meanwhile the loop phase describes how quickly the adjustments are received.
This stems from three sources: (a) the communication delay, (b) how quickly the
user commands are executed (slave controller response lag), and (c) the model
estimator. Faster model estimation lowers the loop lag and improves stability,
subject to a lower bound on lag given by the other two sources. In our case
study, the single model parameter can be estimated very quickly.

The selection of an appropriate model structure and complexity must balance
these loop gain and phase needs. Choosing a more appropriate structure will help
predictive power. Choosing a simpler model will lower the number of parameters
and increase the possible estimation speed. Of course, if the other sources of lag
dominate the estimation time constants, the balance will shift to favor greater
predictive power and devalue simplicity.
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4 Discrete Model Jumps and Stability

Under normal operating conditions, model adjustments happen continuously and
slowly. However, sudden and drastic updates to the model may be necessary when
new environment features are discovered. In our case study, imagine detecting a
previously unknown object. The model should immediately jump to the newly
discovered location. But, due to any lag source, the master will be leading the
slave when the contact is detected. Immediately displaying this object to the
user requires the master to jump backwards and triggers a potentially dangerous
discontinuity in force levels.

In general, the information encoded in such temporal model discontinuities
or jumps is important. It indicates a radical change in the expected environ-
ment and should not be filtered or removed from the user’s perception. However
it poses the danger of introducing a discontinuity into the task, which could
trigger a jump in the slave movement or force, and ultimately excite unmod-
elled dynamic elements in the environment, robot, or controllers. In turn, with
an imperfect model structure, the estimation may react with another drastic or
discrete jump, escalating into a limit cycle or other stability problems. Hence,
model jumps should remain isolated and contained from propagation. Note that
longer lags between master and slave will enlarge the size of necessary model
jumps and increase the need for explicit handling and containment.

Explicit handling will appear in nearly all subsystems. Model estimation must
determine when it is necessary to initiate jumps. Model rendering must make
sure the users are informed without confusion and without triggering impulsive
reactions in the task. And the task execution must decide how to interpret a
task that was based on an obsolete model without exciting further jumps. In the
following, we demonstrate this in our case study.

4.1 Triggering Model Jumps

The model estimation can determine two distinct events that require a model
jump, i.e. the detection of an unknown object and the disappearance of an ex-
pected object. These situations are detected and acted upon as follows:
Detection: if (xs < xs

obj −∆x0 and ‘in contact’) reset s
obj = xs,

Removal: if (xs > xs
obj +∆x0 and ‘free space’) reset s

obj = +∞.

4.2 Rendering Model Jumps

A previous user study has compared several methods of rendering model jumps [15].
In our implementation, we select a gradual, constant-time introduction or re-
moval of the object if the user is or would be in contact with the object:
Detection: if (xm > xs

obj) introduce xm
obj at xm and move to xs

obj

over a period of time tmove,
Removal: if (xm > xm

obj) move xm
obj from xm

obj to xm

over a period of time tfade before removal.
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Table 1. Gains and parameters used for the experiments
Ks

p: 2000 N/m Gv : 20 Ns/m ∆xo: 0.004 m
Ks

v : 10 Ns/m md: 7 kg tmove: 500 msec
Ktask: 250 N/m Km

p : 4000 N/m tfade: 300 msec

4.3 Task execution under Model Jumps

Task execution depends on the current environment model. Explicit handling is
thus necessary to avoid discontinuities in the controller when the model jumps.

Just before an object removal the controller is most likely in force control
mode, as the user is pressing against the expected object. At the moment of
the removal, the slave position xs is leading the object location xs

obj by ∆x0

(see 4.1). The removal switches the controller into position control mode, while
the task position xs

task is still the old object location. To ensure smoothness, a
position offset is added to the current task and then gradually removed over a
period of time tfade.

At the moment of an object detection the interaction force is equal to the
threshold force for the contact detector Fthreshold while the task force F s

task is still
at zero. If the threshold is small, no transition measure is necessary. Otherwise,
a force offset may be introduced and gradually removed.

5 Experiments

Following the single degree of freedom case study, we substantiate our discussions
in experiments performed in three stages. First, we confirm the limitations of two
classical control architectures. Next, we demonstrate that the model-mediated
approach performs well independently of lags if the model adequately captures
the physical environment. Finally, we show how performance degrades when lag
appears and the environment is inconsistent with the assumed model. In all
tests, the system begins out of contact. The user moves to and interacts with
the unknown environment. The figures 2(a) - 3(d) show the data, including the
master (blue) and slave (green) position and force signals plotted against time
as well as each other. The position graphs further show the object locations in
dashed lines, as estimated by the slave and rendered at the master.

5.1 Experimental Setup

The experimental setup is shown in Fig. 1(b). The slave is the left 7-d.o.f. arm
of the PR2 robot. The master is a haptic device designed at the KU Leuven.
The Cartesian y-axes of both devices are linked to create a 1-d.o.f. system, using
the transpose of the Jacobians to transform all control forces to motor torques.
The master device is low impedance (mass ≈ 0.4 kg, Ffriction ≈ 1 N) and the
applied motor torques provide a good estimate of the user forces. The PR2 arm
has a higher impedance (mass≈ 7 kg and Ffriction ≈ 3 N) and uses a 6 axis
force/torque sensor integrated in the wrist. The threshold for the contact de-
tector, Fthreshold, was set to 1 N. Tuning of the position and force controller
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results in a 2.7 Hz (
√

Ks
p

Ms
) and 0.5 Hz bandwidth (Gv

Ms
) respectively. The latter

results in poor force tracking which is clearly visible in the experimental results.
Flexibility and backlash in the PR2 arm lead to an uncertainty in its gripper
position and thereby the model estimation of ∆x0 = 4mm. The model update
filter is set to a bandwidth of 10 Hz. Table 1 summarizes all properties.

5.2 Experimental Results

Classical Architectures: Model-Free controllers. As mentioned earlier, sta-
ble and transparent interaction with very different environment types is really
challenging in case of a slave robots with a limited response time, even in the
absence of significant communication time delay. The performance of the two
extreme classical controllers is a good illustration of this.

Fig. 2(a) shows the system under position-position control, where the master
and slave track each other’s position. This stable architecture is able to achieve
a 1:1 force scale, but the user feels the slave inertial and residual friction forces,
overlaid on the environment forces. For a high-impedance slave robot, especially
in free space, this controller results in poor transparency.

Fig. 2(b) shows the system under position-force control, when the feedback
force is directly applied to the master. While this completely hides the slave’s
inertia and friction, a 10:1 force reduction is required in order to obtain stable
interaction. This reduction is necessitated by the high mass and slow response
times of the PR2-arm [2,3] and results in poor transparency during contact.

Model-Mediation: Consistent Environment. In the second set of experi-
ments, the system uses model-mediated control to interact with one fixed hard
object. Fig. 2(c) and 2(d) show the behavior without and with and artificial
round-trip communication delay of 150 ms. Note that with a 2.7Hz bandwidth,
the slave has a settling time greater than 150 ms and adding the communication
delay is no worse than doubling the overall lag.

Overall, Fig. 2(c) and 2(d) show excellent position and force tracking in
both contact and free space. These experiments show that in case the model
adequately captures the physical environment, a model-mediated controller can
give the free-space feeling of the position-force architecture while achieving the
stability and 1:1 force scaling of the position-position architecture.

As the model adequately captures the physical environment, there are no
significant continuous model adjustments. However, discrete model jumps are
needed when the object is first detected (at 0.8s/1.5s in Fig. 2(c)/ 2(d)). At
these times the slave lags the master (by 5 mm/15 mm) with the additional
time delay creating more lag. As described in 4.2, the master fades in the model
leading to the observed gradual re-convergence of master and slave positions.
Especially in Fig. 2(d), this effect is visible in the position-force graph as a non-
physical artifact which directly alerts the user of the object detection without
triggering subsequent effects.

Discrete jumps are also needed after the object is secretly removed (at 6s/7s).
Unaware of the removal, the system allows the user to apply forces against the
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rendered model. When the slave attempts to track these forces, it moves and
detects the object disappearance (see 4.1). The master renders this removal by
fading out the model and fading the forces to zero (see 4.2). Again, the non-
physical effect, clearly visible in the position-force graph, alerts the user of the
discontinuity without triggering additional effects.

Model-Mediation: Inconsistent Environments. In the last set of exper-
iments we challenge the model-mediated controller with inconsistent environ-
ments that are not fixed (sliding object) or not hard (soft object), again without
and with a round-trip delay of 150 ms. Fig. 3(a) shows the model-mediated con-
troller in case of pushing a hard object over a surface (Ffr,obj ≈ 6 N). Upon
initial contact, the user’s force rises while the object remains stationary. Once
the user’s force exceeds the static friction, the object slides. The model is con-
tinuously updated allowing the user to feel the object motion. Motion ceases
when the applied force drops. Fig. 3(b) shows the same controller in case of
compressing a fixed soft object(Kobj ≈ 600 N/m ). Again the model is contin-
uously updated so that both position and forces are tracked and the user feels
a soft object. The experiments show that, despite the significant loop lag due
to the limited response time of the slave, the predictive power of the model is
sufficiently high for these contact scenario’s.

For the experiments with the additional time-delay, this is no longer the
case. Fig. 3(c) and 3(d) show the delayed model-mediation interacting with the
sliding object and the soft object. In comparison to Fig. 3(a) and 3(b), we see a
clear distortion of the position-force graphs. This performance degradation can
be explained by the combination of the limited predictive power of the model,
i.e. the need for significant model updates (high loop gain), in combination with
a big loop lag. A model with better predictive power is necessary to retain
performance under the delay here. For example, a spring model [10,11,12] may
be better suited to handle soft objects in this case.

6 Conclusions

In this work, we further formalized the model-mediated framework described
in [13]. We discussed stability and introduced the notion of continuous model

adjustments versus discrete model jumps.
We discussed qualitatively how the model choice impacts the overall system

stability during continuous model adjustments: the selection of a model structure
has to balance the loop gain and phase. Better predictive power reduces loop
gain while faster model estimation lowers lag. Systems with longer inherent lag
will favor models with better predictive power.

The experiments demonstrate this in two ways: (1) as long as the model
captures the environment adequately, i.e. the model has an excellent predictive
power (small loop gain), extra lag in the closed-loop does not result in perfor-
mance degradation. (2) if the model is, however, not consistent, i.e. the model
has a limited predictive power (higher loop gain), the performance does degrade
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if the overall loop lag increases. For scenarios when the environment can have
very difference characteristics and large lags are unavoidable, the use of multiple
models in one controller should be explored in future work.

This is one of the reasons why we also recognized the need for discrete model
jumps and discussed how and why these discrete events should remain isolated,
i.e. they should not trigger subsequent effects.

Being a first systematic stability discussion of model-mediated teleoperation,
we hope this research not only demonstrates the value of model-mediation but
opens a tantalizing avenue to further explore the relationship of a model’s pre-
dictive power with other system parameters.
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(a) Position-Position controller
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(b) Position-Force controller

0 1 2 3 4 5 6 7 8

−60

−40

−20

0

20

40

P
o
s.

(m
m
)

0 1 2 3 4 5 6 7 8

0

5

10

F
o
rc
e
(N

)

Time (s)

−60 −50 −40 −30 −20 −10 0 10
−2

0

2

4

6

8

10

12

Position (mm)

F
o
rc
e
(N

)

 

 

master

slave

(c) MMC: rigid object
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(d) MMC: rigid object and 150 ms time
delay.

Fig. 2. (a-b) Poor performance with classical control schemes. (c-d) Model-
mediated controller (MMC) and a rigid environment: good performance achieved
by a well-matched model independent of the overall lag.
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(a) MMC: sliding object
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(b) MMC: soft object
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(c) MMC: sliding object and 150 ms delay.
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(d) MMC: soft object and 150 ms time de-
lay.

Fig. 3. Model-mediated controller (MMC) and a sliding and a soft object: (a-b)
good performance despite the poorly matched model and (c-d) poor performance
due to the extra lag.
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