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Nekhoroshev's theorem on the stability of motions in quasi-integrable 

Hamiltonian systems is revisited. At variance with the proofs already available 

in the literature, we explicitly consider the case of weakly perturbed harmonic 

oscillators; furthermore we prove the confinement of orbits in resonant regions, 

in the general case of nonisochronous systems, by using the elementary idea of 

energy conservation instead of more complicated mechanisms. An application of 

Nekhoroshev's theorem to the study of perturbed motions inside resonances is 

also provided. 
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1. I N T R O D U C T I O N  

The aim of this paper is to revisit Nekhoroshev's theorem (1t on the stability 

of motions in nearly integrable Hamiltonian Systems. 

As is well known, this theorem deals with hamiltonian systems which, 

in action-angle variables (_A, ~) = (A1,... , At, ~bl,... , ~bl) , have the form 

H~(d, p) = h(A) + ef(d, p) (1.1) 
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Under quite mild assumptions (essentially a geometric property of h(_A) 

weaker than convexity, called "steepness") the theorem provides a uniform 

bound on the variations of action variables of the form 

FAj( t ) -  Aj(O)] <~ A*e a j =  1 ..... l 

for I t l < . T * e x p ( ! )  b 
(1.2) 

A*, a, T*, b being positive constants. 

In the present paper we present a proof of this theorem, somewhat dif- 

ferent from the original proof by Nekhoroshev and from the more recent 

proof in Refo 2. First, we consider explicitly the case of isochronous systems 

(i.e., weakly coupled harmonic oscillators), which do not verify the steep- 

ness hypothesis of Nekhoroshev. Actually, in our opinion, the case of 

isochronous systems is the simplest and transparent application of the basic 

ideas behind Nekhoroshev's work, because all complications of geometric 

nature are absent. 

Then, when analyzing nonisochronous systems (we treat, as in Ref. 2, 

the simpler case of convex unperturbed Hamiltonians) we use as the basic 

tool the elementary idea of the conservation of energy in dealing with the 

part of the proof that we call "geometric." 

This procedure simplifies the proof, at least conceptually, and in our 

opinion allows one to make some quantitative statements on the properties 

of the perturbed motion up to times exponentially long in an inverse power 

of e, exhibiting in this way some use of the Nekhoroshev theorem. 

The present paper is organized as follows: in Section 2 we describe 

precisely the class of Hamiltonians we are concerned with, and state our 

results for the case of weakly coupled harmonic oscillators. In Section 3 we 

state our main result for the anharmonic case, while in Sections 4 and 5 

some corollaries are presented; in particular, the different characters of 

motions on different time scales, for initial data inside "resonance regions," 

are there analyzed. Sections 6, 7, and 8 are devoted to the proofs of the 

main theorems (the harmonic case, and the "analytic" and "geometric" 

parts of the anharmonic case respectively). Finally, Section 9 contains 

some lemmas, while the concluding remarks are reported in Section 10. An 

appendix follows, where the problem of chaotic motions (in particular, 

homoclinic phenomena) inside resonances is discussed on the basis of a 

simple example. 

Some of these results have already been reported by one of us at the 

1984 Les Houches summer school. (3) 
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2. INTEGRABLE S Y S T E M S  A N D  STABILITY PROBLEMS.  

RESULTS FOR THE H A R M O N I C  OSCILLATORS CASE 

Consider an /-degrees of freedom Hamiltonian system with 

Hamiltonian 

H~(A, ~_ )= h(A) + ef(_A, ~_ ) (2.1) 

where (A, g)  = (A1,..., AI, q)l ..... ~ot) vary in the phase space VR x T t with 

VR= {_A = (A1,... , a~)e  R~; IAj[ ~ R, j =  1,..., l} 
(2.2) 

T ~ =/-dimensional torus 

We suppose that h and f are real analytic on Vn x T ~ with analyticity 

parameters p, 4, 0 < p < R, 0 < { < 1. This means that h, f are regarded as 

functions on R 2t, periodic in q) with period 27r (h is in fact o-independent), 

and furthermore, they admit a holomorphic extension to the complex 

domain W(VR;p, ~), where for a generic subset V c R ~ we denote 

W(V;p, ~)=  {_A, ~[ (_A, ~) ~ C2'; dist(_A, V)<~p; 

lira cpj[ ~ 4, J = 1,..., l} (2.3) 

with dist(A, V)=inf_A,~ v[[_A'-AI], ]I_A'-_A[I =maxl<~j~tlAj-Aj[.  For any 

function g:VR• q, real analytic on V Rx T  ~ with analyticity 

parameters p, ~ we define, if W -  W(VR; p, 4): 

[[_g[Jw = sup sup [gj(_A, _P)I (2.4) 
(_A,q~)~ ~V j =  1,...,q 

For our Hamiltonian we may and shall assume, without loss of generality 

and to avoid introducing too many constants, that the "size" of h and o f f  

are equal: 

= m a x  , - E <  oo (2.5) 
W W P W 

where ~?./(?_A = (#./~A1,..., O./OAz) and 3 . / ~  -- (O./0qh ,..., c?./0pt). In such a 

way e = 1 means that the time scales associated with the "free part" h of the 

Hamiltonian and with the "interaction part" ef  are equal. For an integer 

vector _v = (v~ ,..., v~), we shall always denote 

l 

]v-I = Z [vjl (2.6) 
j = l  

In this paper we shall consider two extreme cases: the first is 

h(_A) = 6o-A (2.7) 
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where the constant "angular velocities" ~=(091 ..... ~ t ) e R  t obey the 

diophantine condition 

I~'_vl 1~ Clvl z for some C > 0 and for all v r - v e z t  (2.8) 

In this case the Hamiltonian (1.1) has the interpretation of a perturbation 

of a harmonic nonresonant oscillator system (e.g., a chain of l + 2 particles 

connected by linear springs, the end particles being fixed). 

The other case will be the one in which h(_A) is strictly convex (in par- 

ticular strictly anisochronous). Precisely, we assume in this case for suitable 

m, M > 0 the conditions 

c~2h 
m II_v II 2 ~< ~--j--~ (_A) _v "_v V_vER t, V(_A) e VR 

6q2h ' 

~- j -~-  _v ~< MIl_vll V_v e C'  
- -  - -  W 

(2.9) 

For instance, a "rotators system" with inertia moments Ij > 0, j = 1,..., l, i.e., 

1 l 

h(_A) = 2j~1= A---~sz/s (2.10) 

verifies our assumptions. 4 One could consider intermediate cases: however, 

they are often reducible to (2.7) or (2.9), and we shall not discuss them 

here. 
In the case of harmonic oscillators the behavior of the perturbed 

system is simply described: basically the system behaves as if no pertur- 

bation were present, up to times of order exp e b, with b > 0. This is made 

precise by the following theorem, in which t ~ (A(t), ~(t)) denotes the time 

evolution for (2.1): 

Proposition 1. Assume (2.7) and (2.8), and suppose e small 

enough; we shall show that this can be taken to mean 5 

e<eo(l,r 2I-ICE ) 2 (2.11) 

4 Such a system is particularly suitable for classical perturbation theory; in the special case of 

short-range interaction, Wayne (4) was able to obtain results close to Nekhoroshev's  theorem, 

with estimates independent of the number  of degrees of freedom. For an elementary 

illustration of classical perturbation theory on this model, see also Refs. 5 and 6. 

5 Recall, however, that  we restrict ~ to be ~< 1, in order to simplify several formulas, including 

(2.11). 



Motion Stability in Hamiltonian Systems 297 

Then for all initial data (_Ao, ~o) ~ VR x T ~ one has 

(Lx~ 1/2 

II_-_-t(t)-~oll <~p  \eo/ (2.12) 

for all t such that 

1 1 ( ~ )  -(1/~)b 1 
I t I < T - ~  ~o , b=4( /+  1) (2.13) 

More precisely, one can prove the following more detailed proposition 
which implies the above one: 

P r o p o s i t i o n  1". Assume (2.7), (2.8), and (2.11). Then the system 

(2.1) is canonically conjugated via a real analytic canonical transformation 

(_A, ~ ) =  cg~(A', _q)') to the system with Hamiltonian 

e) A' + zhl(_A', e ) + e  ( e  ~(~/~)b �9 - -  f ~ ( _ A ' ,  qo', e)  ( 2 . 1 4 )  
\ ~ o /  

with 

hl(A t) = <f>(_A') + 0(e) (2.15) 

where ( . )  denotes averaging over ~ ; the domains of c~, ~ 7  ~ can be taken 
to contain the real set VR X T t, and if one denotes 

then s ~', _A, _A' 

satisfy the estimates 

{~ =A'+s  ~') 
~o(_A', ~ ' )=  _ =_e'+d(_A',_q,') 

{~ ' =  A + ~'(_A, ~) 
~7~(-A'-e)= _ '=q~+_~'(_A, ~) 

(2.16) 

are holomorphic in Woc=w(gR;~p, �88 where they 

[1~11 w~, I1~'11 w~ ~<~ p 

Ildll w~, IId'll w~ ~4 ~\~o/ 

and, finally, in the same domain one has 

(2.17) 

0hl] 
~ 1  w| <~2E' IIf~ltw~ ~pg (2.18) 

822/44/3-4-2 
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In particular, (2.14) implies that in perturbed systems of nonresonant 

harmonic oscillators (e.g., the above-mentioned simple chain) one cannot 

see chaotic motions before a time exponentially long compared to the 

typical unperturbed time scale E -  1. In the proof we explicitly construct h~. 

The constants in (2.11), (2.17), and (2.18) are not optimal and are reported 

just to give an idea of their /-dependence, which should be qualitatively 

close to that of the estimates. 

3. R E S U L T S  FOR T H E  A N H A R M O N I C  CASE 

Before describing the results on the anisochronous cases obeying (2.9), 

we need some definitions on resonances. Indeed, at the basis of the dis- 

cussion that follows is a decomposition of the action space into regions 

where the angular velocity _m(_A)= (Oh/d_A)(_A) has well-defined "resonance 

properties." 

Given _vl,..., _v,E Z t and linearly independent, let J / / =  J/(_vl ..... _vr) be 

the plane in Z z generated by vl ..... v,; a "resonant surface" (of "order r") 

with the plane Jr the surface 

s ~ , =  {_AI_A~ VR; ~(_A)-_vj= 0, j =  1,..., r} (3.1) 

Let r > 0, N =  ~- ' ,  and let J/l be as above, with -Y1 . . . . .  -Yr such that I_v;[ ~< N, 

j = 1,..., r: in this case we say that JP{ admits an N-basis. Given a sequence 

0 < 20 < "'" < 2z and a plane de' c Z t admitting an N-basis, we can define 

the "resonant region" (or "block") ~ to be a neighborhood of S ~  con- 

sisting of all the A's such that, for at least one N-basis {vl,..., Vr} of Jr one 

has 

l_o9(_A)" _v;[ < 2r, j =  1 ..... r (3.2) 

while at the same time it is also, for r < l: 

I_~(_A)" v[ > 2,+1 V _ v ~ ,  I_vl ~<N (3.3) 

Formally, denoting d~.N(d) = infN_ b . . . .  max1 ~<j~, I_m(_A)" _v;[ (d~,N(_A) is 

nothing but a convenient measure of the orthogonal component of _m(_A) to 

Z ~ ) ,  we set 

~={AIA~VR;I~(A).v_I>A,.+I, Vyq~Jr (3.4) 

If ~-,+1 >2•r, it is also clear that the set q/,e defined by 

qz.,, = {_AI_A~ VR+(1/2>; t~(_A)'_vl > 22r, V_v r ~/, I_vl ~<N} (3.5) 
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contains N,u. Notice that all of these definitions make sense also for r = 0 

(~ ' ,  in this case, contains only the null vector; S~, is the whole space VR, 

and d~tu vanishes). By construction, 0 ~  covers the set VR. 

Our results require, to be formulated properly, a choice of 2o,..., 2l as 

well as of two other parameters b and ~c, which depend only on the 

functions h , f  in (2.1) and on the dimension l. We are particularly 

interested, for rather obvious reasons, in trying to get bounds with a good 

/-dependence, compatibly with the methods that we use: examining our 

proof one can see that a rather convenient choice of the above parameters 

is 

1 

81(l+ 1) 

ee = min(�89 51) 

?M)8 

Bt = 222t+ 1918t+ 1 

2 r = 2~0) ,~  a r  

1 r ( r  - -  1 ) 1 1 

~ - - 8  16/(l+ 1)' 1--6 < ~ ~<g 

(3.6) 

The above list of parameters is rather arbitrary in the choice of the various 

constants, but it reflects quite well the kind of dependence on h, f ,  l of the 

various constants which must be fixed in the course of the proof: if one is 

not interested in getting general results but only wishes to get results of the 

type: "there exists a constant such that ...," then the only feature to retain of 

the constants in (3.6) is that 2 r + l > 2 2 r  and 2 r ~ 0 ,  ~r/~r+l--~O for ~ 0  

(i.e., the resonant blocks become thinner and thinner the closer e is to 0). 

We can now formulate a proposition similar to Proposition 1 for the 

system described by (2.1), (2.9). 

Proposi t ion 2. Let h + ~fverify (2.9); assume e < ec, and define the 

resonant regions for _m(_A)= (Oh/c?A)(_A) as above. 
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Then: 

(i) 
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For any motion t ~ (_A(t), _q0(t)), with _A(0) e ~ , ,  one has 

_A(t) e % ,  

II_A(t) - _A(0)[[ ~< (6/2 + 4) E 6~/~ 6 
m 

(L'~ 3/4 
for Itl < T = 1  e (~/8)r 

\ % /  

(3.7) 

(ii) For each Jr exists an "adapted" system of canonical coor- 

dinates (A', ~') such that (A, ~ ) =  cs ~') with both cg~,~, cCu~ real 

analytic in W~,oo =- W ( ~ ,  p', ~'), p '=  (27)/8M) 6 ~/4, ~' = �89 such that in 
the new coordinates (A', p ' )  the Hamiltonian (2.1) takes the form 

H'~(_A', (_p')=h(_A')+6G(_A', cp',e)+e-(1/8)~(1/*)b f~(_A', q3',e ) (3.8) 

with: 

(a) G(_A', ~_', 6) = ~ G~(_A', e) e i~f  

G~(_A', 0) = fv(_A') 

(3.9) 

where fv(_A') -- ( 2 n ) - l j  e - ~ f f ( _ A  ', ~_) d~ denote the Fourier components 

o f f ;  

(b) 

IG(_A~, ~',, 6) - G(Ai, ~; ,  6)1 </E(10p + I]_A'I -- J i l l )  (3.10) 

for all pairs (A'I, ~i),  (_A;, ~;)  s d//~, x Tt; 

(c) 

"< 2'~ 62"+ b (~o) E2 (~o) ~,~ • ~--~- o < ~  (3 .11)  

(iii) Finally, if the canonical maps %,  ~, ~ - 1  . ~,~ are written as (2.16), 
then 

o, , ,14o, 

, , - -  - -  < ~ f 6  I1~11 w~ o~, [Ig'll w. ~ ~< M \6o/  \6o/  

, - -  < ~  - -  

lldll ~ ,  11_.9'11 , ~ , ~  ~< r ,,60; \60/ 

(3.12) 
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The meaning of Part (ii) of Proposition 2 is that, up to exponentially long 

times, the motions of the Hamiltonian system (2.1) are described in ~ by 

the effective Hamiltonian 

h(_A') + eG(_A', ~', e) (3.13) 

Since G depends only on r = dim Jg independent combinations of angles, it 

follows that (3.13) admits l - r  independent combinations of actions which 

are integrals of motion, so that the actions _A' are confined to move on an 

r-dimensional plane A ~  (actually, the plane through the initial point _A'(0), 

parallel to J#). The convexity property of the "kinetic energy" h(_A') 

provides, in turn, a point of minimum or maximum for h(_A') which, as we 

shall see, is a point _A where 

_co(_A). _v = 0 V_v ~ Jr (3.14) 

Then the bound on eG given by (3.10) immediately implies the "con- 

finement of the actions" in the sense that orbits starting inside N.~a cannot 

escape out of q/~ (where the canonical transformation is properly defined), 

in such a way that up to time T the estimate (3.7) is satisfied. 

For r = dim ~ / =  0, G is angle independent, and the situation is almost 

identical to the case of nonresonant harmonic oscillators considered in 

Proposition 1 and 1'. 

In the next section we present some other simple corollaries of 

Proposition 2, which allow us to better understand its meaning. 

4. S L O W  A N D  FAST V A R I A B L E S  

Consider (3.8) with G,f~o verifying the properties of Proposition 2. 

One has then the following: 

Proposition 3. There exists a canonical linear change of variables 

(_A', ~ ' )  ~ (_A, _~) = (J_~t, ( j T ) - I  _~0'), where J is an integer matrix with 

determinant one, such that if (_A, ~) is denoted 

= (S~ ,..., St, F, ..... F, r) ~ (S, F) 
(4.1) 

~_ = (0"1 ..... O'r, @1 ,'", ~ll--r) ~ (_0", @) 

where _S, g stand for "slow" and _F, _~ stand for "fast," then 

(i) The Hamiltonian (3.8) takes the form 

~(_S,  F, _~, _~) = ~(_S, _F) + eC(_S, _f, _G, e) 

+ e-(1/8)r )7~(_S, F, _a, _0, e) (4.2) 
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with 

1 f f ( j  ,(-S,_F),j~(_~,O))dO ~(-S, F, _~, O) = ~ _ _ (4.3) 

(ii) The new resonance plane ~ - =  JJ/t' is given by 

~'~-- {_'k']_V (= Z/, Yr+ 1 ..... Y/--O} (4.4) 

and correspondingly, in the new resonant block J ~ ,  the new angular 

velocities _05 = (~/8_S, ~ / S F )  obey 

a_~j (-s, E) = I~j(-S, E) l ~ L j =  1 ..... r (4.5) 

The names slow and fast attributed to the (_S, _a), (_F, _0) variables come 
from (4.5) which, together with (4.2), shows that 6---(_9()~r)~(9(81/16), 

~ - -  (P(1). 

The above separation of the coordinates into fast and slow ones can 

be made more precise and quantitative via the following proposition 

(which is also a corollary of proposition 2): 

Proposition 4. Denote _S*(_F) the function implicitly defined in 

J N ~  by @(_S*(_F), F) = 0, j = 1,..., r. Given any motion (_So, _Fo, _ao, _0o) 

(_S(t), _F(t), g(t), ~(t)) with (_So, _Fo) e JN~u, introduce the following rescaling 

of variables: 

s ( t )  = S*(_ro)+ ,J-~ -S(,S t) 

_F(t) =_Fo + ~ _ ~ ( ~  t) 
(4.6) 

_o-(t) = _~(,,/~ t) 

_r ~(.,,/~ t) 

Then (_S,_F, _d, ~) are canonical variables, whose evolution as functions of 

0-= ~ t is described by a Hamiltonian, parametrized by the _F o, of the 

form 

1 ~ 1 L~o(_p ' g .  g v~0(_~) H ~ 0 = ~  he0(-r, ~)+ [ _ ~) + 

"~ N ~  V[FIo ,(-~' -~' -~' 8)] "[- C (1/8)~'l/e)b Vg(3  , iF, ~, ~_~, 8) 
(4.7) 
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where the matrix LFo is the first r x r minor of the matrix 

L(S, F)_ ~2= j 1 02h 
~?A 0-----A J (4.8) 

computed at S =  S*(F), and hence has the same convexity properties of 
~2h/~_A c3_A ; while 

Vvo(_~) = G(_S*(_F0), _F0, _~, _0) (4.9) 

and V~0), V~ are bounded in J ~ u  as well as their derivatives, uniformly in 

let <ec; see (3.6). 

We remark that if (_S0,_Fo, g o , ~ o ) 6 J ~ t x T  l, then jx/~Sj(0)l, 

I,,f~f)(O)l<..C(e~/8), j = l  ..... r: hence initial data for (4 .7)with  ISj(0)], 

I/~/0)l ~< Y (where Y is any positive constant) are in the domain of 

applicability of Proposition 4, provided e ~< g(Y), where i(Y) depends on 

h, f but not on e. 

Propositions 3 and 4 are simple corollaries of Proposition 2: indeed, 

Proposition 3 follows as a straightforward application of Lemma 5 of Sec- 

tion 9, which states the existence of an integer matrix J, det J =  1, with the 

above properties; the existence of S*(_F), which is at the basis of 

Proposition 4, follows from convexity and the implicit function theorem; 

the details are left to the reader, who can also check that the detailed 

_S-dependence of the first three terms in the r.h.s, of (4.7) follows by a 

Taylor expansion in _S of h + eG defined in (4.2). 

One could easily provide explicit bounds for G and f ~  in (4.2): 

actually, they are exactly the same as the corresponding ones of 

Proposition 2, apart from the change of norms due to the linear transfor- 

mation which separates the slow and fast variables. 

5. THE T I M E  SCALES OF THE PERTURBED M O T I O N S .  

I N T E R M E D I A T E  SCALES A N D  CHAOTIC  M O T I O N S  

The interest of Proposition 4 is that it allows a deeper understanding 

of the dynamics of our system inside an r-dimensional resonant region. In 

fact, form (4.7) makes evident the existence of three time scales for the 

motion, which are well separated for small e: 

(a) a "microscopic" time scale t ~ ( x ~ E  ) 1 (i.e., O~E-1), where 

the system is integrable and only the fast ( l - r )  angles move; 

(b) a widely extended "intermediate" time scale (x/e E ) -  1 ~ t ~ E 1 

e (1/8)&-b (or E 1 ~ 0 ~ E 1 e (1/8)e~ b), where the fast actions_F are 
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still "frozen," while at the same time the slow variables can have 

a very nontrivial dynamics in a bounded domain (actually, a 

domain small with ~); 

(c) a "long" time scale t ~ E i e(X/8)~ b, where all of the degrees of 

freedom are nontrivially involved in the dynamics, and the 

motion is no longer local (i.e., the actions can change as much as 

allowed by the conservation of the total energy: a phenomenon 

which, when actually happening, is called "Arnold diffusion," 

after Arnold exhibited an example where it was present). (7'8) 

Let us consider in more detail the intermediate time scale, disregarding 

for a moment the exponentially small coupling term of Hamiltonian (4.7). 

Within this approximation, the evolution of the coordinates _S, ~ is gover- 

ned by an effective Hamiltonian with only r degrees of freedom, of the form 

1 
Heff(_S, #, e)=~ Le~_S._S + V~fr(_ff) + C(e m) (5.1) 

The matrix L~ff is positive symmetric; for simplicity we can think it as 

diagonal: (L,ff)ij = I f  I ~ .  Hence 

1 r ~2 

He~(_S, _6) =2,~1"= -jIj + V~(a)_ + C(e m) (5.2) 

This Hamiltonian represents r rotators, with inertia moments 11 ..... It, 

coupled by an angle-dependent potential Vefr(_~)+ (9(el/2); thus, within the 

above approximation, it turns out that any system with convex unpertur- 

bed Hamiltonian essentially reduces, near an r-dimensional resonance, to a 

system of r coupled rotators, subject to a purely "positional" force up to 
0(~1/2). 

Let us make a few comments on the reduced Hamiltonian system 

(5.2): 

(i) for r = 1 the system is obviously integrable (in fact, it is essen- 

tially a pendulum), independently of the nature of the perturbation in the 

original Hamiltonian (2.1). For  I=  2 this is the only nontrivial possibility. 

(In fact, near a point with _o(_A) = 0 one can have a resonance of order 2, 

no matter how small ~ is: this, however, essentially restricts _A to a 

neighborhood of a point where h(_A) has a minimum, so that the above 

Proposition 4 will just tell us that forever the motion near this equilibrium 

point will look like the one of a nontrivial two-dimensional system. In 

other words, the (_A, ~) coordinates--in particular, the action scale--were 

not the appropriate ones, and the system cannot really be thought of as a 

perturbation of an integrable system.) 
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(ii) for r~>2 the Hamiltonian system (5.2) can exhibit chaotic 

motions. In fact, as far as structurally stable properties are concerned, one 

can take e = 0 in (5.2); on the other hand, Ve~ is directly related, via (4.9) 

and (4.3), to the original perturbation f in (2.1). Therefore, given a 

resonance Jr by suitably choosing f one can give V~ff any preassigned 

form. Examples of functions V~ producing, say, homoclinic phenomena (a 

simple form of chaotic motions), are easily constructed: one of them is 

explicitly produced in the Appendix. It is believed that chaotic phenomena 

are "generic" for (5.2) in Veff, if r >~ 2 (for a numerical illustration of chaotic 

motions in a system of coupled rotators, see for instance Ref. 6). As far as 

the exponentially small term in (4.7) can be disregarded, these motions 

should appear as local chaotic motions for the original Hamiltonian (2.1), 

taking place inside resonances. 

(iii) For any r and any interaction, at low energy the Hamiltonian 

(5.2) produces mostly ordered motions. In fact, near the point S = 0 ,  

-~ =-~0, where -~0 is a minimum for V~ff(#), the system is equivalent to r 

weakly coupled harmonic oscillators (normal modes), the energy itself 

measuring the coupling. Still within our approximation, in the original 

coordinates one should see local quasi-periodic motions taking place 

"deeply inside" each resonance (_S ~ 0). For a numerical illustration of these 

ordered motions associated to resonances, see for instance Ref. 6. The 

apparently paradoxical situation in which chaotic and ordered motions 

generically coexist emerges here clearly, but this has been well known since 
Poincar6. (9) 

The question then becomes whether it is reasonable to ignore the 

coupling term (9(e -(~/s)~"-~) for the whole intermediate time scale. If the 

effective Hamiltonian (5.2) is integrable (thus, in particular, for r = 1), then 

the motions of the complete Hamiltonian (4.7) will certainly remain regular 

for the whole intermediate time scale: indeed, after an appropriate change 

of coordinates in the (S, _~)-space, Hamiltonian (4.7) will turn in a weakly 
perturbed integrable Hamiltonian, with a perturbation of order e (~/8~-b. 

Apart from this case, it is not so easy to answer the above question. On 

one hand, it is hard to believe that, generically, the exponentially small 

coupling will significantly modify the qualitative properties of the 

dynamics. On the other hand, it is obvious that, if Hamiltonian (5.2) has a 

sensitive dependence on the initial conditions, then one cannot hope that 

the orbits of the complete Hamiltonian (4.7) with and without the coupling 

term (at fixed initial data) will remain close to each other for the whole 

intermediate time scale. Only some partial results are easily achieved: for 

example, in the Appendix it is shown on the basis of a simple model exam- 

ple that the two dynamics remain extremely close (precisely, at distance of 



306 Benettin and Gallavotti 

o r d e r  e -(1/16)~e b) for a time which grows as an inverse power of e (while a 

naive calculation gives only a logarithmic growth). In general, however, 
this problem of structural stability must be considered to be basically 

unsolved. 

6. PROOF OF PROPOSIT IONS 1 A N D  1" 

6.1. In this section we give a quite detailed proof of Propositions 1 

and 1', using in place of the diophantine condition (2.8) the more general 

one 

[_oo.vl-= ~< Cl_vl ~ (6.1) 

where ~ is any positive number. In fact, as already remarked in Section 2, 

Proposition 1 is an obvious corollary of Proposition 1': indeed for real 

variables and It[ ~< T, one has 

lid(t) - 3(0)11 w~ ~< 2 II•tl w~ + 8{ --1~ (._~_~ ~ (1/~)b lifo II W~ T 
\~o/  

1 ( e ~  '/2 
- -  + 8{  ,p~1/2 (6.2) 

4 P \~0/ 

as follows from (2.14) and (2.18), because the a priori estimate, necessary 

to make sure that the orbit, for all It] ~< T, does not get out of the domain 
of definition of ~ - 1  follows self-consistently by the same chain of 
inequalities in (6.2). 

To prove Proposition 1', we perform a canonical transformation 
(d, ~ ) =  %(~' ,  ~')  generated by 

4(_A', ~_, e)= ~ ek4k(d ', ~) (6.3) 
k--1 

via the usual relations 

84  ~4 
_A = _A' + - ~  (_A', ~, e), ~' = ~ + ~--~_A, (_A', ~, e) (6.4) 

4~,..., 4 ,  are determined by imposing 

04  ~ )  ~o_ "(d' +u~_(d,77._84 '_99, ~))+ef(A '+ ~ (d',~o,e),_ 

= ~o. A' + ~ ekh'k(_A ') + R(_A', ~_, e) (6.5) 
k = l  
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where the last term is a remainder  analytic in e and divisible by e~ + 1. One 

thus sees that  45~(A', _g0), k = 1,..., n, must  satisfy equat ions of the form 

045k , , , 
_m'--@---e+Qk(_A, -e) = hk(A ) (6.6) 

A' where h'k(d') is free, while Qk(_ , -e) is the coefficient of e~ in the power  

series development  of ef(d '  + (~45/O-e)(_A', -e, e), -e). 
Let us write 

f /  , ~45 ) f c945V~ 
t _A + -~-e , -e = m ~z, f m ( _A ' , -e ) t -@-_ ) (6.7) 

where the following compact  nota t ion  has been used: 

l OIml f ( A'  _ 
~(_A' ,  _e)--_m ! 0A~ "- ' ~0) 

1 0 "  + + " ' f  

= ml  [ - '  mt  ! c~A~ '-----7"'" }AT '-----~ (_A', ~)  (6.8) 

-,17, 
From this expression one easily obtains 

Q1 = f  
(6.9) 

Q k = )-'1 f m ( -A ', -e ) Z --~ ( A ' , -e ), k >~ l 
{kj:),y.k- 1 i= 1 j= 

l~[mt~<k 1 

where the latter sum is extended to the set of indices kj, for i =  1 ..... ! and 

j =  1,..., mi, with the restrictions ~ , j k } =  k - 1  and kj:~> 1. (If, for one or 

more  values of i, m i vanishes, the corresponding indices kj are intended to 

be absent from the sum, while the corresponding produc t  also disappears). 

It clearly appears  that  Qk depends only on @1 ..... 45k-~, i.e., Eq. (6.6) 

for 45~ ..... 45 are decoupled. Each of them is then easily solved: one takes 

h~,(_A') = (Q~)(_A') (6.10) 

where the bracket  indicates averaging on q~ ..... 4or, and then makes use of 

Lemma 1 of Section 9, with J/Z = {9 }, N = oo, and g = Qk -- ( Q ~ ) .  

6 .2 .  Let  us in t roduce the short  nota t ion  II.llp,~,-= It'll w~v,,p,,~,). All 

the basic estimates are contained in the following: 
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with 

Main  Proposi t ion.  

( l /2)p,~_k b 

For any positive n, if 6 <~ ~/2n, one has 

<~pk!FBk6 ( / + ~ +  1)k k=l,...,n (6.11) 

F = 2  - t -2,  B----2t+EBoCE (6.12) 

Bo being the constant appearing in Lemma 1 of Section 9. Moreover, 

IlOk+lll(l/2)p,r ka~ <2 t+ lk !  FBk6-(t+~'+I)kpE, k =  1,..., n -  1 (6.13) 

ProoL Inequality (6.11) is proved by induction, while (6.13) is found 

as a byproduct of the proof of (6.11). Let us assume (6.11) for 

k = 1 ..... p < n, and prove it for k = p + t. 

A "dimensional estimate," i.e., the use of Cauchy theorem for 

holomorphie functions, immediately gives, from (2.5), 

( ~ )  I ml - 1 

II~tl(1/=)o,e ~< E Viral ~> 1 (6.14) 

By inserting this expression and the recurrent hypothesis in (6.9), one gets 

<<- 2 U2" lpEBP 6 (,+~+l)p 2 Z l~ k}! 
i r = l  m_ {k)}m_,p i=1 j = l  

I ml = r  

By Lemmas 3 and 4 (see Section 9) one has then 
p 

I <~,'~1-2 t Bpb-(t+~+l)PpE ~ (4F)r 
I I Q p +  1 (1/2)p,r  .,.e. Z p .  

r = l  

If condition 

is satisfied, then one has 

(6.15) 

(6.16) 

IIQp+llL<l/2)p,r pa~<2l+lp! FB p 6 (t+~+l)PpE (6.18) 

which coincides with (6.13) for k =  p. From statement (iii) of Lemma 1, 

taking into account IIQp+ 1 - (Qp+ 1 )11 <~ 2 IIQp+ 111, one has 

O~bp + 11 
(I/Z)p,r -- (p + 1)6 ~ 2BoC 6 -(z+ = + i)II Q p +  111 (l/=~p,e-p~ 

<~pp! F2t+2BoCEB p 6 -(1+~+1)~p+1) (6.19) 

1 
4 F ~  (6.17) 
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(6.11) is then achieved, for k = p  + 1, as long as 

B/> 2 l+ 2B o CE (6.20) 

We must now show that (6.11) is satisfied for p =  1, i.e., that solving the 
equation 

o.--~-_ + f  = ( f )  (6.21) 

leads to the estimate 

~ 1  (1/2)p.~:-- 3 ~ pFB 6 (t+ ~ + 1) (6.22) 

Actually, this estimate immediately follows from statement (ii) of Lemma 1 

(see Section 9), with g = f -  ( f ) ,  provided 

2B0 CE ~ <~ FB (6.23) 

The choice we made for B, and F fits all conditions we encountered, i.e., 

(6.17), (6.20), and (6.23), so that the above proposition is proved. 

6.:$. Here we use the above proposition to obtain estimates for 

~/0_A', aqs/O~. Precisely, we choose 6 = ~/2n and show that, if condition 

Bnl+~+2 e ~<2 (6.24) 

is assumed, then one has 

~-~_ (1/2)p,(1/2)~ 

~-- At (1/4)p,(1/2)~ 
Proof. 

<~2l+~+2pBoCEr (6.25a) 

~< 2t+, + 2r ~t+ ~)nt+ ~+ 1/3 (6.25b) 

Let us write 

k~l ek ~-@ (1/2)p,(1/2)r ~_ (1/2)p,(1/2)~ ~)k 

<, pF ~ ekBkk! \~nJ 
k=l  

~p~FBnl+o;+l(~) -(l+c~+l) 

• Z ~Bnl+ c~+ 2 

k=O 

(6.26) 
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Condition (6.24) directly leads to (6.25a). Concerning (6.26b), one needs a 
preliminary estimate for 04k/0_A. This can be obtained from Lemma 1 and 

-~osn t, o_A ) o0 
(6.27) 

which 
sionally OQk/O_A from (6.13), for k>~ 2, obtaining 

0Qk ~< 2l+3(k - 1)! FB k 1 6-(l+~+l)(k-1)E 
(1/4)p,~--(k--1)6 

~<2t+Zk! FB k-1 6 (l+~+l)(k-l)E 

trivially follows from (6.6), (6.10). Indeed, one estimates dimen- 

(6.28) 

Recalling that Q1 = f ,  and that F =  2 - l -2,  this expression is also good for 

k = l .  

Statement (ii) of Lemma 1 (see Section 9), with G=OQk/O_A'- 
@Qk/O_A'), then yields 

~_(l+ ~ + 1)/rE 
01 (1/4)p,r ~ r FB k (6.29) 

and, proceeding as above, (6.25b) also follows. 

6.4. We now choose n as a function of e in order to have 
n l+~+2-  ~ e -(1/2). More precisely, we set 

e b ~ n < e - b +  1, b =  
2( l+c~+2)  

Condition (6.24) is then ensured by imposing 

e < ~o = (231+2~+6BoCE~-(s+~+ i))-2 

where expression (6.12) of B has been taken into account. 
Estimates (6.26a, b) yield then, in particular, 

0 4  < 2 _l_5 (~'~ 1/2 
P 

(t/2)p,(1/2)~ \ eo /  

; ~ A ( 1 / 4 ) p , ( 1 / 2 ) - l - 5 - - ~  < 2  \eo /  ( e  ~'/2 

824 < 2_l_3 (8  ~1/2 
max 
i,j<~l ~ (1/4)p,(1/2)~ \EO/I 

(6.30) 

(6.31) 

(6.32a) 

(6.32b) 

(6.32c) 
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where n ~> 8, which trivially follows from (6.30) and (6.31), has been used, 
while (6.32c) follows from (6.32a) by a dimensional estimate. 

From (6.32) the (global) invertibility of (6.4) easily f o l l o w s .  6 A 
canonical transformation cg, is then properly defined; expressions (6.32a, b) 
show in particular that cg,, cg 1 satisfy (2.27), both being certainly defined 
in W(VR; lp, 1~), as claimed. 

6.5. The proof of Proposit ion 1 is now immediately concluded. First 
of all, from (6.10) and (6.28), one obtains, setting W~ = W(Vn, ~p, �88 

Wee k = 1 Woe 

n - - 1  

<<.2l+2FE ~ (nBb-(t+~+l)e)k 
k = O  

~< 2E (6.33) 

having used the first of (6.12), (6.24) and 6=~/2n in the last step. 
Concerning the remainder, it is estimated as follows, on the basis of its 
definition (2.4). By construction, R(_A', q, e) is analytic in e divisible by 

e ~+~, as far as [el <e0. It follows that 

,~ n + l  

IR(_A', ~o, e)l ~< - -  

- i ~ 0 1  

sup IR(_A', q, e')[ (6.34) 

Now, from (6.5), (6.6), and Q1 = f  [-see (6.9)] one obtains, for let ~<eo, 

- 

_ k = l  

/ , 8~b ) ~0) <~o f~_A +~-0' p- --f(_A',_ + k = 2  ~ e'ktQk(-A" ~_) l  (6.34a) 

6 One checks that the first of (6.4) can be inverted in _A' at fixed q~, thus defining the function 
3 '  of (2.16) in W(VR, lp 1 ^ 14 - g t , ,  ~ ); the result can be substituted in the second of (6.4), 

defining the function ~J' of (2.16) in W( V,~, ~p - •  ! ~v  similarly, the second of (6.4) can be 32/'% 2 l~ 

inverted, expressing q as a function of ~0' at fixed h ' ,  defining the function _3 of (2.26) in 

W(VR, �88 !42 - ~ f f ) , a n d  the result can I~e substituted in the first of (6.4), thus defining ff of 

(2.16) in W(VR, �88 2!r177 i- In this way the two maps cg~,. cg~l of (2.16) are both well 

defined in domains much larger than W(VR, ~p, �88 and on this latter domain one also has 

cg jg j l  = cgTxc~ =ident i ty  ' as is immediately apparent  by carefully looking at the domains 
where ~ and r163 are defined. 
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and thus, for let 4eo:  

n--1 

8~ ~oE+ 2t+lFpEso ~ k! Bk 6--U+~+l)ksk 
IJRII ( a / 4 ) . , ( 1 / 2 ) r  4 2l ~ ( 1 / 4 ) p , ( 1 / 2 ) ~  k = 1 

4(12  l - 4 + ~ ) p E s o < p E s  ~ (6.35) 

where (6.32a) and (6.24) have been used. If we now denote R'(_A', ~ ' ) =  
R(_A', ~' +_zl(_A', ~')), from (6.34) we conclude that 

(S)"~o / s \ ( l /~?  IIR'II(a/4)p,(I/4)r 4 p E e ~ )  (6.36) 

which gives the second of (2.18). 

The proof of Proposition 1' is thus accomplished, as we notice that 
expression (6.30) for b and (6.31) for So coincide with (2.13) and (2.11) 

respectively, for a =/ ,  if the expression of B o entering Lemma 1 is taken 
into account. 

7. T H E  A N A L Y T I C  P A R T  OF P R O P O S I T I O N  2 

7.1. We prove here the following: 

Analytic L e m m a .  Let the Hamiltonian 

H~(_A, ~_ )= h(_A) + ef(_A, ~ ) (7.1) 

be analytic in W( VR; p, ~), with 

w = max w' P w = E (7.2a) 

_8--~-~- A-v82h w 4 M I[pll V v ~ C' (7.2b) 

Let a, z, and fl be positive constants satisfying 

fl + 4a + 2z < 1 (7.3) 

and given any plane J / c  Z t, let q / c  VR be a set where the nonresonance 

relation 

IoJ(A).vl-~ <~ Coe -~ v~r  I_vl (7.4) 

is satisfied. 
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Assume CoE> 1 and e ~<max(g, e0), with 

( p M~ 1/~ 

g = \ - ~ - J  (7.5) 
/;0 = [ 25 /+  13/R2 t~2t~4 P2 'lAr2 ~: --2(/+ 1)1 1/(1 4~r 2~ -- fl) 

~ O Y  ~ 0  ~ ~'~ ~ d 

Bo being the constant appearing in Lemma 1, with c~ = 0, and denote 

= MCo (7.6) 

[ p < l p ,  from (7.5)]. Then there exists a canonical transformation 
(_A, ~ ) =  (g,(_A', ~'), with both (g~ and c~-~ analytic in Woo- W(~; ~ ,  ~ ) ,  

which gives the Hamiltonian the form 

where 

H',(_A', _O') = h(_A') + eG(A', g',  e) + R(A', g', 2) (7.7) 

G(_A', ~', e )=  ~ G_~(_A', e) e " e '  
v~a (7.8) 

av(_~, o)=L(_A) 

fv denoting the Fourier components  o f f .  Moreover, given (A~, ~;)  and 

(~t'1, ~',) belonging to W~, we have 

IG(_A~, ~ ) - G ( _ A I ,  ~'~)t <~lE(lOp+ II_A;-_AilI) 

while the remainder R satisfies the exponential estimate 

~< "~o e - ( 1 / 8 ) ~  *_+. 
llRllw~ 4C~M-s k%/  2 

b=_-  
2 l + 3  

(7.9) 

(7.10) 

Finally, if (_A, ~ ) =  cg,(_A', ~'), then we have 

. 1 ~ ( 2 )  1 3a-- 2~-- (1/2)fl 

II_A -_A' l l  w~ .~ ~ p 

~ ( ~ 0 )  l--3er 2z-- (1/2,fl 

11~-  ~'11 w~ ~ < 

(7.11) 

Let us notice that the statement of this lemma essentially reduces to 
the analytic part (ii) of Proposit ion 2, with o-= ~rr, Co I = 2~ ~ if the various 

822/44/3-4-3 
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constants are appropriately fixed. The precise choice of these constants is 

not made here, as it arises naturally only within the geometric part of 

Proposition 2. The proof of this lemma closely follows the proof of 

Proposition 1 (Section 6); some details are thus left to the reader, while 

more attention is devoted to a few new points. 

7.2. First of all, to be able to make dimensional estimates, we need 

an extension of the nonresonance condition (7.4) to a surrounding of q/. 

Precisely, we need to work in the set W(~ ~), [see (2.3) for the 

notation], which is characterized, for what concerns the actions, by the 

condition: dist(_A, ~ )  ~</3. Here one immediately finds 

I_o)(_A). vl-a ~< C_-- Co e-~  V_v r J//, Ivl ~<N (7.12) 

with N = e-~, as follows from 

I_~(_A)-_vl/> I_~(_Ao)' _vl- I(~(_A)- ~(_Ao))-_vl 

>~ 2Cole ~ - MN/3 = Cole " (7.13) 

Let us introduce the following notation: for any function F(A, ~ ) =  Z ~  z, 

F~(A) e ir-~ denote 

H~tF= ~, fv(A)e '~~ (7.14) 

As for Proposition 1, we generate a canonical transformation by a 

generating function of the form 

qb(A', ~, e)= i ek~k(- A'' ~_ ) (7.15) 
k = l  

and write 

with the following prescriptions for h' and R: 

(a) h'(_A', ~_', e) contains only Fourier components with _v e ~ ' ,  i.e., 

( 1 - H ~ ) h ' = 0 .  

(b)  R = R 1 + R2, where R1 contains only Fourier components with 

v r J / / and  lY] > N, while R2 is analytic in e and divisible by e n+ 

In a word, ~1,..., ~n must be chosen in order to eliminate from the 

Hamiltonian all the nonresonant harmonics, in the sense of relation (7.4), 
up to order n in e. 
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Developments in e analogous to (2.6), (2.8) give 

h A ' +  =h (__A)+  _o(_A')" &, X~(_A',~) ~ + 0 ( ~  "+~) 
k = l  

with 

(7.17) 

0 for k = l  
(7.18) 

Xk= ~r 
for 2<~k<~n 

2~<[ml~<k {k~}m,k i = l  j = l  ~ 0 i  

(for notations see Section 6.1, formula (6.9) in particular). Concerning f, we 
have, instead, 

with 

Q~ )=ef (_A' ,g)+  S' g~Y~(A',~)+C(~ n+l) ef _A' + ~--~, g ,., _ 
- k = 2  

(7.19) 

Yx( -A', ~ ) =  ~ fro(- A'' ~) Z [ I  &Pi (7.20) 
l< ~ lml< ~k  1 {kj}m,k-I i=1  j = l  

Finally, concerning h' appearing on the r.h.s, of (7.16), let us first write 

k / t h'(_A', _(pl, e) = h(_A') + e hk(_A ,~ ' )  (7.21) 
k = l  

Then, introducing _p in place of g' as the independent variable, we obtain 

( hl A', _~ + = h~(A', ~) + Y h~,m(_A', ~) 
r = l  l~<lm[~<r 

m, O,/' k) 
X E H j l~I 1 _~/..~_ (fl(gn+ 1) ( 7 . 2 2 )  

{g}_~,, i= 1 = 

We thus have 

c3~\ h A' 

with 

G(_A', ~) 

k--1 

E E 
r = l  1~< I_m{ ~<r 

0 

h t  _ t k . . . .  ( J ,  f )  

k r r t a [hk(A, ~ ) - Z k ( A ,  ~)] (7.23) 
k = l  

for k = l  

for 2<~k4n (7.24) 
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Equation (7.16) is then equivalent to the following equations in the 

unknowns q~l ..... q~,, h'l,..., h'n: 

_o9(_A') �9 ~ + Qk(_A', ~) = h~:(_A', (p) + S~(_A', ~), 

where 

f ( _ ,  (P) 
Qk(_A', (p)= Xk(_A, ' ~ ) +  Yk(_A', ~o)- Zk(_A', ~_ ) 

k = 1 ..... n (7.25) 

for k = l  
(7.26) 

for 2<~k<~n 

The prescription is now that h; contains only Fourier components with 

y e J g ,  while Sk must contain Fourier components with [_v[ >N.  Since 

Xk, Yk, Zk depend on q~,, h~, for k' < k, Eq. (7.25) are decoupled. To solve 

them one simply sets 

h 'x (_A ', ~_ ) = ( H~a Q k ) ( _A ', (p ) 

S k ( A '  , ~_ ) =  (1 - H i t )  ~-kl')>N(AI~,LI ' ~_ ) 

~b k being then determined by Lemma 1 [see Section 9, (9.4)]. 

7.3. 

notations: 

(7.27) 

For any positive n and (5 ~< ~/2n, let us introduce the following 

1 

k = 1,..., n 

(7.28) 

For any p'~< t~, ~'~< ~ we will also use the short notation 

All the basic estimates are then contained in the following: 

Main P r o p o s i t i o n .  For k = 1,..., n one has 

~ k  k,r b ks 

~k,~k<~ ~FBkk! 6 ks 

II h~,_m II ~,r ~< p EDBg-  tk ! 6 - (k- 1)s - -  Ira[ 

(7.29) 

(7.30a) 

(7.30b) 

(7.30c) 
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where the constants s, B, D, F have to satisfy several inequalities met in the 

course of the proof; we shall see that, for instance, the following choice will 

eventually meet all the necessary requirements: 

s = 2 ( / +  1) 

l + 6  2 2 2 ~ 2o- 
B = 2  lBoCoE 

l+6 2 ̂ 2,-~4 ~-2 ,x2_-4o- 2~ (7.31) 
= 2 lBotJ ,~o r, 1vl 

D = 4l 

F = 2  Z-4BolCo!E-I 6l"le~r 

Moreover, we have 

IlQk+ll[zk,r <~4lpEBk(k+ 1)! 6 -ks k =  1 ..... n -  1 (7.32) 

(7.30a-c) are proven by induction, along the same lines of the analogous 

proof in Section 6, while (7.32) is found as a byproduct of that proof. 

Proof. We first verify (7.30a-c) for k = 1. As hi = H ~ f ,  by Lemma 6 

one finds (after a dimensional estimate) 

1 
Irh'l,,n]l~,r <~--~. II ~_ m IIo.r P E 6-1ml + 1  (7.33) 

so that (7.30c) is verified, for k = 1, because ~ < 1 and hence 

D ~> 6 (7.34) 

Concerning (7.30a), we use statement (9.5), (i) of Lemma 1, with 

g = (1 - H ~ )  f,  taking into account 

~--~(f - - I I ~ f )  <~ 2 ff-~f~ <~ 2pE (7.35) 
_ ~ , ~  _ ~,~_ 

here the factor 2 arises because / /~u fcan  be expressed as a suitable average 

of f ,  see (9.15). It follows that 

Oq~l <~2BoCpE6 ~ (7.36) 

which implies (7.30a) for k = 1, provided Eas our choices (7.31) imply] 

FB 6 s >~ 2B ~ CE p 6- '  (7.37) 
P 
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Finally, concerning (7.30b), we need a preliminary 

I tf-H~afl l~,~.  By Lemma 6, it is not difficult to obtain 

IIf-II~afllo,~<~2l sup I1~1--~211 (7.38) 
~1,~2 tit/) /~,r 

where the sup is in 0 ~< Re ~oj ~ 7r, ]Im ~oj] ~< ~, j = 1 ..... l. It follows that 

I I f -  H ~ftl~,r <~ 2l x/rc 2 + ~2 p g  < 231pg (7.39) 

since ~ ~< 1, and consequently, by statement (9.5), (iv) of Lemma 1: 

~,~ <<. 231Bo CpE 6 -tq (7.40) 

which gives (7,30b) for k = 1, if we impose [see also (7.28a) to eliminate 
~/]: 

FB ~ -s >1 231BoCE p ~ -~- l (7.41) 
P 

Now we assume (7.30a-c) for k<~p<n,  and prove them for k = p +  1. 

Using the induction hypothesis, dimensional estimates like (6.14), Lem- 

mas 3 and 4, and imposing in the various steps the following constraints 

8Fr 1 
P 

4Fr 6 1 < 1 (7.42) 

4 F B ~ - S + I > / D ( ~ )  2 

one finds after some computations 

IlXp+lllz,,.ep<~2/+3~2p-XEf2BP+a(p-t- 1)! 6 -(p+~> (7.43a) 

II Yp +~ II ~p.~, ~< 2'+ lpEFBPp! 6-P~ (7.43b) 

IIZ~ +x II ~,,~ ~< 2z+ lpEDFBP(P + 1 )[ 6-PS a (7.43c) 

IlQp+~llz,,,e,<<,2t+4~2p-~EF2Bp+l(p+ 1)! 6 -(e+l)~ (7.43d) 

[according to (7.26), (7.43d) is simply the sum of (7.43a-c), taking also 
into account (7.42c)]. Lemma 1 now can be applied to estimate ~b k and h;, 
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which are known to satisfy (7.25); one can see that (7.30a-c) for k = p + 1 

are obtained, if one further assumes 

F2Bc~-s<~2-I-4D 2I+sBoCEFP__6 t 1 (7.44) 
P 

The Main Proposition is thus proven, if the assumptions (7.34), (7.37), 

(7.41), (7.42), and (7.44) are satisfied. A consistent and convenient choice 

of constants s, B, D, F is given by (7.31); by means of these expressions, 

(7.43d) gives in particular (7.32), as claimed. 

7.4. We now fix 6=~/2n,  so that we have ~n=l~ ,  ~ n = � 8 9  

�89 ~Co~e ~+~, and look for global estimates on the canonical transfor- 

mation. 

From (7.30a, b), in order to be able to estimate the sum (7.15) over k, 

we need to impose nB6-~e<<,�89 i.e., by (7.6), (7.31): 

s + l + 7  2 2 4 2 2 - ~  ~+ <1  (7.45) 2 lBop CoE M ~ n 1~1--4o'--2v 

As in Section 6, we satisfy this condition by choosing n to be a suitable 

power of e: precisely, we set 

e b < ~ n < e - b + l  

/? (7.46) 

b =  
s + l  

/~ being any number between zero and one. After this choice, condition 

(7.45) takes the form 

2s+~+8 2 2 4 2 2 - s  ~ ~<1 (7.47) 2 lBoP CoE M ~ e 4 a - - 2 r - - f l  

or [see (7.31) for the value of s] e~<eo, with 

5 / + 1 3  2 - 2 f ' 4  E'2 i nr2 r- Co= (2 lBot, t~.oL, IV1 --2(/+1))--1/(1--4~7--2"r--/~) (7.48) 

Once this condition is satisfied, one easily gets, in particular, the following 

estimates: 

~_@ (1/2),6, (1/2) ~ ~ // ~ "~ 1-- 3~r 2~-- (1/2)fl c~cI) <. 2 ~ F B (~ s~ <. K p--p--- e ~ --  
CoE ~ (7.49a) 

Oe <~2~FB~ e . . ~ o E e  o ~ (7.49b) 

2z-- (1/2)/~ 

max <~ 8FB 6 ~e ~ ~o (7.49c) 
i,j ~ (1/4) 6,(1/2) ~ Cog \~oJ 
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with 

K < 2  -3t 8~lBo 1 (7.50) 

(7.49c) implies in particular the invertibility of the canonical transfor- 
mation, as far as e~e0, because 5Z~=i 1~2~fl?_q)k 0_A)t <<.4Kl< 1, and one 
can simply apply a simple implicit function theorem, of the type of the one 

in Ref. 10, for holomorphic function problems. In particular, the domain of 
definition of ~g,, cg-1 contains Wo~(q/; ~ ,  �88 and in W~ they satisfy the 
inequalities (7.11), as claimed. 

Let us now study h'(_A', _(p', s) = h(_A') + eG(_A', ~', s), where 

G(_A',qo',s) ~ k-1 . . . . .  _ s) (7.51) _ = e nk td ,  ~o', 
k - 1  

According to (7.27), we have 

G(_A',o_',a)=(H~f)(_A',~_')+ ~ sk-I(H~Qk)(_A',~_ ') (7.52) 
k = 2  

Now, given (_A'I, ~'1) and (_A~, q);) both in W~, it follows that 

IG(_A;, ~; ,  ~) -G(A' , ,  _el, ~)1 ~< I(H_AI-_A',II + P I 1 ~ i - e i l l ) E  

+2  ~ e k ~11Qk11(1/2)~,(1/2)r 
k = 2  

<. lE(lOp + [[_Ai - _A i[I) (7.53) 

where expression (7.32) for Qk has been used, together with condition 
(7.45). 

7.5. We complete here the proof of the analytic lemma, by 
estimating the remainder R. By construction, this term has the form 

R1 + R2, where 

R I =  ~ e~(Qk ~ / ~ k ,  - H  c~ ]>N (7.54) 
k = l  

while R2 is known to be analytic in e and divisible by s" +1 
From Lemma 2, with g = Q k - H ~ Q k ,  • in place of ~ and �88 in place 

of 6, one easily finds 

II R1 I[ (1/2)fi,(1/4) r ~ 24l+ 4IEp~ -le-(1/8) CN/~ 

1 ~ g2o+~(e ) 
~<4 Co----o 2M ~o e (178)~N (7.55) 
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Concerning Rz, we proceed as in the proof of Proposition 1 (Section 6.4), 
i.e., we use the holomorphy in e, for e complex and lel <to, and the 
maximum principle, and write 

~0 n+l [R2(_A', _(p', e)[ `< sup {R2(_A', _O', e')[ (7.56) 
le'l ~< e0 

On the other hand, R2 is defined by 

R2(_A',q~,e)=h _A'+ +~f A' ' + ~--~, _qo 

- h '  A',_e+a-y,~ -R~(A',~,e) (7.57) 

and by the choice of 05 we made [-see (7.25)-(7.27)] it follows that 

&b) ~?q5 
R2(_A', _e', ~)--h _A'+-bT_e -h(_A')-_~(_A')' 0-- 7 

+ ef(_A' +-~-_,Dq~ ~ ) -  ef(A', _~~ 

+ ~G(A', ~ ) - e a  _A', ~ + ~_--~ 

- ~ ekQ~(_A ', ~) (7.58) 
k=2 

Each of these lines can be easily estimated; recalling that, for lira @t < �88 
< ~ ,  j = 1 ..... l, one obtains one certainly has I Im <pj] i 

]IR211 (1/2)r `< 2E c~__~ + toE I#~ 
(1/2)~,(1/2) r @ (1/2) 8,(I/2){ 

+ 16lpEao + 4lpEe o 

1 ~ 2~+~ 
`<a Co---~M go (7.59) 

Consequently, from (7.56), one has 

HR21{(1/2,#,(1/4,r 4 C0---~2m o k~-70 J (7.60) 

Estimates (7.55) and (7.60), with n satisfying (7.46), give (7.10). 
The analytic lemma is thus proven. 
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8. THE G E O M E T R I C  PART OF PROPOSIT ION 2 

8.1. We conclude here the proof of Proposition 2; our aim is to use 

the analytic lemma of the previous section, together with the convexity 

property of the unperturbed Hailtonian h(A), in order to obtain a good 

confinement of motions in the action space. 

Given any resonance plane Jg a Z t, dim J / / =  r, denote by A~(_A) c W 

the r-dimensional plane parallel to M/ through _A. Consider then any real 

initial datum (_A(0), ~ ( 0 ) ) ~ .  As long as _A(t) remains in q/~a (this 

question will be discussed later), we can use the analytic lemma, with 

Co 1 =2~ ~ and O=O'r, obtaining Hamiltonian (7.7) for the new variables 

_A', ~'. The form of this Hamiltonian gives us a basic information: indeed, 

from the expression (7.8) of G, it follows that OG/~_' is a linear com- 

bination of vectors y e J//, and consequently 

_A'Ct) = _ A ' ( O ) -  e ~-7_~, , . . . .  ~_'(t'),e)+-~-7~_,C_A'(t'),~_'(t'),s) dt' 

= A " ( t ) -  [ , dR  (_A'(C), ~0'(C), ~) at, 
;o ~' 

A"(t) e A~a(_A'(0)) (8.1) 

so that 

dist(_A'(t), A~(_A'(O)) <~ ltt 
M 

Z 
L \G0/' J 

(8.2) 

where OR/O~_' has been dimensionally estimated from (7.10), for real values 

of the variables. 

In the particular case r = 0 ,  one obtains OG/t~_'=O, and one has 

simply 

II_A'(t)--_A'(0)It ~< Itt "~  ~ 0  M Z (8.3) 

For r/> 1, expression (8.2) shows that the motion _A'(t) is essentially "flat" 

on the plane Adc(_A'(0)), up to times exponentially long in e t. A good 

control on II_A'(t)-_A'(0)II is then achieved by the conservation of energy, 

combined with the convexity property (2.9) of h. The idea is quite simple: 
as o(_A')._v=0 for _A' e X a  and _v parallel to J/g, from (2.9) it follows that 

the "kinetic energy" h(_A'), restricted to A~(_A'(0)), has a quadratic 
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minimum in the point of intersection of X ~  and A ~ ;  then, taking into 

account the bound (7.9) for G, it follows that _A'(t) is confined in a con- 

venient vicinity of such point. 

Formally, we can proceed as follows: by a Taylor expansion around 

_A'(0), we obtain 

h(A'(t)) = h ( _ A ' ( 0 ) )  + ~ ( _ A ' ( 0 ) )  �9 (_A'( t )  - A ' ( 0 ) )  

1 [ O2h \ 
+ 5  ~ ) A * / ~ / ( _ A ' ( t ) - _ A ' ( 0 ) ) ( _ A ' ( t ) - _ A ' ( 0 ) )  (8.4) 

where A*(t) is a suitable point of the segment joining A'(0) and _A'(t). 

From (2.9) it then follows that 

�89 [[_A'(t) - _A'(O)1t 2 

<~ Ih(_A'(t))- h(_A'(0))[ + ]_og(_A'(0)). (_A'(t)- A'(0))I (8.5) 

Denote a=ll_A'(t)-_A'(0)ll; from conservation of energy it follows 

immediately that 

lh(A'(t)) - h(A'(0))I 

~< e [ G(_A'(t), ~ '(t))  - G(_A'(0), ~'(0))1 + 2 IIRII ~ 

< ~ i E ( l O p + a )  e+'~'o~ ~o e 
2M X (8.6) 

Concerning the last term of (8.5), let us first notice that, as _A(0) ~ ~ ,  then 

for an N-basis {_v I ..... _v~} of J/g one has 

[_~(_A'(0)) "Yjl <~ I_~(_A(0)).yj[ + MNII_A'(0)- _A(0)II 

~< 22~~ ~ (8.7) 

as follows trivially from (2.9), (3.4), (7.11). 

Denote by ~ the orthogonal projection of o(_A'(0)) on Jg; from (8.3) 

and the geometric Lemma 7 of Section 9, we have tl_~ll ~ 2 r N  r 12~~ and 

thus 

I~(A'(0)) .  ( # ' ( t ) -  d'(0)) l  

~< Zll_~ll llA'(t) - _m'(0)ll + IlI_~(_A'(0))tl dist(_A'(t), A ~(_A'(0))) 

<< 2122~o)E~r-(r-1)~a + lE l t  I "~ ~o M X (8.8) 
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From (8.5) it then follows that  

�89 2 <~ [lEe. + 2122~~ ~r <r 1)*] a + lOIEpe 

e2~r+'c (8.9) + +lEltl  ---~-~o Z 

and if t is bounded  by 

It[ ~<2E 1 (~)--(1--2ffr)Ie~0 (1/8)~g r_}_(~._~_~g-b] -l~e.O/ J (8.10) 

we easily obtain 

�89 2 <~ Xa + Y 

X 
a ~<-  [-1 + ~/1 + 2mY/X  2 ] 

m (8.11) 

X- -  (2/2+ 1) 2~~ ~r (r--l)~ 

2~o) ~ 2~o~ ~ e.;e2o. 
Y -  IOIEpe + 31--M -e.~e2'~< 4I M 

From (8.11), with r~> 1, it easily follows that  m Y / X  2 < 1, and thus 

3X 2 (0) 
a < - - =  (6/2 + 3) -~ e ~ (8.12) 

m m 

However,  from (8.3) we easily check that  this inequality is also true for 

r = 0 ,  if Itl is bounded  by (8.10). 

Finally, if we take into account  II_A'-_All<~�88176 '~r+~, which 

trivially follows from (7.11), we immediately obtain, for the old variables, 

2~o~ 
lid(t) -_A(0)II < (6/2 + 4) - -  e ~ '-  (r--~)~ (8.13) 

m 

8.2.  As remarked above, all of these considerat ions are valid as far 

as the analytic lemma can be applied, i.e., as far as _A(t) ~ q/~a. The problem 

is thus to guarantee,  for t satisfying (8.10), condi t ion (7.4), i.e., 

l_o9(_A(t))-yt ~> 22!~ ~ V_v r J/{, lYt ~<N (8.14) 

This will be done by imposing some quite strict condit ions on the constants 

2(o~ 2~ ~ ao ..... at, which up to now were free and independent  of each 

other, as we always worked separately in the different domains  ql~.  

Clearly, this is nothing but  a consistency problem: indeed, to guaran- 

tee (8.14) it is sufficient to impose that  this condit ion cannot  be violated 

within a distance Dr from d(0) ,  Dr being given by the r.h.s, of  (8.13). 
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To this purpose, consider the partition of VR into resonant blocks, 

introduced in Section 3, and suppose _ A ( 0 ) e ~ ,  dim J g = r .  Using (3.3), 

we obtain for all y r ~ ,  ]Yl ~< N, 

l_og(A(t)) "Yl > [_~(A(O))'Yl - M N D ~  

>~4~~ + 4 )  M 2~~ . . . .  (8.15) 
m 

(8.14) is then achieved, as long as one has 

Gr+ l ~ ( T r - -  rT~ 

(8.16) / A/f\ 

(o/ >f (2 + (6/2 + 4) ~ )  4~oO) r = 0  l - 1  r + l  

A simple choice is 

r(r - 1 ) 
(Tr = (70 2 

4~ ~ = 4(o ~ (8.17) 

2 

We need then a choice for r, (7o, and 4(o ~ as well as for the constant fl we 

left free in the analytic part. The only limitations we have, beside (8.17), are 

(8.18) 
4 a o + 2 z + p <  1 

which assure both condition C o E >  1 and condition 

analytic lemma. A simple choice is 

(m)' 
E 

1 

r - l(l + 1~ a~ 

2l+  3 
f l = - -  l(l + 1) (7o 

1 

which gives b = z, and 4a o + 2z~- fl <-6(7 0 < 1 for any 1 >~ 2. 

(7.3) entering the 

(8.19) 
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After this choice, (8.10) can be replaced by 

[tl << T_ E_~ ( e_~ ~ 2~0)e(1/8)r b 

\ eo)  

where e ~< �89 has also been used. 

Estimate (8.13) gives then in particular for any r 

(8.20) 

lid(t) - A(0)I[ < (6/2 + 4) __E gl/2)~0 (8.21) 
m 

Finally, for any r one has 

eo>~ L ~,~)~BFlfE'~2 m(~) ~4l--2(/+ 1)] 1/<1 6a0) 

with 

(8.22) 

Bt = 218l+ 131sl+ 1B2 < 222l+ 19/8/+ 1 (8.23) 

=-~, as in (3.6), inequalities (8.20) and (8.21) give (3.7), while N o w ,  f o r  o- o 

the estimates of Part (ii) of Proposition 2 are contained in the analytic 

lemma of Section 7. The proof of Proposition 2 is thus concluded. 

9. L E M M A S  

In this section we recall a few elementary lemmas, which are used 
throughout the paper. 

I_emma 1. Let Jr  an r-dimensional subspace of Z l. Suppose that 

the function 

g(_A, _(p)= ~ gr(_A)e i~-+ (9.1) 

is analytic for (_A, ~ ) e  W(Og; p, ~), 0//being an open subset of R+; let ~(_A) 

satisfy for any _A the diophantine condition 

I~(d)._vl l<Cl_vl= V_vr [_vl < N  (9.2) 

(N could also be infinite), and denote 

g<U= ~ gv(_A )e,~. f (9.3) 
yr  
I_vl < N 
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Then the equation for ~b(A, ~) 

og(A) �9 ~ (A, r + g <U~A[_, r = 0 (9.4) 
8 ~  - 

c a n  be solved, and for any positive d <  ~ and r/< p one has the estimates 

(i) N~ll~,~-~ < II gllp,: OoC 6 - ' - ~  

Ocrp < ~g Bo C6 t-  (ii) 
7_~ ~,~_~ ~ ~,~ 

(9.5) 
O~b 

(iii) ~ p,~_a< Ngllp,~ BoC6 -I ~ 1 

(iv) 8_~ < [ig]lp,~ BoCfi_t_%l 
p -rl,~- 6 

The constant B0 depends on l and c~, and can be taken to be 

Bo = 22z+~+le~+~(~ + 1) ~+1 < 22z+s~+s(~ + 1) ~+~ (9.6) 

The proof is based on elementary dimensional estimates; for essentially the 

same estimates, see, for example, Ref. 10. [Notice that, for (9.1), the 
average of g over ~ is assumed to vanish, even for r = 0]. 

k e m m a  2. If g(A, ~) is analytic in W(U; p, ~), then the quantity 

g>N(-A, fl) ~ E g~(-A) e~~- (9.7) 
[_vl > N 

satisfies the estimate 
>N ~ ' /1  e-(1/2)6~ ! 

I[g IJo:_a-.~/T + , ,  e (1/2)6N V(~>O , - ~ j  Itgll,,,e 
(9.8) 

22/~ -z e -(1/2)6u II gll p,r 0 < 6 ~< 

The proof is based on the elementary property of analytic functions of 
having exponentially decreasing Fourier coefficients; see, for example, 
Ref. 10. 

k e m m a  3. For any integers k, s, with 1 ~< s ~< k, one has 

~, FI ki! <~k! (9.9) 
ki,...,ks>~ 1 i= 1 

k l +  " ' "  + k s ~ k  

The proof is made by induction, and left to the reader. 
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L e m m a  4. The number  J(l, p) of integer /-tuples _m = 

(ml,..., m l ) ~ Z  t, with mi>>,O and Y,I=1 mi=p, is 

J(l,p) ( ~'I-I+P'!<2~+P ~ (9.10) 
( / -  1)~ p! 

The result follows directly from counting. 

k e m m a  5. Let  J / / b e  an r-dimensional  subspace of Z t, generated by 

the integer vectors v l ..... _yr. Then  there exists an l x l  matr ix J, with 

det J =  1, and integer entries, such that  _v;- J_vi, i =  1 ..... r, satisfy (_v;)j=0 

for j = i + 1,..., l, so that  one has in part icular  

J/g'=-JM= {_v'[ v' ~ Z;;  ~';+ 1,.--, v; =0} (9.11) 

Proof. For  l =  2, r = 1, let ~ ~ Z z be parallel to v 1,/~1 and/*2 having 

no c o m m o n  divisor. One can always find integers m and n such that 

m#l + n#2 equals 1 (or  any other  preassigned integer); one can then take 

(on) 
J =  (9.12) 

--/-t2 #1 

For  general I and r = t one clearly obtains (v'l) j = 0 for j =  2,..., l by solving 

l -  1 times the two-dimensional  problem in the subspaces (1, j) ,  j -- 2 ..... I. 

Suppose now one has already found J which gives (_v~)j = 0 for i = 1,..., 

r -  1, j = i + 1,..., l. One can then choose J of the form 

,=(g ;), 
I being the identity on the first r -  1 components ;  indeed, such a matr ix 

leaves unchanged _vl,..., _Vr 1, while, as shown above, one can always find a 

( l - r +  1 ) x ( l - r +  1) matr ix  J with determinant  one, such that  the 

( l - r  + 1 )-dimensional vector  J((vr) ...... (vr)t) has, as required, all the com- 

ponents  but  the first which vanish. 

L e m m a  6. Let  X{ be an r-dimensional  subspace of Zt; given 

f(~)=~_,,~zt fve iv-'~', denote 

H , f =  ~ f,,e i'~- (9.14) 
v ~ . d l  

Then we have 

Ha, f =  ( 2 g )  r , f f(jT~_,) dq,'r+ 1"" d(191 

J being the integer matr ix in t roduced in Lemma  5. 

(9.15) 
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Proof. 

mapping of T t into itself; it follows that 

Let ~ =JT_9' , f '(~_')= f ( j r ~ , ) .  As det J =  1, J is an invertible 

v '  ~ . ~  I '  v '  ~ . f f r  

= ~, yv, "'~~ ""do;  
V ' G , / t I  ' 

(9.16) 

= (2~)r- ,  f( jr~_,) d(p,r+l...dcp; 

as claimed. 

L e m m a  7 ("Geometric Lemma"). Let fi~ ..... f irER z be linearly 

independent, and consider any vector _weR z belonging to the subspace 

generated by V l ..... fir, satisfying 

Lw'fjl ~;v,  j =  1,..., r (9.17) 

Then we have 

r V 
_< rI;=l ll_,lle 2 

II wile ~ u ..... v----~) ]lfjl[ e 
- - j = l  

(9.18) 

where II-lle denotes the euclidean norm, and V o l ( _ V l , . . .  , f i r )  is the euclidean 

volume of the parallelepiped generated by Vx,...,_v,. In particular, if fil,..., fir 

are integer vectors satisfying I_vjl ~<N, j =  1 ..... r, and for )-i = "'" = 2 , = ) ,  

one has 

II-wlle ~ rNr- l~ (9.19) 

Statement (9.18), which is trivial for r = 1, is easily proven by induction for 

r >  1. The idea is to introduce the decomposition w = w ' + w " ,  

_Vr+ l=_v '+f i ' ,  with w',fi' belonging to the linear subspace generated by 

_vl ..... fir, and _w", _v" perpendicular to it. For  a detailed proof of essentially 

the same statement, see Ref. 2. 

10. C O N C L U D I N G  R E M A R K S ,  A N D  C O M P A R I S O N  

W I T H  K A M  T H E O R E M  

It is perhaps worth pointing out that one needs very little in the proof 

of Proposition 2, if one is willing to give up the determination of most con- 

stants. All one needs to know is that something like the analytic lemma of 

Section 7 is true, in the sense that, given a resonance Jr' and a layer q/~ of 

822/44/3-4-4  
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points _A within e al of the resonant surface X,u, a~ < �89 then one can build a 

canonical transformation ~ in q/<u x T~, close to the identity within 

8 a2, a 2 > al ,  such that in the new coordinates the Hamiltonian takes the 

form (7.7). Then, by the arguments used in connection with Propositions 3 

and 4, if aa, a2 are fixed a priori, then data closer to the resonant surface 

Z'~ than e a3, with a~ < a3 (i.e., data well inside the resonance), will never 

get out of q/~ before an exponentially long time. Indeed, if a~ < a3 < a2 can 

be chosen a priori uniformly in J///, and the exponential estimate of the 

remainder in the analytic lemma is also uniform in J// (with the only 

restriction that e is small enough), then the arguments leading to 

Propositions 3 and 4 work, and one obtains the qualitative picture of the 

motion one is looking for. 

However, it is interesting and necessary for applications to have a true 

control on the dependence of the various quantities involved on the 

interaction parameters E, p, ~, l, m, M. We have here presented a derivation 

of these results, in which some care has been devoted to this question, 

although most numerical constants can be certainly improved. The reader 

should realize that most of the inequalities are quite natural, or even 

obvious, if one gives up the determination of the constants in terms of 

E , p , ~ , l , m , m .  
Let us compare more closely Nekhoroshev's theorem with the well- 

known KAM theorem. (11 a3) 

Both theorems deal with Hamiltonians of the form (2.1), i.e., 

H~(A, _cp) = h(_A) + ef(A, ~) (10.1) 

which are assumed to be regular in a suitable domain V x T (  Both 

theorems are based on the construction of canonical transformations of the 

form (d, _cp) = ~n)(A',  ~'), defined in a convenient domain V~ nl • T l, which 

give the new Hamiltonian the form 

H~n)(_A ', ~ ' ) =  h~n)(_A ', _(p')+ 8" + 1 f(# + 1)(_A ', ~', ~) (10.2) 

where h~") must be either ~'-independent (KAM), or possibly dependent on 

~' in a restricted way (Nekhoroshev), while f (n+ 1), or better its derivatives, 

are required to be conveniently bounded in V~ ") x T l for small e. Finally, 

both the KAM theorem and Nekhoroshev's theorem are concerned with 

the problem of taking the limit n --) oo: however, this limit is conceived in 

substantially different ways. 

On the one hand, the KAM theorem looks for truly asymptotic results 

for t --, 0% at small but fixed 8; this requires taking the limit n --* oo at fixed 

e ~ 0. As is well known, the existence of the limit can be proven, but a 

serious sacrifice is necessary for what concerns the domain V~ x T t where 
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the final canonical transformation is defined (more precisely, according to 

Refs 14 and 15, the domain where the old and final Hamiltonians are con- 

jugated by the canonical transformation one is constructing). Indeed the set 

V~ that one is able to construct, although large in measure for small e, has 

empty interior. This difficulty, as is well known, arises from the necessity of 

taking care, for any fixed n, of all possible resonances of _o0(_A) with all 

integer vectors _v, up to an ultraviolet cut-off N--+ oo for n --+ m, so that, in 

this limit, resonances become dense. 

On the other hand, the purpose of Nekhoroshev's  theorem is to work 

in the whole phase space. As we have seen, such a result can be achieved, if 

one accepts taking the limit n -+ ~ together with e --+ 0. In fact, one can say 

that the essence of Nekhoroshev's  theorem is to show that n can be con- 

sistently chosen to grow as a power of e, say n ~ e ~; indeed, replacing this 

expression in (10.2) directly gives an exponential estimate for the remain- 

der. 

Concerning the geometric construction entering Nekhoroshev's  

theorem (our Proposit ion 2), this clearly corresponds to the procedure of 

the K A M  theorem of eliminating resonances from the action space. 

Moreover, as we have seen in Section 9.2, a basic element of the geometric 

part of Nekhoroshev's  theorem is the fact that resonances are, so to speak, 

well separated from each other. Clearly, this is the counterpart  of the basic 

fact of the K A M  theorem that the resonant set to be eliminated from the 

action space has small measure. 

To this purpose, let us consider again the condition defining, in 

Proposit ion 2, the nonresonant  region (r = 0), i.e., from (3.3) and (3.6): 

I~(A)"  _vl > ~.~o/~, 

This condition could be generalized to 

I~(_A) - _vl > A~~ ~1 I_vl 

My vL0, I_vl ~<N (10.3) 

v v # o ,  I_vl ~ N  (10.4) 

which also contains the diophantine condition entering the K A M  theorem 

in the limit N--+ c~ at fixed e. Now, it could be easily seen that the set of 

angular velocities which do not satisfy the above condition has a measure 

bounded by an expression of the form 

8a1(Cl + c2N1-1 ~) (10.5) 

cl, c2 being suitable constants. For  N ~  oo at fixed e (KAM) one finds a 

measure small with e, as long as 7 > l -  1. Instead, if one takes, as we did, 

N =  e -r,  the condition becomes 

• 1  - -  z(l-- 1 - 7 )  > 0 ( 1 0 . 6 )  
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This condition is easily satisfied, even at c~ = 0, if ~ < crl/(l - 1 ); this explains 

why in Proposition 2 the KAM-like diophantine condition was not 

necessary. 

A P P E N D I X .  H O M O C L I N I C  POINTS FOR A S Y S T E M  W I T H  T W O  

DEGREES OF F R E E D O M ;  AN E X A M P L E  

A.1. Here we provide an example of Hamiltonian system with two 

degrees of freedom, of the form (5.2) with e = 0, which can be shown to 

have a homoclinic point. 

Denote (_S, 6 ) =  (a, b, ~o, ~b), and assume for simplicity (forgetting here 

dimensional correctness) I1 = 12 = 1. The Hamiltonian is then written 

a 2 b 2 
H(a, b, q), tp ) = ~ - + ~ - +  V((p, ~) (a.1) 

Let us take 

v(q~, ~ )  = - c o s  q~ + u cos(~0 - 0 )  (A.2) 

which gives, for small #, a pendulum weakly couled to a free rotator. At 

# = 0, the pendulum admits a separatrix, while the rotator regularly turns, 

with a period T depending on the initial datum. The Poincar6 map 

(a, ~0)~--~ g',(a, ~o), corresponding to the section of the flow tp =0 ,  ~ > 0  at 

any fixed energy E, coincides, for # = 0, with the time-T-map of the pen- 

dulum, so that _F0(a, ~0) admits (for E >  1) two hyperbolic fixed points 

z + - (0, _+z), connected by a separatrix ~0. For  small #, _F, will also have 

two hyperbolic fixed points _z2 and _z +, with an unstable manifold ~7 and 

respectively a stable manifold ~+, which replace ~o. By means of 

Melnikov's method, (16) it is not difficult to show that, for small #, 47 and 

4 + intersect transversally. 

For  this purpose, let us consider a particular solution (A(t), B(t), ~(t), 
~(t))  of Hamiltonian (A.1) for/1 = 0, which corresponds to a movement of 

the pendulum on the separatrix, at fixed total energy E. Such solution is 

easily checked to be 

~( t )  = 7r - 4  arctan e 

4 
A ( t ) = ~ ( t ) - e t + e _ ~  

(A.3) 

8 ( t ) = ~ o  
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with c o = x / 2 ( E - 1 ) .  For  any t, consider the line or thogonal  to 4o at 

(A(t), q~(t)), oriented, for example, toward  the exterior,  and introduce an 

euclidean coordinate  s on it, with origin on the separatrix. Let  s -+ (t) be the 

s-coordinates of the intersection of this line with r  for small #. Our  main 

result is contained in the following: 

Proposition A1. The coordinates  s+(t) are given at fixed t by 

s+(t) = + # [ A ( t )  2 + (sin ~ ( t ) )  2] --1/2 ~oo A(l q- 75) 
~0 

x sin(qS(t + 75) - ~ ( r ) )  dr + r 

;o 
s-(t)=_l~[A(t)2+(sinq~(t))2] ~/2 A(t+75) 

--oo 

x sin(OS(t + 75) - ~(75)) d~ + (9(# 2) 

(A.4) 

The immediate consequence of this proposi t ion is that  ~ -  and ~ j  intersect 

transversally, whenever the function 

foo ~(t) = sin(z~ - 4 arctan e -~ - co(r - t)) dr 

e ~ + e  - r  
(A.5) 

vanishes with nonvanishing derivative. As n - 4  arctan e-~-~o75 is an odd 

function of 75, the above integral vanishes at tn = nn/co, n integer; for these 

values of t the derivative of a turns out  to be 

i 
v cos(~ - 4 arctan e ~ - ~o75) dr 

~ ' ( t ) =  ( - -1 )  ~c~ e ~ + e _ ~  --oo 
(A.6) 

This integral is ho lomorphic  in co, and thus for generic ~o (for generic E) 

different from zero, as claimed. 

Proof. To prove the proposi t ion,  let us introduce the compact  

notat ions _x=(a,  ~0), y= (b ,~b ) ,  and write the Hamil ton  equat ions of 

mot ion  corresponding to Hamil tonian  (A.1), with V given by (A.2), in the 

form 

_~ = f (x )  + ub(_x, 2) 

2 = _g(_Y) + uk(_x, 2) 
(A.7) 

Four  our  Hamil tonian  system it is f ( x ) = ( - s i n ~ o , a ) ,  g(y)=(O, b), 
_h(x, _y) = - k ( x ,  y)  = (sin(~o - ~O), 0). However ,  it turns out  to be somehow 

simpler to work within a more  general  context,  assuming only that,  for 
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# = 0, the subsystem x has a separatrix 40, connecting two hyperbolic fixed 

points z +, with a particular motion _X(t)~z + for t-~ + ~ ,  while at the 

same time the subsystem y admits a periodic orbit _Y(t). Let E be the total 

energy of the system in these conditions, and consider as before the Poin- 

car6 map x ~ F ~ ( x ) ,  obtained by keeping fixed E and imposing any con- 

dition on _y, which assures transversality with the above periodic orbit at 

# = 0; _Y(0) can always be taken on the section. 

Proposition A1 is then a particular case of the following 

Proposition A2, where s -+ are defined as above, while J is the matrix 
(0 ol): 

P r o p o s i t i o n  A2. Within the above assumptions, one has 

1 io '~ s-+(t)=# Ilf(_X(t))ll J f ( X ( t + ~ ) )  

�9 _h(_X(t + z), _Y(z)) dz + (9(# 2) (A.8) 

where the dot denotes the euclidean scalar product and [['][ the euclidean 

norm. 

Proof. Consider an initial datum _x+(#) for _x, 

S i ( # ) = x  o + # x ~  + . "  (A.9) 

with _Xo E Go, i.e., _Xo = _)((to), and x (  perpendicular to Go at _Xo, at distance 

s ( ,  i.e., 

Jf(-x~ (A.10) 
= s f  II_f(_xo)ll 

The corresponding initial datum y -+ (#) = Yo + (9(#) for y is imposed by the 

choice of the Poincar6 section; for # = 0, it will be y-+(0)= Yo = _Y(0). 

We must now impose that x-+(#) belongs to ~ ;  as we will see, this 

condition, to first order in #, directly leads to (A.8). For this purpose, 

denote by (_Oi(t,/~), ~-+(t, #)) the solution to (A.7) corresponding to the 

initial datum (x-+(~t), _y-+0t)), and write 

_O+-(t, #) = _Oo(t) + p_O~(t) + . . .  
(A.11) 

~-+(t,/~) = ~o(t) + "'" 

Obviously, _O o must be a motion on the separatrix, corresponding to initial 

datum Xo, i.e., _O0(t)= _X(t + to), while (for the choice of the section) one 

has _~o(t)=_Y(t). Concerning _O~(t), it must be a solution of the linearized 

equation 

~ = L(_Oo(t)) ~ + h(Oo(t), ~o(t)) (A.12) 

with initial datum x~,  where L is the matrix (~_f/8_x). 
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Denote by 8 ~ F(t, _Xo)8 the solution of the homogeneous equation 

associated to (A.12) (which is just the linearized equation of the unpertur- 

bed _x problem, on the separatrix); the solution to (A.12) with the above 

initial datum can then be written in the form 

O~(t)=F(t,_Xo) _x+ + F 1(z,_xo) h(Oo(z),~o(z))dz (A.13) 

In order that this quantity remain finite at t ~ _ 0% it is necessary that the 

vector in the square bracket in (A.13), for t ~ _0% becomes tangent to the 

separatrix at _2c o (moreover, with a well-defined speed), as follows from the 

hyperbolicity of z +. This gives, after a projection in the direction 

orthogonal to (0 at _Xo, 

1 fo -+~ sW - [If(_xo)lt  J-f(-X(t~ 

�9 r - l ( z ,  _)((to)) h(_X(to + ~), Y(z)) dz (A.14) 

Recalling now that F is symplectic, so that (F  1 ) r=  - J F J ,  and that one 

has 

F(z, _)((to)) f(_X(to)) = f(_X(to + z)) (A. 15) 

(A.14) immediately leads to (A.8), as claimed. 

A.2. One can use the above example to illustrate in a more quan- 

titative way the statement that in the intermediate time scale chaotic 

motions become, in principle, observable, as hinted in Section 5. 

Consider the system 

1 2 g(--COS -'k COS(q91 ~02))+gzJ~(A,q~) (A.16) ~ ( A I + A ~ + A ~ ) +  q~l # - _ _ 

near the resonance Vl = (1, 0, 0), _v2= (0, 1, 0), say, and with initial data 

close to _A = (0, 0, 1 ). After making the change of variables described in Sec- 

tion 4, Propositions 3 and 4, and (4.3), (4.7), (4.9), the motion will be 

described in the slow (_S, a)-variables [_S = (Sl,  $2), a = (al ,  ~r2) ] and fast 

(F, ~)-variables by a Hamiltonian 

1 
x~ ~ h(r, e) + {�89 + S~) - cos al + # cos(a1 - a2)} 

+x/-~ V(1)(_S,F,_a,e)+ e (1/s)~ b V ~ ( S , F , a , ~ , e  ) (A.17) 

where h(F, e)= F +  �89 F 2. The description of the motion by (A.17) also 

incorporates an inessential time scale change, so that one unit of time 
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corresponds to 1/x/e units of the "physical" (i.e., old) time; the description 

holds for initial data of the form ($1, $2, F) with ]F], ISil ~< 1, say, up to a 
time (9(e(I/8)~-b). 

We suppose # small so that the system with two degrees of freedom in 

curly brackets has a homoclinic point as discussed above, and we shall use 

the fact that near such homoclinic point one can prove by rather standard 

techniques (17) that there is a "large" set N of initial conditions which 

produce chaotic motions, in the sense that if one observes them every time 

they cross, say, the section o'2 = 0, 0-2 > 0, [-i.e., via the iterates of the above- 

introduced Poincar6 map Fu(S ~, a l ) ] ,  then in a suitable set of coordinates 

the points of N can be represented by sequences of symbols, on which the 

dynamics acts as a simple shift, which can be randomly prescribed. In other 

words, ~ is homeomorphic to a space {A, B, C ' - '  }2 of sequences of sym- 

bols, and in such "coordinates" the action of the Poincar6 map is just a 

shift. 

If we now look at the evolution including the V ~ term, i.e., if we con- 

sider the Hamiltonian 

1 
. / 7  h(F, + {I(S  + c o s  + cos(o-I - o-2)} 

+ x ~  V(I>(_S, F, g, e) (A.18) 

then the basic property of the existence of chaotic motions, for small e, is 

not changed, because F is a constant of motion, so that the system in fact 

remains two-dimensional, and because the homoclinic points will persist 

under the perturbation, being structurally stable. 

Let us next look at the true evolution including V ~~ too. We want to 

estimate for how long the motions described by (A.17) and (A.18) stay 

close to each other, within an error, say, (9(e (1/16)~-b): up to this time it is 

clear that the motions of (A.17) can be "confused" with those of (A.18) 

which, as discussed above, are possibly chaotic. 

An abstract picture of our problem could be the following. Write 

x = (_S, a) and fix once and for all the initial datum (_S o, Fo, go, ~9o). Then 

we want to compare the solutions of the two equations 

_2 = _g(x, F) + e -(1/8)r b go~(_x, F, tp) _x(0) = x 0 (A.19a) 

= g(y, Fo) x(0) = x o (a.19b) 

where F, ~ are imagined as known functions of time (to be computed from 

the complete set of Hamilton equations corresponding to (A.17) and from 

initial data). 
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The theory of previous sections provides us immediately with a bound 

? on [8gJQxjl, I8g~/OFI uniform in e for e--, 0: hence, naively, we should 

expect a divergence of the solutions of (A.19a) from those of (A.19b), at the 

rate e 7~, which would not allow us to reach any time scale larger than 

C(log e). However, (A.19a) has the special feature that the 0-dependence 

does not appear in 8, but "only" in the remainder. Therefore we can repeat 

the argument leading to the e ~t growth, making use of this fact and of the 

estimate 
I F -  Fol <~ [tl e--(1/S)r (A.20) 

followed by integration from 

p =  _e_(1/8)r ~ h c~V ~ c?V ~176 
~?~9' ~0 ~< (9(1) (A.21) 

Denoting 6 = (x - _y), we can write 

_(J = _g(x, Fo) - g(y, Fo) + (_g(_x, F ) -  _g(x, Fo) ) -- (_g(y, F) - g ( y ,  Fo) ) 

+ e  (~/8)r ~goo(_x,F, 0) (A.22) 

and by integration, using _6(0)= 0 and setting d =  1_61, we find 

76(~) & + .  (9(1) & 
~0 

i ,e. ,  

6(t) <<.1 e~,_(1/8)r ~ ~C(1) 

[e-(1/s)r F(r), ~(r))l + 7 iF(r) - Fo[ ] dr 

(A.23) 

(A.24) 

This shows that the error remains (9(e -(l/16)~e-b) up to a time to such that 

7 t o < ~  e b, i.e., a time much longer than loge -I.  So we can see chaotic 

motions, and even compute their initial conditions, with great accuracy up 

to times of order e b times larger than their natural time scale, in spite of 

the fact that in the above bounds we proceed as if the reference system 

had sensitive dependence on initial conditions bounded by a positive 

e-independent Lyapunov exponent 7! 
After a time (9(e -b) has elapsed (in the original physical units this is a 

time of order e-b 1/2) the motion is still described by (A.17), as discussed 

in this paper, but we can no longer estimate the effects of neglecting the last 

term: since the evolution of (F, 0) is not independent of that of (S, _o-), and 

since the set N of chaotic motions is large but does not exhaust the whole 



338 Benettin and Gallavotti 

phase space (e.g., one constructs ~ as a set of zero measure, and it is not 

even known whether it could be enlarged to a set of positive measure), it is 

conceivable that the motion of (S, _a) will be systematically outside N, thus 

destroying chaos on scales larger than e-b. Although the latter event seems 

unlikely under "general situations," unfortunately the present techniques do 

not allow us to prove a weak generality statement. 
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