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Abstract

The stability of multihelical tearing modes in tokamaks
with shaped cross-section is determined numerically. The
method allows inclusion of a large number of singular sur-
faces resolved with high accuracy. Poloidal and radial
couplings are discussed and the convergence is well under- !
stood. High poloidal m number modes are found to be unstable
for typical equilibria. Completely stable current distri-

butions have been constructed for D-shaped plasmas.




The concept of A' (jump in the logarithmic derivative

of the perturbed magnetic field at a rational magnetic
surface) has dominated resistive stability theory since

the pioneer work of Furth, Killeen and Rosenbluth /1/,

from Glasser, Greene, Johnson /2/ until recent numerical
approaches by Manickam, Grimm and Dewar /3/ and Chu et

al. /4/.

Another line of approach started by Furth /5/, continued

by Barston /6/ and extended to 2-d geometry by Tasso /7/
and more recently by Tasso and Virtamo /8/ to 3-d per-
turbations, used the energy method to determine the stability
threshold. In particular, the derivation of an energy prin-
ciple /8/ for 3-d perturbations in tokamaks with shaped
cross—-section in the tokamak ordering, where integrations
over singularities are done in the sense of Cauchy prin-
cipal values, has permitted the developement of a numerical

code /9, 10/ without using local A's.

The merits of this method are demonstrated in the stability
analysis of D-shaped tokamaks with varying current profiles.
Another application to a small-aspect-ratio equilibrium,
though it could be in conflict with the tokamak scaling of
Ref. /8/, is done in a less rigorous fashion in order to
give an indication of the importance of toroidal coupling

effects due to the shift of the magnetic surfaces.

The starting point is the guadratic functional derived

in Ref. /8/:
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A being the z component of the vector potential, which
vanishes at the boundary, and V¥, ©, z a flux coordinate
system with straight magnetic field lines. If A is
expanded in a Fourier series:

A(Y,8,z) = % am(“’) ol (me + n2ﬂz/L)’
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then K, which is the weighted surface average of A,

is given by
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where n is the toroidal mode number and g denotes
the safety factor. This simple representation for A-X

prompts the Fourier expansion in equ. (2). The regu-

larity condition for the am(w) at the origin reads
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The stability problem reduces to minimizing éW for a
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given equilibrium. The Galerkin method used in connection
with a finite-element representation for the radial
dependence of A, i.e. the am(w) in eqg. (2), leads

to a Hermitian matrix eigenvalue problem similar to

that of ideal MHD computations /11/. The sign of the



lowest eigenvalue A determines the stability. The band struc-
ture of the matrices allows the use of very efficient
matrix solvers. The numerical method is explained in more
detail in Refs. /9, 10/.

The equilibria are computed numerically with the Garching
equilibrium code /12/ for a given current profile j( y),

a constant longitudinal field BZ and a prescribed boundary,

as solutions of the equation for the poloidal flux V¥
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Both straight and toroidal equilibria can be produced and
fed into the stability analysis. The mapping into flux co-

ordinates is done with the ERATO /11/ algorithm.

The code has been tested for circular cross-sections (single
and double tearing modes) and for elliptical cross-sections
(external kinks) with moderate ellipticity as described

in Refs. /9, 10/. This testing was continued for constant-
-current equilibria with axis ratio e = b/a of up to 7.

The comparison between the numerical and the analytical

/13/ results is displayed in Fig. 1. A given m mode is
unstable if ng; < nq < m. Since the conducting wall lies
between two confocal ellipses used in Ref. /13/ (for

details see Fig. 3 of Ref. /10/), the numerical stability
limit is expected to be located between the two analytically

calculated marginal points. For this elliptical cross-section




the even and odd modes decouple. Up to 30 even or odd
Fourier harmonics are needed in the case of e = 7 to obtain
the point of marginal stability from convergence studies.
For this extreme ellipticity the broadening of the m = 5
instability region extends from nqg = ng; = 1.2 up to

ng = 5 as demonstrated in Fig. 1. This extreme precision

of our results instills strong confidence in the method

and leads us to believe that there are no numerical errors
left. The difficulties of convergence discussed in Ref. /10/
were only due to inconvenient implementation of the boundary
condition for a, at the origin (see eqg. (4)). Now that this
has been corrected, much fewer radial finite elements are

needed - typically up to 300.

The main purpose of this letter is to answer the question
of "tearing" stability for general current distributions
and general plasma cross-sections. This is by no means a
trivial question because destabilizing and stabilizing
effects due to the shaping and the external shear are
expected to compete. Let us therefore discuss these

effects in a straight strongly D-shaped plasma with a

bell-shaped current distribution. The contours s = /w/ws =

const and ® = const are displayed in Fig. 2, and the
current profiles together with the shear are shown in
Fig. 3. The plasma boundary is taken as fixed for the
perturbations, although this could easily be relaxed, as

will be done in a future paper. We start with a current




corresponding to that of a circular cylinder with j(r) =
(1—r2/a2)2, where the ratio of the safety factor on the
surface and on the axis is qs/qO = 3 (see Ref. /9/). The
shaping increases the shear near the plasma boundary to a
value of qs/qO = 6.3. With d, = 1.15 this configuration
is stable in the large-aspect-ratio toroidal tokamak

with respect to Mercier modes as well as to external kinks
For tearing modes the marginal points and the mode structure
are qualitatively similar to the circular-cross-section
case. For the marginal points additional poloidal couplings
occur. We find a strong m = 1, where m denotes the dominant
poloidal component, if the @ = 1 surface is located inside
the plasma. This mode, however, is easily stabilized by
increasing the safety factor above one. For ey = 1.15

we are left with unstable n = 1, % = 2 and n = 2, % = 3
modes induced by the g = 2 and 1.5 surfaces. The higher

n modes are stable.

If one tries to flatten the current around g = 1.5 and 2.0,
as indicated by the broken line in Fig. 3, one excites
higher m harmonics. The n = 1 mode is now stabilized. The
n = 2 mode is still unstable with a dominant poloidal com-
ponent m=5 (instead of 3), resonant at g = 2.5, followed
by m = 3 and 7. The five dominant harmonics of this mode
together with their derivatives, are plotted in Fig. 4.

The derivatives show strong coupling between a resonant

harmonic and several non-resonant ones as m = 3, 5, 7, 2 at



ng =5. This coupling is governed by the geometry as well
as by the local gradients of the current and the safety
factor. In the computation more than 20 harmonics are

used. The n = 2 mode is unstable only if - at least -

the m = 3, 4, 5, 6, and 7 components are present. The

n = 3 mode is now unstable and is rich in higher harmonics,
as can be seen from Fig. 5. Especially the derivatives of
harmonics like m = 3, 5, 7 and 9 have large values. The

n = 3 mode is unstable only if - at least - the m = 3, 5

and 7 components couple. The convergence behaviour of these

n = 2 and 3 modes is very similar to that of the stable
case discussed in Fig. 6. To summarize, we have found in-
stabilities with m = 5 and 7 components due to poloidal
coupling, which as pure modes are stable in the circular

case.

An interesting question is whether there are current
distributions with complete stability. Such profiles are
known in the circular case from Refs. /14/ and /9/. The
current distribution is therefore once more modified to
make it less steep between g = 1.5 and 2.0 and steeper for
g > 2.0 , as presented by the solid line in Fig. 3. The
ratio is now qs/qo = 3,7. It turns out that this current
distribution is completely stable with eigenfunctions
similar to those displayed in Figs. 4 and 5. In order to
prove stability for higher toroidal mode numbers such as

n =3, 4, and 5, no fewer than 9 to 20 resonant singular




g-surfaces have to be taken into account. This, in our

opinion, is rather remarkable progress in the field.

The accuracy of numerical results also depends on the con-
vergence properties. This is the question of how the lowest
eigenvalue ) depends on the number of Fourier components

NF and of finite elements NS. Figure 6 displays the con-
vergence behaviour of n = 1, 2 and 3 modes. If the Fourier
series is going to be a good representation the influence
of higher harmonics is expected to decrease exponentially,
i.e. A « exp(-ct.NF). A practical way of judging this is

to plot A versus 1/N§ and check whether A levels off for
some reasonable NF. This is demonstrated to be the case

for a typical example in Fig. 6a. A plot of X versus any
other power of 1/NF displays the same behaviour, but it

is more instructive on the quadratic scale. The increase

in Fourier harmonics brings new singularities into play.
For a given toroidal mode number n, however, their number
is finite, but still large enough to necessicate at least
an NF of about 20 for n = 5. The steeper slope for increas-
ing n in Fig. 6a enlightens this.

The dependence of A upon the number of finite elements

NS would be like 1/N§ if expression (1) were regular. This
behaviour is found for all external kinks (the singular |
surfaces being outside the plasma) with smooth dj/d¢ profiles.
A rough argument based on the 1/x singularity in eq. (3) '
leads to a 1/NS dependence. For higher n-values again the

coefficient in front of 1/NS is stronger - as seen from




Fig. 6 b - because more singularities are present and the

radial structure of the eigenfunction is more complicated.

Up to this point the computations reported are for straight 1
plasmas, which is consistent with the tokamak scaling

assumed in Ref. /8/. In order to see the influence of the '
aspect ratio, we also used toroidal equilibria and identi-
fied j¢ (r,y) with jz(w) by taking the average on a flux
surface, while the Shafranov shift was left untouched.

The results of the W minimization show that these toroidal
effects are not significant as long as the aspect ratio

is larger than 10. Marginal modes are affected if the aspect
ratio goes down to 5. Altogether, the toroidal equilibria
seem to stabilize slightly - preferably m = 3 modes - and

the Shafranov shift increases the poloidal mode coupling.

In conclusion, it can be stated that the linear stability

problem of multihelical tearing modes in shaped tokamaks

with large aspect ratio has been quantitatively solved.
Poloidal mode couplings involving practically any number
of harmonics can be taken into account. Shaped cross-
-sections and current dips /9/ are no longer a problem.
What is additionally pleasent is the fast execution
(about 30 seconds on a CRAY for typical cases discussed)
and the simple handling of the code, allowing detailed
parameter studies. The open, apparently long-term problem
is the finite-pressure, finite-aspect-ratio tokamak, for

which we do not see an analogous solution at the moment.
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Figure Captions
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1

The unstable ng domain, nqL < ngqg < m, versus the
elongation of the elliptical cross-section. The
lower limit from analytical theory with the wall
located on the outer, respectively inner confocal
ellipse is given by the solid (——), resp. broken
(==---) curve and that from the code by the crosses.
The crosses on axis for e = 3, 5, and 7 show

that there are instabilities for all ng values

below m.

Magnetic surfaces showing lines of constant
B = /¢/¢S and the angle © belonging to the

equilibria with the currents in Fig. 3.

Current and safety factor profiles of cylinder-
-like (-.-.-), destabilized (----) and stabilized
(

) profiles.

Radial dependence of the 5 dominant poloidal
harmonics and their derivatives of an unstable
n = 2 eigenfunction. The broken lines indicate

the singular surfaces.

Radial dependence of the 5 dominant poloidal
harmonics and their derivatives of an unstable
n = 3 eigenfunction. The broken lines indicate

the singular surfaces.
Convergence dependence of the lowest eigenvalue A

a) versus the number of poloidal harmonics NF

in a 1/NF2 scale

b) versus the number of radial finite elements
NS in a 1/NS scale.
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