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(113)

eigenvalue, Equation (11h)

kinematic viscosity

mass density, or eigenvalue, Equation (117)
Wronskian, Equation I-5

amplitude function, Equation (78)

stream function for disturbance
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CHAPTER I

INTRODUCTION AND LITERATURE SURVEY

A. Introduction

In this dissertation the stability of the natural-convective
motion of a viscous fluid contained in a vertical slot having isothermal
vertical walls of different temperatures is analyzed. At small values of
wall temperature difference this motion is unicellular, with fluid rising
adjacent to the hot wall and falling adjacent to the cold wall. It is
shown that if the wall temperature difference exceeds a critical value
this motion becomes unstable and a secondary, multicellular, laminar
motion appears in the slot. The critical value of the wall temperature
difference and the geometric form of the secondary motion are analytically
predicted. These results are corroborated by a flow-visualization experi-
ment.

The physical concepts of stability are based on the experimental
observation that in a given physical configuration simple laminar motions
exist provided the characteristic parameter of the motion does not exceed
a certain critical value. If this critical value is exceeded the motion
becomes unstable with respect to small disturbances and tends to shift to
a new, usually more stable, state of motion. This new state in some in-
stances is in the form of a more complicated stationary laminar motion,
which is referred to as a "stationary instability' or 'secondary flow."

In other instances the new state is in the form of a traveling wave. Often
the viscous effects associated with such traveling waves are concentrated

in a narrow "shear layer" within the flow. In such cases the waveg are



referred to as Tollmien-Schlichting waves and the instability leads to
turbulence.

In the analysis of stability it is recognized that, for a given
configuration, the transport equations may allow a simple solution which
represents a laminar flow. Such a flow is referred to here as a 'base
flow." The mathematical disturbance, in two or three dimensions, of this
solution yields an eigenvalue problem in terms of the characteristic para-
meter of the flow. The eigenvalues of this problem characterize the states
of neutral stability, in which the disturbance neither amplifies nor de-
cays with increasing time.

The base flow of the present problem is represented by two simple
models. The first is an exact solution of the governing equations as the
height of the slot becomes infinite. This is referred to as the "infinite-

slot case."

The second is an approximate solution of the governing equa-
tions when the slot is of finite height. This model is partially dependent
upon experimental observations reported in the literature. It is referred
to as the "finite case."

The parameters which characterize the base flow are the Grashof
number, Gr, the Prandtl number, Pr, and the aspect ratio (the height to
width ratio of the slot), h. In some instances the Rayleigh number,

Ra = Gr - Pr , is used. The disturbance is characterized by its wave
speed, ¢, and its wave number < . Since the wave speed in this case is
zero for states of neutral stability--the instability is of the station-
ary type--the eigenvalues of the disturbance equation are represented

as curves in the (Gr-O plane which are parametrically dependent upon the

Prandtl number and the aspect ratio. These curves, which separate the
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stable and unstable domains, are referred to as curves of neutral
stability or simply "neutral curves." The point in the Gr-0 plane at
which the neutral curve has a minimum with respect to Gr is referred
to as the "critical point" and represents the state at which the flow
first becomes unstable according to linearized theory. The present ana-
lysis is primarily concerned with the determination of the neutral
curves.

Experimental verification of the analytical results is ob-
tained by simultaneous flow visualization and wall-temperature measure-
ments. This is sufficient for the determination of the Grashof number
and wave number in relatively early stages of instability. These values

are compared with those predicted by the analysis at the critical point.

B. Literature Survey

1. The Linearized Theory of Hydrodynamic Stability

(31)

The monograph by C. C. Lin is mainly devoted to the mathe-
matical theory of the stability of parallel and nearly-parallel incom-
pPressible flows. A bibliography of 220 references representative of the
analytical and experimental knowledge of hydrodynamic stability as of
1954 is included. A large section of Reference L2 is devoted to the
same subject and numerous references through 1963 are given. Many other
text books and reference works include similar sections.

C. C. Lin(go)

presents a detailed account of the theory of
stability of two-dimensional parallel flows of homogeneous fluids. These
papers contain detailed mathematical and physical discussions of the

(bl
stability of Poiseuille and Blasius flows. Tollmien( discusses the

stability of flow in symmetrical channels and boundary layers. His paper



Lo

is essentially devoted to the study of inflectional instability of in-
viscid fluids. His treatment of the asymptotic solutions near the
singularities which occur in these problems is of major importance in
the development of stability theory. Squire(ul) presents a fundamental
theorem which indicates the sufficiency of considering the stability of
parallel flowg with respect to two-dimensional disturbances.

Another large portion of the literature is devoted to station-
ary, or cellular, instabilities. The prototype of these is the cellular
convection pattern discovered by Bénard(u) in a layer of fluid heated

(10)

from below. The book by Chandrasekhar is largely devoted to a compre-
hensive study of this type of instability. A very large annotated biblio-
graphy of analytical and experimental work is included. Taylor's(u3)

experimental and analytical investigation of the stability of cylindrical

Couette flow is of great importance in the historical context.

2. Related Stability Problems

Gershuni<20) considers the stability of antisymmetric natural
convection between parallel vertical plates. The stability problem is
formulated in terms of both velocity and temperature perturbations. The
instability is assumed to be of the stationary type and Galerkin's method
is used to solve the resulting eigenvalue problem. Polynomial profiles
of the fourth and second order are used to represent the disturbance
stream function and temperature respectively. The results indicate a
strong dependence of the critical Grashof number on the Prandtl number.
In Reference 21 Gershuni extends this analysis to the case in which the

parallel plates are oriented at an arbitrary angle to the vertical. In
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both of these papers the disturbance temperature profile contains two
approximating functions while the disturbance stream function profile
includes only one. This weights the solution in favor of the thermal
equation and probably leads to an incorrect Prandtl number dependence.
Jstrach and Maslin(3u) and Ostrach(35) consider the stability
of fully-developed natural convection in a vertical channel. The major
protion of this work is an analysis of the stability of symmetrical natural-
convective flows. The analysis is essentially an extension of the Heisen-
berg-Lin method of solution(so) to include thermal disturbances. It is
found that the thermal body force has no effect on the stability of the
flow for large values of the wave number--Reynolds number product. There-
fore the neutral stability curve in the Grashoff number--wave number
plane is independent of the Prandtl number and can in fact be inferred
from the known solution for the stability of Poiseuille flow. It is
further shown that this conclusion regarding the role of the thermal
body force is also valid for antisymmetric natural-convective flows.
The reasoning in this case, however, assumes a traveling-wave mode of
instability.
Gershuni and Zhukhovitskii(gg) discuss the stability of anti-
symmetric natural convection of an electrically-conducting fluid in a
vertical channel in the presence of a magnetic field. The Galerkin
method is applied in a manner identical to References 20 and 21
discussed above. The stability of the flow with respect to both travel-
ing--wave and stationary modes of instability is analyzed for the case
of a transverse magnetic field. In the case of a longitudinal magnetic

field it is found that only stationary instability is possible. This
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conclusion is based on the fact that the Galerkin method, as applied in
this paper, yields only complex solutions for the Grashof number unless
the wave speed is zero.

Damaskos and Young<12) investigated the stability of a model
of thermally-induced flow in an induction furnace. This is essentially
a symmetrical natural convection of an electrically conducting liquid
in a vertical channel. The Galerkin method is applied using polynomials
to represent the disturbance stream function and temperature profiles.
In obtaining the secular determinant for this problem of eigenfunctions
are assumed to be real.

The discussion of the stabllity of three-dimensional boundary

(2k)

layers by Gregory, Stuart, and Watson includes both analytical and
experimental results. A large portion of this paper is devoted to the
stability of the flow of a viscous fluld near a rotating disk. The
governing equations of this problem are nearly analogous to the equations
governing the stability of a fully developed natural convection. The
equation corresponding to the disturbance energy equation is, however,
uncoupled from the eguation corresponding to the disturbance momentum
equation. The analysis is restricted to the inviscid limit. The ana-
lytical results are compared with the results of an experimental investi-
gation.

After the analysis of the stability of natural convection in
an infinite slot, which is reported in this dissertation, had been com-
pleted, two Russian papers on the subject appeared in English transla-
\7(6,uo)

tion In the first of these Birikh discusses the stability of a

parallel flow having a cubic veloclty profile. This is considered to



represent the natural convectlon problem for very small Prandtl numbers.
The Galerkin method is applied using a set of orthogonal functions
derived in Reference 5 as approximating functions. The emphasis is on
determining the spectrum of eigenvalues for the problem. The first ele-
ven eigenvalues are determined using 18 approximating functions. The
solution of the Orr-Sommerfeld equation is considered 1o be complex in
the same manner as in this dissertation. The disturbance stream pattern
is evaluated and displayed. The lowest eigenvalues are found to be real
(i.e. the instability is of the stationary type)o The critical value
of the Srashof number is in agreement with that reported here within

0.7 percent.

The paper by Rudakov(ho)

ig essentially a correction to Birikh's
paper for non-zero Prandtl numbers. The stream-function and temperature
perturbations are expanded in powersof the wave number--Grashof number
product. Although the higher-order eigenvalues exhibit a very strong
Prandtl number dependence, the lowest eigenvalue, which represents the

neutrally-stable mode, shows only a small (but not negligible ) dependence

upon the Frandtl number.

3. Methods of Solution

The technique of solution applied to the eigenvalue problem
generated in this analysis 1s the Galerkin method. The Galerkin method
is one of many 'weighted-residual techniques" for the approximate solu-
tion of differential equations. Because of their formal similarity and
mathematical relationship, it is useful to study variational technigues
in conjunction with weighted-residual techniques, particularly in the

context of hydrodynamic stability.
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(28)

Kantorovich and Krylov devote a chapter to the development
of the variational and Galerkin methods of solving, or reducing the order
of, differential equations. The identicality of the Galerkin method and
the Ritz variational procedure for many linear problems is discussed.
Several examples, including linear eigenvalue problems, are solved in
detail. Collatz<ll> discusses variational technigues for the solution
of gelf-adjoint eigenvalue problems. A number of mathematical results
such as "bracketing theorems" are included. Many texts and reference
works include detailed discussions of variational technigues for solving
linear eigenvalue problems, but most are limited to the well-developed
theory of second-order self-adjoint systems.

Y

Ames(l) devotes a chapter to weighted residual methods for

(3)

differential equations. Becker's monograph is a discussion of the
theory and application of certain variational and weighted-residual
methods for the approximate solution of boundary and eigenvalue problems
arising in engineering analysis. Based upon a set of criteria which its
author considers desirable in a variational method, this monograph gener-
ally recommends the use of least-square variational methods.

A thorough review of the method of weighted residuals is given
by Finlayson and Scriven.<l9) Many methods which belong to this class
are discussed and compared as tools for the approximate solution of
engineering problems. The conclusion is reached that in general the
selection of approximating functions is of greater importance than the
selection of a particular weighted-residual method. TFor most problems

none of the particular methods has a distinct theoretical advantage over

the others. Since the Galerkin method is the computationally simplest
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of these methods, its use is implicitly recommended. A list of 187
references, many involving technical applications is included.

(18)

A second paper by Finlayson and Scriven discusses the
method of weighted residuals for the analysis of transport processes.
It is shown that several 'variational principles" proposed for non-self-
adjoint differential systems are not true variational principles, and
further that they are actually applications of the Galerkin method in
a more complicated computational form. The extension of the method of
welghted residuals to systems of differential eguations and to vector
differential equations is discussed.

The application of the Galerkin method to problems in hydro-

(13)

dynamic stability is considered by Di Prima. As examples he treats
the stability of the flow between rotating cylinders and the problem
of flow over a concave surface. These problems have solutions which
decay exponentially rather than satisfy fixed-point boundary conditions.

(36)

Pellew and Southwell utilized a variational method to

solve the eigenvalue problem arising in the determination of the stabil-

ity of a horizontal layer of viscous liquid heated from below. The
differential system describing this problem is self-adjoint and their method
involves a classical extremal principle. Chandrasekhar<9’lo> proposes

and applies a technique for solving many non-selfeadjoint systems which
arise in stability analysis. This technique, although formally similar

to that of Fellew and Southwell, does not have its foundation in a simple

extremal principle. Roberts,(39) however, shows that the technique does

have a variational basis in terms of an adjoint differential system.
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In the problem under discussion here, a certain set of orthogonal
functions which satisfy four homogeneous boundary conditions 1s utilized

as the set of approximating functions for the Galerkin method. These

(37)

functions have been used by Rayleigh and others in the theory of beam

(e5)

vibration. They are tabulated and discussed by Harris and Reid. In

(38)

a second paper Reid and Harris evaluate a number of integrals which

arise when these functions are utilized for Fourier-type expansions.

L, Natural Convection in Vertical Slots and Channels

A review of the literature regarding natural convection in
vertical slots and channels was conducted in order to (1) aid in devising
a simple but meaningful model of the base flow, and (2) search for experi-
mental evidence of instabilities of such flows.

The early investigations in this area consisted of experimental
measurements of heat transfer across vertical air layers. The results
of these investigations were generally presented as correlations of Nusselt
number or equivalent thermal conductivity with Grashof number. Jakob(27>
presents a compillation of such results from several sources.

In the past six years, three experimental studies of laminar
natural convection in vertical slots have been reported. These studies
differ from those discussed above in that they present detailed informa-
tion regarding the thermal field and/or the mechanics of the flow. The

(1

first of these, a paper by Eckert and Carlson, concerns natural
convection of air in a vertical slot with 1lsothermal walls of different
temperatures. The temperature field was studied with a Mach--Zehnder

interferometer. Three regimes of laminar convective motion were observed

and defined. These were denoted as the conduction, transition, and
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boundary layer regimes. In the conduction regime, which exists for

low Grashof numbers, the temperature varies linearly across the slot in

a horizontal plane. Thus heat is transferred from one vertical wall to
the other purely by conduction, except near the top and bottom boundaries.
In the boundary layer regime, which occurs at higher Grashof numbers,

the variation of temperature across horizontal planes is not linear. In
this regime rather large thermal gradients occur in thin layers near the
vertical walls, while the temperature gradient is essentially zero in

the core between these two layers. Thus in this regime the fransport

of heat from one vertical wall to the other is primarily by convection.
The transition from the conduction regime to the boundary layer regime

is intimately related to the formation of a vertical temperature gradient
in central portion of the slot. At low Grashof numbers no vertical
temperature gradient exists, except near the upper and lower boundaries.
Thus no vertical conduction or convection of heat occurs, and the tempera-
ture varies linearly from one vertical wall to the other. As the Grashof
number is lncreased, however, the temperature is found to increase linear-
ly as the centerline is traversed in the vertical direction. At large
Grashof numbers the vertical temperature gradient assumes an asymptotic
value of .6 times the difference in wall temperature divided by the height
of' the slot. Some low-frequency turbulent fluctuations were observed in
the core of the slot. At high Grashof numbers wave motions were ob-
served 1n the vertical boundary layers.

(32)

Mordchelles - Regnier and Kaplan utilized a differential
interferometer to study the transition to turbulence of natural convec-

tion of carbon dioxide in a vertical slot with isothermal walls. The
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three laminar flow regimes and the vertical temperature gradient dis-
cussed above were also observed in this study. Over large ranges of the
flow parameters the development of turbulence was found to be qualitative-
ly similar to that which occurs in the free-convective boundary layer
on a single vertical plate. Of particular relevance to the present
investigation is the apparent observation of a multicellular secondary
flow pattern preceding transition to turbulence when the height to width
ratio was large. Caution must be observed, however, in making such in-
ferences about the flow field from observations of the thermal field.

Elder(l5) presents a detailed experimental study of the thermal
and Tlow fieldg in a vertical slot with isothermal walls. This study
differs from all previous studies in two respects: (1) the test fluids
have large Prandtl numbers (1000-2500), and (2) the flow field is visua-
lized. The laminar flow regimes and vertical temperature gradient are
gualitatively similar to those discussed above. A large amount of data
regarding temperature and velocity profiles, and the vertical temperature
gradient is presented. The vertical temperature gradient was observed
to approach an asymptotic value of .5 to .55 times the temperature drop
across the slot divided by the height of the slot. Above a critical
value of the Rayleigh number a secondary flow in the form of several
cells, all having the same sense of rotation, was observed. At still
larger Rayleigh numbers small cells of the opposite rotation formed in
the shear layers between the original cells.

The related problem of natural convection between vertical
isothermal plates which are open at both the top and bottom has been

discussed by a number of authors. Ostrach(33) discussed the fully-developed
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natural convection of a viscous fluid between semi-infinite vertical
isothermal plates. His analysis includes a regular perturbation scheme
for evaluating the effect of viscous dissipation. His first order solu-
tion (no viscous dissipation) is identical to the conduction regime dis-
cussed above when the amblent temperature is equal to the average of the
plate temperatures. This work is extended by Lietzke(29) to the case of
constant wall heat flux. Heat transfer measurements are also reported.

Bodolia and Osterle(Y) present a finite-difference solution
for natural convection between finite isothermal vertical plates having
equal temperatures greater than that of the ambient. The development
length was found to vary with the fourth power of the distance between
the plates.

Three analytical investigations deal directly with natural con-
vection in a vertical slot with isothermal walls. Batchelor<2) presents
an analysis motivated by consideration of double-paned windows and in-
sulation gaps in buildings. His analysis utilizes an expansion in powers
of the Rayleigh number. It is concluded that a conduction temperature
profile and the corresponding cubic velocity profile give the correct
asymptotic description of the flow as the height to width ratic approaches
infinity while the Rayleigh number remains finite. Transition to a
boundary layer regime 1s predicted for large Rayleigh numbers and finite
helght to width ratios. It 1s hypothesized that in this regime an iso=-
thermal core region of stagnant fluid exists. As indicated above, experi-
ments later showed that there 1s a linear temperature increase in the

vertical direction within this core.
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In a recent paper Gill<23) presents an analysis of the boundary
layer regime for large values of the Prandtl number. An approximate
solution is obtained by Carrier's modification of the Oseen technique of
matched asymptotic expansions. Comparisons with Elder's experimental
results are presented and the mechanics of the flow is discussed in some
detail.

16)

Elder( presents numerical solutions for natural convection
in a vertiecal slot. Of particular interest are cellular motions which
were obtained just prior to divergence of the numerical solution. The
cellular patterns are similar in appearance to those found experimental-
ly(l5) although they occur at a much lower Rayleigh number. Even though

the solutions are nearly unstable in the numerical sense, this result is

most intriguing.

5. Experimental Methods

A literature survey was not required for the design of the
experiment as its general nature was dictated by the analysis. DMuch in-
formation was, however, gained from the directly-related investigation
by Elder,(IS) The dissertation of Caddell(8) presents useful information

regarding the aluminum pigment suspension method of flow visualization.



CHAPTER II

THEORETICAL ANALYSIS

A. Introduction

In this chapter two analytical models of the base flow are
constructed. The first applies to the case of a vertical slot of infinite
height. The second applies to the flow in the central portion of a slot
of finite height. The velocity and temperature profiles given by the
second model are compared with experimental data avallable in the litera-
ture. A detailed derivation of the linearized disturbance eguations 1is
presented. This derivation includes an extension of Squire's Theorem
to the case of parallel natural convection. A brief review of available
solution techniques is given, as 1s a description of Galerkin's method,
which was used in this investigation. The solution of the governing
elgenvalue problem is described and the resulting neutral curves are
presented and thelr physical significance discussed. The stream patterns
which result from the instability of the base flow are evaluated and dis-

played.

BE. The Base Flow

1. Formulation
The two-dimensional natural-convective motion of a viscous
liquid in the vertical slot of Figure 1 is now considered. 1In writing
the governing equations of this flow the following assumptions are made:
(l) The fluid density does not vary appreciably with pressure.
The density is therefore considered to be a function of

temperature only.

-15-
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Figure 1. Vertical Slot.
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(2) The specific heat, thermal conductivity, and kinematic
viscosity are constants.
(3) The pressure, temperature, and density differ from their
values under hydrostatic conditions by only small amounts.
(k) Viscous dissipation and work of compression are neglected.
Under these assumptions the Navier-Strokes (momentum), energy,
and continuity equations for steady two-dimensional motion can be written

ase

Vo NS =s oA pvry
UG vV = IO/"L:?'*VVZ\/ (2)
U +V& = av*T )
2(pPV) 2 (PV) _ 0

Zx | 2y (%)

where A = R/PCq is the thermal diffusivity. On the basis of assump-

tion (3) the pressure, temperature, and density can be expressed as

P=8+ P’ (5)
T=Te+T’ (6)
L =R + L (7)

respectively. The subscript "o" denotes a value under hydrostatic
conditions at an appropriate reference temperature, and the prime super-

script denotes a small perturbation about that value. Since density is
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considered to be a function of temperature only, and since T' 1is a

small quantity,

,=(38) T

The coefficient of volume expansion, & , is defined by

v = -(FNEA), .

Hence the density perturbation, J°/ , can be expressed as:

pl=—RY T, (8)

Now if the expressions (5) and (7) are utilized, the vertical pressure

gradient term in the momentum Equation (1) can be expressed as:

_L_jilf 29f1 + 1 or P 2)7%

!
Box T R oax T/ X ~REDX T 0 (%)

Since ® 1is by definition the hydrostatic pressure,

= —Joof)( + CONSTANT,
thus

| e? _ 1 2P’ /ea'T ,
Fox =5 P ox - 7oro(r),

\\)

Ignoring terms of quadratic or higher order in the perturbation quantities

n_rn

and dropping the subscript "o" since A2 55'/% , the following expression

is obtained:
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2p!

A “,7:1“97?2‘ = ‘:g‘ X T

If the variation of temperature throughout the field is not

large, 9 is approximately constant. Then according to Equation (8)
all derivatives of _2 will occur with the coefficient J . Since 3’
is small (of the order of 1073 - ].O'u for most fluids) the derivatives
of P can be neglected in the continuity eqguation. This approximation
coupled with Equation (9) is equivalent to ignoring density variations
exéept in the buoyancy-force term. This is known as the Boussinesqg
approximation, and the resulting equations are referred to as the
Boussinesq equations.

Utilizing the above results,
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are the governing (Boussinesq) equations of the flow.

In the analysis which follows, interest is concentrated on the
case of slots for which H/d >>{. It is the aim of this analysis to
describe, in an approximate manner,>the velocity and temperature fields
far from the top and bottom of the slot. In this central region the flow
is nearly parallel, so for the purpose of constructing simple analytical

models of the flow in this region it is assumed that
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U:U(Y); V=0.

The following dimensionless quantities are defined:

U =

X =

Ralu S
X
i

- Gp= ZLAT d? ? (14)

F7d

VZ

P4 h =
T‘Tm\

& =27 Fo= 355

where all quantities to the right of each equality sign are dimensional,
and where Tm is the mean of the wall temperatures, T..= 7}ﬁ-£%§r. In
terms of these dimensionless variables and parameters the equations des-

cribing the approximately-parallel flow in the central portion of the

slot are:

2. The Infinite Slot Approximation

The simplest model of natural convection in a vertical slot
is obtained by considering a slot of infinite height, i.e. h* 00 ., TIn

this case the Equations (15), (16), and (17) can be written in the
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following form:

Q |9

f,c'“
“Q
a |
N
_'
¢

S
b

Q.

~

N
[l
O

Q
W
1
o

Here dimensional velocity has been reverted to in order to determine a
more natural characteristic velocity. The appropriate boundary condi-

tions are:

The solutlon of this system of eguations is

=V

or,

o= (20)
- 1 N
- 4 _ 3)
U =% (4 7-77 (21)
where U = ——l"{“— Thus as 1'\"’00 the temperature field becomes
FroTd e ?
linear, indicating that heat is transferred from one vertical wall to the

other solely by conduction. The velocity field is described by a cubic

polynomial. These temperature and velocity profiles are shown in Figure 2.
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Figure 2. Velocity and Temperature Profiles for
B/d == .
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This simple model can also be thought of as describing two other
physical configurations. The first of these is the "conduction regime"
of natural convection in a vertical slot of finite height. It has been

(lh> and Elder(l5)

observed experimentally be Eckert and Carlson that if
(}r\‘F%x//k is not too large the natural convection in a vertical slot
is virtually identical to that described by Equations (20) and (21) except
near the top and bottom of the slot. Batchelor(g) estimates that the
conduction regime exists for Gr'F¥/h <500. Wnen compared with experimen-
tal results this estimate appears to depend too strongly on the aspect
ratio. A conservative guideline, based on Elder's(lS) data for high
Prandtl number fluids (Pr = 1000 - 2500) and Eckert and Carlson's<lu)
data for moderately small Prandtl number fluids (Pr = .73), is that the
conduction regime exists for GrePn < 2x10% yhen the slot is of moder-
ately large aspect ratio (h = 20 - 100).

The second physical configuration which is described by Equa-
tions (20) and (21) is the fully-developed natural convection between
two very long, parallel, isothermal, plates one of which 1s maintained
at temperature in excess of the ambient by an amount énﬁ{r and the other
of which is cooler than the ambient by the same amount. Ostrach(BB) has
considered this problem using a perturbation scheme to include the effect
of small viscous dissipation. His results indicafe that the effect of

viscous dissipation is negligible in the range of parameters of interest

in the present investigation.

3. The Finite Slot Approximation

An analytical model which approximately describes the natural

convection in a slot of finite aspect ratio was also constructed. In
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addition to being a logical extension of the stability investigation

1

of the "infinite case," analysis of this model permitted comparison of

the predicted stability criterion with experimental results obtained
by Elder,(l5>
The construct this model, the flow is again considered to be
parallel in the central portion of the slot. Thus Equations (15), (16)
and (17) govern the problem. The aspect ratio, h , is large but finite.

Differentiating Equation (15) with respect to ¥ and utilizing Equation

(17) the relation

d*u _ _ 28
d7s T T Cr5y (22)

is obtained. Since it is assumed that U=U(Y), this indicates that
%—g' = -E ("/) . The term F% in Equation (16) can be neglected
since h 1s large and Pr 1is not small. Then since ?ﬁy'_ is independent
of X , Equation (16) indicates that g—% must also be independent of

X 5 that is the temperature must be of the form

G = ﬂ:f(“/) + X 52(v)

Equation (22), however, indicates that -§z ('7') must be a constant, hence

the temperature can be expressed as

=T +8%x , (23)

where — _aﬁ
ﬁ - ax ’
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A solution of the form (23) could be strictly valid only at
X =0 because the imposed thermal boundary cond“'itions do not admit verti-
cal temperature gradients at the walls. Neglecting the term whose co-
efficient is _hjﬁ: and introducing the form (23) of the temperature
(

field, Equations (15), (16) and (17) can be combined to give

dtu 4
dy4 -+ 4% U = O 2
omt = BRa (21)

where Rga= Gr+*Pn 1is the Rayleigh number. Continuity considerations
and the no-slip boundary condition require:
(1) Antisymmetry of U about Y =0 (25)
and (2) ’L{(i‘aL) = Q. (26)
The solution of Equations (24) through (26) subject to the

_3d
thermal boundary conditions, T(Ié')‘“$2 yields the following expres-

— m/
u=K( %c«nwwwww +M(M7)C«J‘(/mv)) (27)
T= -2M1K(,7;:3(W2) i (my) emh(my) + cox (fmv)wJ\(mv)) (28)
— pv2)
j_’z__ =-2m°K {M(miz) (M(mr)/ml (my) + coe (my) cead (ﬂnv))
+ (Coq('mv)cad» (my) — in (my) aind (ﬂn"/)) } (29)
2. —
%’% =-T ) (30)

-1
where A = 4{ %@M( /Z)C"J'(MIZ)‘PCOQ(MIZ)M(MIZ))} (31)
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The derivatives %;;i and %ﬁ;%- are included here for later
reference.

The above analysis does not prescribe the value of the dimen-
sionless temperature gradient B . To estimate /2 recourse is made
to experimental observations reported in the literature. As discussed
in Section I.B. of this dissertation, Eckert and Carlson,(lu) Elder,(l5>
and Mordchelles-Regnier and Kaplan(32) all raport the existence of a

1

"convection regime" of laminar motion in vertical slots such as that
considered here. In this regime a remarkably constant vertical tempera-
ture gradient forms along the centerline of the slot. This is a stable
temperature gradient, that is the temperature increases upward. Figure 3,
which is based on Elder's(lS) Figure 5 shows the formation of this gradient
with increasing Rayleigh number. The asymptotic values of /5 reported in
these three references varied from 0.5 to 0.6.

Based on these observations, the value of the dimensionless
vertical temperature gradient is take to be A3A'= 0.5, Figures 4, 5,
and 6 show typical velocity and temperature profiles obtained by evaluat-
ing Equations (27) and (28) with Bh=0.5. Also indicated on these figures
are experimental points derived from Elder’s(IS) measurements at X=0 .
Of interest are the small flow reversals indicated at large Ra/h . The
value of Ra/h at which these occur, however, are beyond those of inter-
est in the stability analysis.

Gill(23) has recently considered the two-dimensional motion in
such slots for values of Ra/w)sufficiently large for boundary layer

theory to be applicable. Within that framework he shows that the simple

model considered above is actually the correct one at X=0.
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| © Experimental Values(IS)

== Analysis

u x 1o

Ra = 3.61 x lO6

H/d = 7.19

Figure 6. Velocity and Temperature Profiles.
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For large Prandtl number fluids, Figure 3 indicates that the
(23)

solution obtained above is valid for Ra > 8»(/03 . Gill estimates
a lower limit of Ra/h= 2><104for the validity of his boundary layer
analysis. For very smell values of Ra/h the velocity and temperature

profiles (27) and (28) become asymptotically identical to the profiles

of the "infinite-slot case."

¢, Formulation of the Stability Problem

1. Development of the Disturbance FEguations

In this section a differential system is developed which governs
the spatial and temporal behavior of a disturbance of infinitesimal
amplitude but arbitrary form which is superimposed on a parallel, two
dimensional, natural-convective flow.

The Boussinesq equations, which were discussed in Section B.1,

can be written in the following three-dimensional form:

{ PP
%% = % ax tTF#FIT + v V3V (32)
{ 2P
B =-may T2V (39)
2P
oY = - L2 +pvEw ()
-g-;-'= avZeT (35)
2U oV L oW _ 6
5x t By Tz =0 (30)

U, V, and W are respectively the velocity components in the X, Y, Z
directions of Figure 1 (Z is positive into the plane of that figure).

T and p are understood to be the deviations of temperature and pressure



_32_

from their values under hydrostatic conditions at an appropriate refer-
ence tLemperature.
In order to non-dimensionalize the above equations the follow-

ing dimensionless variables are defined

<
il

&(37)

~
H
S
N
n
\% e << dc

F = w =
t= P = AUe2
TS

-/

where all quantities to the right of each equality sign are dimensional.

Tm and AT have the same meaning as in the discussion of the base flow.

The velocity |J is defined by

— _ /LT d?
U="2 . (38)

This characteristic velocity of fully-developed natural convection was
evolved in the discussion of the base flow. In terms of these dimension-

less variables the momentum, energy and continuity equations become

Du _ _22 1 /

Bt T Tox Ter !l rEm ViU (39)
Dv __ 9P , I e

0t =" oy TG V'V (50)
Dw _ _ 2P 2

e =" T H YW (41)



DT _ 1 oo
Dt RaVT (u2)
PV
%*7*%25:0: (43)
where -~
_ grAaTdd _ Ud
Gr= L = 5 (1)
and

Ra="gz =z ", (45)

Hence the Grashof number can be interpreted as a Reynolds number in
terms of the characteristic velocity (] . The Rayleigh number then
represents the corresponding Péclét number.

The disturbance of the base flow is accomplished by a simple
regular perturbation scheme. The dependent variables of Equations (39)

through (43) are expressed as power series in € , which represents an

unspecified constant parameter which i1s small compared to unity:

U = U +EU + €2U +--

eV’ 4+ EFVT 4.

]|

ew/ + EZW//—t' o o .

4 8 S

= T +eT/ +e2T" + .-

= P o+EP 4 EEPY 4 e (46)

Since U , 7, and j; are functions of ¥ only, this per-

turbation scheme yields the following sets of equations:
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€0 jzyz,{: =—-T (47)
5‘?‘ =0 (:8)

ji— =0 (49)

el 2% L. v’j; =‘%§:+E/7T/+EX?V22‘/ (50)
—g—ty—:”ﬂ?%’ =—%—7:;-/ + ‘5:/; Ve (51)

Z v u gy - GV (52)
_g_;_‘__’ +g%’+y%§ = 7,%& VET (53)
GRS .

Since it 1s intended to study the stability of the base flows
discussed in Section II1.B., the boundary conditions (18) and (19) are

imposed on the total flow. Hence

UlrE) = 0 (55)
T(x4) = 2% (56)
u'(tt) =v/(td) = w/(x£)=0 (57)
T(t£)=0. (58)

Terms of quadratic or higher order in € are not considered.
The zero-th order equations and boundary conditions (Equations (47) through

(49), (55) and (56)) represent the base flow problem which was solved in
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Section II.B. The first order, or "disturbance' equations and boundary
conditions (Equations (50) through (54), (57) and (58)) are the linear-
ized governing equations of the disturbance.

Because the coefficients in the set of linear differential
Equations (50) through (54) are functions of 9/ only, the set accepts
solutions of the form:
4 gy @i(F BT —act) N

U= ’u(v)ei(ﬁ/x +RYy —oct)

(ax +/3 —~xdt)
W’=w(v>ez( reT C (59)

T (et GX TRE-act)

J(ox + By -adt)

r=p(y) e )

These solutions can be thought of as representing single Fourier components
of disturbances of more general structure. Since the governing system

is linear, a flow which is found to be stable with respect to all dis-
turbances of this simple form is stable with respect to all infinitesimal
disturbances, regardless of their particular form. The real parts of

the solutions are considered to have physical significance.

The parameters & and /3 are the wave numbers of the dis-
turbance in the X and 2} directions respectively. They are restricted
to real values in order that the disturbance will be bounded as X and

Z approach infinity. The parameter ¢ 1is the wave sgpeed of the dis-

turbance and is in general complex.
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i (@ X+RF-oct)

Por functions of the form %(7) e the following

equivalences of operators are apparent:

25 =iy 2> =-ipc )
%5 =D 2= (Dr-p2_32) }(60)
'%3_. = 2./3 where D= j,';;‘ .

-/
Thus introducing solutions of forms (59) into the disturbance

equations and boundary conditions yields

—é—( p=R2)U = o (T-C)u + DI +z‘/?79~@i;7' (61)
Lo epr_p2)y = iy (a-c)v + D7 (62)
Ta/‘(Dz g=RY)W = o (f-c)w + {3 P (63)
,%— (D* 02-BOT =i (7-e)T + ;0/77_—’0' (6k)
i0u +Dv +iBw =0 (65)
uU(td) = v(x4) =w(z4) = T(x4) = 0, (66)

This differential system governs the spatial and temporal
behavior of an infinitesimal, three-dimensional disturbance superim-

posed upon a parallel natural-convective flow.

2. FPkxtension of Sqguire's Theorem

Squire<ul) proved a theorem of great importance in the study

of the stability of parallel incompressible flows. This theorem states



_37_

that the problem of a three-dimensional disturbance in a parallel flow
i1s equivalent to a two-dimensional disturbance in a similar flow at a
lower Reynolds number. It will now be shown that this result is also
valid for the present case in which a thermal field and the resulting

buoyancy force are considered.

For convenience, Eguation (61) is multiplied by ¢ and the
result is added to A& times Equation (63). The equations to be con-

Sidered are then:

_GZ_;‘(DZ_”?___BZ),U— = /o (W-c)v + Dp (67)
g/; (D’*—M‘—ﬁz)(ﬁzmﬁ w) = lo(u-c)aur Bw)

T v DU + L (a*+R2)P —’{%T (68)
G (gt T = in(a-OT +F v @
I(0y+pw)=-DV. o)

Now the following transformations are introduced:

OU=0U+ BRw ¢ =¢ )
V= Of= p?x g2

PG = ac, PE-uT P

0 Ra= o Ra PGr =1 Gr,
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Under these transformations the governing differential system becomes

+ I CP + T (72)
(P*-22)V = i56 (U-O)V + G~DP (73)
(02-52)T = {4 Ra(7-8)T + %‘?f (74)
ioU+DV = 0 (75)
d(tf) = T (x£) =T(z%) = O, (76)

The system (72) through (76) represents the problem of a two-dimensional
g 24
disturbance in a base flow with Grashof number given by Gr~=:;’(;f.
Since ﬁz-: ﬂz-r/j’a, it follows that 5’ > A 5 hence the Grashof number for
the two-dimensional problem is smaller than that for thée three-dimensional
problem. From this it is concluded that for the determination of the
stability criterion it is sufficient to consider two-dimensional dis-
turbances.

On the basis of this extension of Squire's theorem, the two-
dimensional form of Equations (61) through (66) is now considered to
govern the disturbance, that is w=0, B8=0 . In order to combine the
X- and y- disturbance momentum equations, it is first noted that accord-
ing to Equation (54) the disturbance velocity field is solenoidal. A

stream function can therefore be introduced as:



- dd
w =5y
, __ oY
AR 2 (77)

The stream function V’/ can have the form

Vo= @y) ez'zr(x—ct) ()
Thus
' = (pg)e™ > v A
and > (79)
= -Z’é)’wei”(x_dﬂ

The two-dimensional form of Equations (61) through (66) can then be

written as

& (v-42)D0 = i# (F-¢)DY —i4DT D (50)
tiar - —G/? T

‘Z:L; (02-22) 00 = d*(-¢c)@ + DF (81)

b 02-0)T = 20(@-0T -0 9L 0 )

O(+£) = Do(zf) =T(z4) = 0. (83)

Upon eliminating the pressure, p , by combining Equations (80)
and (8l), the following form of the governing differential system is

obtained:
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(D2-p2)%Q +10 Gn {Daﬁﬁ — (% -¢)(D%-22%)@}+DT =0 (8L)
3 ¢ -—(ﬂ-d)T} =0 (85)
O(t4) =Do(x4) =T(x4) = 0. (86)

Tt is observed that the first Bquation (84) is the classical Orr-
Sommerfeld equation with the addition of a buoyancy-derived term which
couples it to the thermal disturbance equation.

Equations (84) through (86) are a system of homogeneous ordin-
ary differential equabions subject to homogeneous boundary conditions.
This constitutes an eigenvalue problem, i.e. solutions of the system will
exist only for certain sets of values of & , Gr , Ra, and ¢ . The

solution of this eigenvalue problem is discussed in Section II.D.

3. The Agsumption of Zero Wave Speed

The disturbance velocity and temperature each have a time
dependence given by exp (-7 4#C T ), where ¢ 1s in general a complex
number. The imaginary part of ¢, (C;sdescribes the amplification or
damping of the disturbance. Since the present analysis pertains to
states of neutral stability, &; =0 .

If the real part of C > ¢, has a non-zero value the distur-
bance i1s in the form of a traveling wave. In this problem, however,
there appears to be no preferred direction for wave travel. This sug-
gests the possibility of the occurance of a stationary instability,
that is one which is characterized by (C,=(0 . This argument implicitly
assumes that the disturbance is not confined to narrow regions of the

flow, for in that case there would be preferred directions except near

V=0
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Striking evidence of the existence of stationary instabilities
can be found in Elder's experimental investigation of the laminar natural
convection of high Prandtl number fluids in a vertical slot. At small
values of the Rayleigh number the motion in the slot was found to be
unicellular--rising adjacent to the hot wall and falling adjacent to the
cold wall. When the critical value of the Rayleigh number (= 3J'<1O5
was exceeded a new laminar flow regime in the form of a multicellular
Pattern was observed. The cells all had the same sense of rotation as
the base flow and were slanted with respect to the axis of the slot. At
higher Rayleigh numbers smaller cells of the opposite rotation were ob-
served to form in the shear regions between these cells.

Further evidence of stationary modes of instability is found
in the interferometric study of natural convection of pressurized COo
in a vertical slot reported by Mordchelles-Regnier and Kaplan.(ag) They
cite evidence of cellular motions preceeding transition to turbulence
when the ratio of slot height to width is large. Although such inter-
pretation of interferograms is subject to caution, it appears likely, in
view of Elder's flow visualizations, that such instabilities were in
fact observed.

On the basis of the antisymmetry of the flow and the observa-
tions by Elder, the wave speed, C , is taken to be zero for neutral
disturbances. Further comment regarding the assumption of zero wave
speed 1s to be found in Appendix I. This analysis may therefore be
clasgified as a study of the stability of antisymmetric natural convec-
tion with respect to the stationary disturbances.

The final form of the differential system governing the dis-

turbance is



Lo

O"-240 + 2%0 + i5C {027y VTP -70)
+T'=0 (87)

T"=0*T + t4Ra{T¢-uT}=0 (88)

@(t$) = 9/(z4) =T (24) = 0. (89)

Since Ra = Gr ¢« Pr , the eigenvalues of this system form some functional

relationship

§(Gr,Pr, )= 0. (90)

The determination of this relationship is the subject of the next section.

D. BSolution of the Eigenvalue Problem

1. Available Solution Techniques

Most of the classical problems of hydrodynamic stability involve
either Tollmien-Schlichting waves in the plane of a parallel base flow or
stationary instabilities in a plane perpendicular to, or in the absence
of, a base flow. The Tollmien-Schlichting waves are governed by the Orr-
sommerfeld equation and are represented by complex eigensolutions of
rather complicated structure. The stationary instabilities are governed
by less complicated equations having real eigensolutions of fairly simple
structure.,

The present case, which involves a stationary instability in
the plane of a parallel base flow, is somewhat of a hybrid of these two
types. Its eigensolutions are expected to be complex but of simple

structure.
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Because the governing differential system of this problem is

not self-adjoint, the eigenvalue problem cannot be formulated as a simple
variational principle as it can in some problems of stationary instability.

(9,10)

Chandrasekhar, has devised a method for the approximate solution of
non-self-adjoint systems which govern certain stationary instabilities.
This method could have been extended to apply to the present problem;
however, it seemed to offer no advantage, because its application would
involve solving the Orr-Sommerfeld equation with an additional, non-
homogeneous, term.

Various numerical schemes are available for the solution of
eigenvalue problems. Since the solution of this problem is expected to
be of a simple structure such schemes could no doubt have been applied.
Any of the weighted residual techniques could have been used to obtain

an approximate solution to the problem. One of these, the Galerkin

method, was in fact utilized.

2. The Galerkin Method

The Galerkin method for the approximate solution of an ordinary
differential equation is as follows:

A differential equation,

L(w)=0 , (91)

where I 1s a differential operator in the independent variable x , is
posed subject to homogeneous boundary conditions at the points x = a

and x = b . The approximate solution is expressed as



Ly

M
U (x) =Z; ai U;(x) (92)
7=

where each WU;(X) satisfies the boundary conditions. This series is
substituted into Equation (91) which is then multiplied by WU and

integrated over [a, b] :

b
gL {Zr a; %f(x)} U; () dx = 0. (93)
a t=

Eguation (93) represents a system of n algebraic equations in n
unknowns whose solution gives numerical values for the coefficlents in
the series.(92> In the case that L(U)  and the boundary conditions
are all homogeneous, the Equations (93) lead to a secular determinant
whose zeros approximate the eigenvalues of the problem.

The following definition of a complete system of functions
given by Kantorovich and Krylov(28) is quoted here as background for
the discussion of the Galerkin method:

A system of functions {@m(¥)} is said to be complete

if no function @(X) exists with §,|®(%)[2dx >0

and which is orthogonal to all the functions @, (x)
simultaneously, i.e., such that

(0,00 P00dx =0 (m=t,2,707)

If the set of approximating functions {’L{i} is a complete set
in [a&, b] Galerkin's method has the following mathematical basis: Equa-
tion (93) states that each function Ui is rendered orthogonal to
L{Z—t (x)} over [Asb] . As m> the condition ]_{77[}50 must be fulfilled,
according to the definition of completeness, because L{?jt_} is orthogonal

to every member of the complete set {'M.i}
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The Galerkin method can also be applied in a similar manner
to systems of differential equations. This is discussed briefly in
Reference 18 and is described in the following section. No proof of
convergence sufficiently general to apply to the present problem is

known to the author.

3. Solution of the Infinite Slot Problem

The neutrally-stable states of the natural-convective flow of
a fluid in a slot of infinite height are determined by solving the eigen-
value problem (87) through (89) using the base flow given by Equations

(20) and (21). Let Equations (87) and (88) be denoted respectively by

Li(@7T) = 0 (9%)

and

"

L. (¢:T) = 0. (95)

Then Galerkin's method, as used here, consists of representing the

solution as series,

(96)

N
0 =2,
ENZ b; 1z (1) (97)

“

where the approximating functions, wi and T¢ , individually gatisfy
the boundary conditions (89). Each approximating function is then

. 1 1
rendered orthogonal to the appropriate residual over E‘E‘r*zr] .

+

)

Nj

L1<§Qi@i >;szi>Cﬁ;o’7=O (98)

L
z
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>
=1

Since the series (96) and (97) each
(98} and (99) represent 2N linear,
in 2N unknowns. Those combinations

determinant of coefficients of this

are the approximate eigenvalue sets

aAi ¢z ) 2{3 bi-T}

=/

~L46-

N

>T"°I7=O- (99)

consist of N terms, Equations
homogeneous, algebraic equations

of ( , Gr, and Pr for which the
set of algebraic equations vanishes

of the problem.

For the particular base flow under consideration

U = -éj-(z_L"/—'VS) (100)

U”? = - (101)
and

:/__/ = j (102)

Eecause of the antisymmetry of

this base flow and the symmetric distur-

bance boundary conditions, the solutions of the disturbance equations

are expected to have simple symmetry properties.

Inspection of Equa-

tions (87) and (88), however, indicates that because 2 and | are

odd functions of % the solutions

functions of Y

cannot be solely even or solely odd

However, solutions can be sought which display simple

symmetry properties and yet are consistent with the form of the distur-

bance equations.

¢ =E

T=0©

They are those which can be written as

+ 70

. (103)
+ 7€
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P = 0O+ 7E

o . (104)
+

T

where E and e denote real even functions of y , and O and o
denote real odd functions of y . This can be seen by substituting (103)
into Equations (87) through (88) and separately equating the real and

imaginary parts of each equation to zero. This yilelds

EV 2 g FY 4 gt - aGr{azﬁO*'ft”O‘ﬁO”}

+ o/ =0 (105)
0 - gro - aRefTie ~RO} O
0"-20%0"+ 4% 0 + 06 (4*FE ~A'E -HE}

+ e’

@) (107)

e”-pte + gRa{T E-Tic} =0. (106)

Each of these equations is consistent regarding symmetry.

It is inconsequential whether the form (103) or (104) is con-
sidered. The resulting eigenvalues would be identical and the solutions
would differ only by a phase shift of %; radians in the X direction.
Solutions of the form (103) are assumed in the analysis described below.

Because no prior knowledge of the functional structure of the
solution existed, and because they can be very systematically applied,

simple sets of orthogonal functions which satisfy all the boundary
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conditions were used as approximating functions. In particular, QQ s

which must vanish along with its first derivative at the boundaries, was
expanded in terms of the eigenfunctions of the system.
v
§7 = a+f (109)
1 =
8’ ’2‘) g‘(* )— (110)

These eigenfunctions fall into non-combining even and odd groups. They

can be written in normalized form as

Couh (Am™Y) coo(NmY)
Cnl) =S~ lEim) )
and
DAL _ ain(tnY)
Son (1) = ain (L1s)  wair (EMi) 7 (112)

wm = 412) roe

where A,, and M,, are the roots of

Tond (£X) + Tan(£2) = O (113)

and

cot (£ 1) - cot(£1) = O. (114)

These functions have been used extensively by Chandrasekhar and others
in Fourier-type expansions in hydrodynamic stability analysis. They
have been tabulated and discussed by Harris and Ried.<25’38)

(jnw and Sﬂn have been referred to in the literature as a
complete set of functions; however, their completeness has not been proved

in any published work so far as the author can discern. The property of

completeness, although central to the mathematical foundation of Galerkin's
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method 1s often overlooked in applications, where the orthogonalization
is limited to a finite number of terms anyway.
T , which must satisfy only the two boundary conditions—r(iﬂ%>=o,

was expanded in terms of

Coq,, (V) = Cow (Lo V) (115)
and

ter,, (1) = adn (Ko ) (116)
Where

Po= (2m=1)TT (117)
and

Hp= 2mTT , m=1,2,++ .  (118)

Because of the symmetry considerations discussed above the

solution was expanded as

i

N
@(v) Z: (dm Col) + 7 ba S (v)) s (119)

T(4)

;
Zf (d, i, () + £ €, oo, () (120)

where Qa5 b Am , and €,, are real constants.

Upon substituting the series (119) and (120) into the Eguations
(87) and (88) and applying the orthogonalization criteria (98), (99) a
set of homogeneous linear algebraic equations is obtained for the con-
stants  Am, o s o},,, , and Em . A necessary and sufficient condition
for non-trivial solutions of this set of equations to exist is that the
determinant of coefficients vanish. This criterion yields a secular

equation which can be represented as



(Xy)  (Xer) = = = (Xu)
(Xm) (X22> -7 T (Xwa)
- B - =0. (21)

(Xfm) (xam) - 0T (XNN)

The elemental matrix, anmm), from which the determinant of Equation

(121) is constructed is defined by

A/mm —0/ GrEm\m Hfmm O
86T L s 0 O
(122)
(Xom) =\ R2 Al 0 -ORaGG.,  CConn
0 -0 RaJJmm NN m & Rall,,,

where

~

Ammm = (Cod1Cn) =202 (CLICH) + &% (Co | Cny)
Evnm = (Sulazi +”1C ) - (32,1%1C,,)

Howm = (in’ 1C.)

T = (Conl 2@ + 5171 80) - (CLITISA)
Lowm = (SIS - 2a2(8218.) +24(8,.]8.)
O = (coosn | 8..)

AAmn = (Conl T/l cou,) > (123)
G Gonnn = (im,, |30 | coun)
CComm=(cont I coen) = d2(Codn,|Cotr)
T = (S| T in,,)

NN = (ainZ, | 0in, ) — o ® (win,, | 4in,,)
L Lo = (Comm | U] Covnn )
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+1

Here  (%,191h,.) = S_f&,, (1) h,, () 1) el . AL
of the inner products which were réZuired for the solution of Equation
(121) were evaluated by exact integration. The inner products were there-
fore expressible in terms of the values of the C , § , cosine, and sine
functions and their derivatives at the boundary ’\/= ‘-?_1-

The inner products were evaluated by repeated integration by
partse and use of the generating equations of the functions. The method
is described in Appendix II.

That appendix also includes a tabulation of a large number of
inner products involving the C, S, cosine, and sine functions and powers
of y ranging from zero to five. The values of the C and S functions
and their first three derivatives at 1/==§% can be obtained from the
Paper by Harris and Ried.(25)

The secular Equation (121) was solved numerically on the IBM
7090 computer at the University of Michigan Computing Center. For speci-
Tied values of the Prandtl number and the wave number, the values of the
elements of the determinant in Eguation (121) were calculated. The deter-
minant was then iteratively evaluated for various values of the Grashof
number, The value of the Grashof number for neutral stability at each
specified wave number was thus bracketed by a sign change of the deter-
minant. This value could be bracketed to any desired degree of (alge-
braic) accuracy because the computer was programmed to searéh for the
zero of the deteminant by an "interval-halving" technique.

In order to investigate the convergence of the solution, this
procedure was followed for secular determinants of order 4, 8, and 12.

The order was increased in steps of four so that equal numbers of
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approximating functions for the real and imaginary parts of bhoth the
disturbance stream function and temperature were always considered. This
avolded artificial weighting of the disturbance momentum or energy equa-
tion. The results of the convergence study are presented in Figure 7
(Computations for this figure were carried out for Pr = 1000). This
figure indicates that a secular determinant of order 12 gives sufficient
convergence in the vicinity of the critical Grashof number. This of
course does not constitute a proof of convergence to the correct eigen-
value.

Az a further check on the method it was applied in an analogous
manner to the Bénard problem and to the "narrow-gap approximation" of
the Taylor problem, both of which possess solutions known to a high degree
of accuracy. The solution of the Bénard problem was a simple task, and
even a secular determinant of order four gave a reasonably accurate an-
swer. The Taylor problem, which involves an asymmetric base velocity
profile, presented a slightly more difficult task. Experience gained
with the Taylor problem proved useful in the extension of this work to the
"finite case." Figure 8 shows a dramatic change in the accuracy of the
solution of the Taylor problem with an increase in the order of the
secular determinant.

The neutral curve for the stability of the flow under considera-
tion is given in Figure 9. The critical Grashof number was found to be
7880 corresponding to a wave number of 2.65.

Points on the neutral curve near the critical point were com-
puted for a wide range of values of the Prandtl number. No significant
variation of the critical Grashof number with Prandtl number was found

(See Figure 10). The jump in the curve of Figure 10 between Pr = lO_2
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and Pr = lO"3 i1s due to a shift in numerical dominance of terms in
the secular determinant which is inherent in this range of Prandtl numbers.
This jump represents only about half of one percent and should be ignored
in comparison with the general accuracy of the solution.

This virtual lack of Prandtl number dependence is interpreted
as indicating that the problem is of a purely hydrodynamic nature. That
is, the thermal buoyancy forces play no significant role in rendering the
Tlow unstable. The validity of this interpretation can be verified by
considering a fluid having a very large thermal diffusivity. As Pr+0

with Gr remaining finite, the disturbance energy equation is simplified

to

T"—w2T =0 (124 )
subject to

T(t£) = 0. (125)

This system has only the trivial solution T = 0 . Thus the problem is
governed by Orr-Sommerfeld equation alone. This was solved by the Galerkin
procedure using 16 approximating functions in a series of the form (119).
The critical Grashof number 7932 at () = 2.6, agreed well with the fore-
going results and is indicated as an asymptote for Pr = 0 in Figure 10.

(20)

Gershuni found a large variation of the critical Grashof
number with the Prandtl number for this problem. His work was rather
incomplete and only a small number of approximating functions (polynomials)
was considered. This Prandtl number dependence was probably due to the
fact that more terms were used for the disturbance temperature than for

the disturbance stream function thus giving additional weighting to the

energy equation when the Galerkin method was applied.
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The lack of Prandtl number dependence is in agreement with the

(34)

Tindings of Ostrach and Maslin, who considered the different, yet

related, problem of Tollmien-Schlichting waves in fully-developed natural

convection between vertical parallel plates. They found that the sta-
bility of the flow with respect to such disturbances was not effected by
the buoyancy force. For instance, if both plates have the same temperature
the base velocity is parabolic and its neutral stability curve is identi-
cal to that of plane Poiseullle flow.

Birikh(6) published a paper on the "infinite case" after the
present research had been completed. This work corresponds to the case
of zero Prandtl number, and was solved by Galerkin's method. The critical
Grashof number predicted by him agrees with that reported in this chapter
to within less than one percent even though different approximating func-
tions were used in the two studies. The spectrum of the next ten eigen-
values 1s alsc studied.

Rudakov(uo) extended Birikh's problem of eigenvalue spectra
to the case of non-zero Prandtl numbers. He utilized an expansion for
small values of the wave number--Grashof number product. He extended
this solution to obtain an approximation to the neutral curve for small
values of the Prandtl number (0.0l - 0.2). The critical Grashof number
obtained in this manner is in reasonable agreement with that reported
here, but shows a small, yet significant, increase with increasing Prandtl

number.

L, Solution of the Finite Slot Problem

As discussed in Section II.B, recent experimental investigations
provide information regarding the formation of a vertical temperature

gradient in a fluid contained in a vertical slot of finite height. This
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gradient rapidly approaches a constant value as the Rayleigh number is
increased. This information made possible the construction of a simple
analytical model of the flow in the central portion of a slot of finite
height. This model is approximately valid over a large range of Rayleigh
numbers and aspect ratios. The velocity and temperature fields are des-
cribed by Equations (27) through (31). The study of the stability of
this flow appeared to be a logical extension of the analysis described

in the preceding section. An additional benefit of such a study is that

(15)

the results can be compared with Elder's observations of the forma-
tion of multicellular secondary flows.

If the height to width ratio of the slot 1s reasonably large,
the flow in the central portion of the slot is nearly parallel. Thus the
stability of a parallel flow having velocity and temperature profiles
given by Equations (27) and (28) was studied. A limitation of this ana-
lysis is that the model of the flow utilizes the asymptotic value of the
vertical temperature gradient,/%lq = 0.5. This assumption is not valid
Tfor Rayleigh numbers below about 8 x lOu

The neutrally-stable states of this motion are determined by
solving the eigenvalue problem (87) through (89) using the model of
natural convection in a finite slot as the base flow. The symmetry con-
ditions discussed for the infinite slot problem are applicable to this
case also. Therefore the eigenvalue problem was again solved by Galerkin's
method with the solutions expanded according to Equations (119) and (120).
The secular equation is given by Equation (121) and the required elements
are given by Equations (122) and (123).

Although this method of solution is formally identical to that

of the "infinite case", the numerical procedure reguired for the solution
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of the secular equation is somewhat different. This stems from the fact
that the base velocity and temperature are now functions of the Rayleigh
number and the aspect ratio.

Because of the complexity of éZ and 7= the inner products in
Equation (123) were evaluated by numerical integration, rather than by
exact integration. The procedure which was followed in searching the

(o, Gr) plane for zeros of the secular determinant is:

(1) A value of the Grashof number was selected (the Prandtl
number and aspect ratio having been specified).

(2) The velocity and temperature profiles and their derivatives
at the corresponding Rayleigh number were computed at 4o

equal intervals of y between O and 0.5.

(3) The values of the C, S, cosine, and sine functions and their
derivatives were computed at the same values of y .

(4) The appropriate combinations of these functions, velocities,
and temperatures were multiplied together and integrated
by Simpson's rule to provide numerical values for the inner
products in Equation (123).

(5) The secular determinant was iteratively evaluated for
various values of & .

In this manner the value of the wave number for neutral stability
at each specified Grashof number was bracketed by a sign change of the
secular determinant. The neutral curve can be traced in either the
(Ra &) or (Gy,) planes with Pr and H/d as parameters.

The neutral curves were generated for aspect ratios of 10, 20,
and 50 for various values of the Prandtl number. In order to investigate
the convergence of the solution of the eigenvalue problem the neutral
curves were evaluated in the vicinity of the critical point using secular

determinants of order 4, 8, 12, and 16. ©No real eigenvalues were found

using a determinant of order four. This is probably because the first



-61-

two C and S functions do not oscillate sufficiently to allow construc-
tion of the stream functions which, in comparison with those for the
"infinite case', are relatively steep near the boundaries. The results
of this convergence study, for Pr = 1000, are presented in Figure 11 a,
b, ¢. The maximum difference between the critical Rayleigh numbers cor-
responding to secular determinants of order 12 and 16 is three percent,
which occurs for H/d = 20. Considering the computer time required for
the generation of these curves it was decided that this accuracy would
suffice. Curves of neutral stability for several values of the Prandtl
number and aspect ratio are shown in Figure 12. These curves were gener-
ated with a secular determinant of order 12, which was deemed sufficient
to 1llustrate the effect of varying these parameters. Generation of
neutral curves for Prandtl numbers of 12, 10, and & was attempted but
satisfactory results were not obtained. It 1s possible that the use of
larger secular determinants would lead to solutions for these cases,

but it was decided not to invest in the amount of computer time which
would be required. It should alsc be noted that the model of the base
flow is not valid for Rayleigh numbers below sbout -8 x lOlL . It is
Possible that the true neutral curves for these moderate Prandtl numbers
extend to Rayleigh numbers below this value, in which case the present
formulation would not correctly describe the physics of the problem.

As Ra/H/d Dbecomes small the base velocity and temperature
profiles of the "finite case' asymptotically approach those of the
"infinite case." It is therefore anticipated that the neutral curve of
the "finite case" will approach that of the "infinite case' if the aspect

ratio ig sufficiently large, or if the Prandtl number is sufficiently
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small. It was indeed found that the neutral curve for Pr = 0.1 ,
H/d = 20 essentially coincides with that generated for a slot of infinite
height.

Figure 13 depicts neutral curves which were generated for Pr = 1
at various aspect ratios. These curves lie in a range of the Rayleigh
number in which the base flow model is not valid. They are therefore
only tentative results which are not expected to be quantitatively valid.
If this figure is qualitatively valid, however, the neutral curve for a
Prandtl number of unity is seen to be in the form of a closed ellipse-
like a curve which becomes smaller as the aspect ratio is decreased.
Fventually the neutral curve degenerates to a point and disappears. No
roots were found for an aspect ratio of 10 for a Prandtl number of unity.

(14)

It is interesting to note that Eckert and Carlson observed low-frequency
"turbulent fluctuations' in the core region of the natural-convective flow
of air in a vertical slot. These fluctuations began occurring at a
Grashof number of approximately lOLL when the aspect ratio was 20 but were
not observed until the Grashof number was an order of magnitude greater
when the agpect ratio was 10.

The stability of natural convection in a slot of infinite
height was found to be independent of the Prandtl number of the fluid.
The physical interpretation of this result was that the instability
was hydrodynamic in origin, i.e. not effected by buoyancy forces. In
the present case, however, the base velocity profile is a function of the
Rayleigh number. Hence the disturbance momentum equation contains the

Rayleigh number as an implicit parameter as well as the Grashof number as

an explicit one. For this reason the role of the buoyancy forces cannot
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be determined by a simple parametric study of the states of neutral
stability. In order to determine the importance of the buoyancy force,
the neutral curve was generated for the "finite case" base flow using the
Orr-Sommerfeld equation alone. For very small Prandtl numbers this
formulation yielded a neutral curve essentially coincident with that of
the "infinite case'. On the other hand no states of neutral stability
were indicated in the vicinity of those shown in Figure 12. It is there-
fore concluded that the buoyancy forces do effect the stability of natural
convection in a slot of finite vertical height unlesgs the Prandtl number
is sufficiently small that the base flow approaches that of the "infinite

case," i.e. when the flow 1s in the conduction regime.

E. Evaluation of the Stream Patterns

Having found the eigenvalues of the differential system (87)
through (89) in order to determine the states of neutral stability, it
1s desirable to find the eigenfunctions in order to determine the form
of the cellular disturbance motion. The disturbaﬁce pattern is completely
specified by the eigenfunctions since the motion is two-dimensional.

The disturbance can then be superimposed upon the base flow and the re-
sulting total flow can be displayed graphically and compared with experi-
mental flow visualizations.

Once the eigenvalues have been determined, the algebraic
equations generated by Galerkin's method can be solved, within a constant
multiple, for the coefficients in the series representations of ¢) and
—T- . Consider the determinant in Equation (121). If the sign of each
element in the first column is changed and if any single row is then

deleted, the matrix of the resulting determinant is the augmented matrix
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of a set of simultaneous algebraic equations. The solution of this set of
equations yields the coefficients in series (119) and (120) relative to

a; = 1, thus determining an approximate expression for the disturbance.
Such solutions were obtained by a standard numerical procedure available
as a system subroutine at the University of Michigan Computing Center.

The constancy of these golutions when various rows were deleted provided
an indication of the (algebraic) accuracy of the elgenvalues.

sSince only the real part of the expression

V= gy e’ (126)

has physical significance, the disturbance stream function is represented

by

N
¥ = 5 (@0 G cman — oS, (D ainax ). o

m=1

The disturbance stream functions were evaluated in this manner
for neutrally-stable states in the neighborhood of the critical state for
both the infinite-and finite slot problems. The disturbance stream
pattern for the "infinite case" is displayed in Figure 14. The analgous
stream pattern for the finite case (Ra = 3.12 x 105, H/d = 20, Pr = 1000)
is displayed in Figure 15. A feature which distinguishes these cellular
patterns from those such as Bénard or Taylor cells is the fact that they
are tilted with respect to the planes of the boundaries. This is a
result of the fact that the present problem has a base flow in the plane
of the disturbances whereas the classical cellular instabilities do not.

This behavior could not have been described by real eigenfunctions.
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Figure 14. Disturbance Stream Pattern, H'd = = .
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Figure 15. Disturbance Stream Pattern,
H/d = 20.
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Another consequence of the base flow is apparent when Figure 14 and 15
are compared. The base velocity profile of the "finite case'" is con-
centrated near the boundaries in comparison with that of the "infinite

case."

This is reflected in the distortion of the cell pattern in
Figure 15 relative to the pattern in Figure 1k,

The stream patterns of Figure 14 and 15 represent just the
disturbance. What is observed in an experimental apparatus is, of course,
the superposition of the base and disturbance flows. The prediction of
mode selection and amplification to finite magnitudes is outside the
scope of linearized theory; however, it is known that the experimentally-
observed cellular motions of the B&nard and Taylor problems are essentially
identical to the critical modes predicted by linearized theory if the
parameter governing the flow does not exceed its critical value by a
large amount. Hénce it is probable that a superposition of the ceil
patterns of Figure 1% and 15 and their respective base flows will produce
a streesw pattern which qualitatively represents the actual total flow.
Figure 16 represents such a total flow pattern for the "infinite case.”
this figure was obtained by normalizing both the base and the disturbance

stream functions to a maximum value of unity and superimposing them as

V= Yo+ ey (128)

where € = 0.1. Figure 17 represents the analogous total flow for
the "finite case" (RA = 3.12 x 10°, H/d = 20, Pr = 1000).

Figure 18 represents the total flow with € = 0.5. Although
this value of € 1is too large for the small perturbation theory to be

valid, this figure is of interest in its display of small cells of the
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Figure 16. Total Stream Pattern, H/d = «, &= 0.1.
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WA

Figure 18. Total Stream Pattern,
H/d = 20, €= 0.5.
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opposite rotation in the shear layers between the large cells. Such

(15)

cells were observed by Elder

(6)

at large Rayleigh numbers.
Birikh presents a stream pattern which corresponds to that
of Figure 14. His pattern exhibits two small cells located inside the

large cell, thus indicating more oscillation in the eigenfunctions that

that found in this research.



CHAPTER ITT

EXPERIMENTAL INVESTIGATION

A. Apparatus

An apparatus was constructed in which the natural onset of
instability was detected by flow visualization. In order to verify
the analytical results presented in Chapter II, the system was design-
ed such that flows in the following parameter ranges could be examined
with facility:

(1) H/d = 20, 10 < Ra < 106 , Pr>> 1

(2) H/d =50, 105 < Ra < 10° , Pr > 1

(3) Ra/(H/d) < 500 and Ra < ox10%

It

, 103 < ar < 10%

The first two parameter ranges correspond to two of the neutral-
stability curves presented for the "finite case" in Figure 12. The
third parameter range is intended to produce a flow in the conduction
regime, thus closely approximating the "infinite case", for which the
neutral-stability curve is presented in Figure 9.

The following basic criteria were specified for the system:

(1) The width and aspect ratio of the slot are to be vari-
able in accordance with these parameter ranges.

(2) The depth of the test section is to be significantly
larger than its width to ensure two-dimensionality of
the flow.

(3) One wall temperature of the slot is to be constant, but

the other is to be variable,

_75_
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(4) Temperature is to be uniform over each side wall.

(5) The test fluid is to be such that the AT required is
sufficiently small to avoid drastic property changes,
vet sufficiently large that extreme accuracy is not
required in temperature measurement.

Figure 19 is a schematic diagram of the apparatus. One wall
of the test section is cooled by a flow of water from a municipal line,
The other wall is heated with a closed distilled-water loop. Included
in this loop is a 15 gallon stainless steel tank into which is inserted
an immersion heater (Chromalox MTS 225A) whose energy dissipation is
controlled by a Variac, The tank also contains a copper cooling coil
through which cold water can be circulated. An electric stirrer is pro-
vided for agitation of the water in the tank. The distilled water is
circulated through the loop by a Chempump model CFH seal-less centrifu-
gal pump. The water leaving the cold side of the test section is cir-
culated through a cooling jacket surrounding the pump in order to reduce
heat transfer from the pump motor to the distilled water.

The test section is schematically depicted in Figure 20.

The slot in which natural convection is observed is formed by a
rectangular plexiglass frame bounded by flat aluminum side walls of
dimensions 25 x 7 x 0.25 inches. Each aluminum wall also forms one
side of a chamber through which water, used to heat or cool the plate,
flows. Staggered flow baffles promote uniformity of the wall tempera-

ture,
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Figure 20. Exploded View of Test Section.
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Plexiglass frames of nominal widths 1.25 and 0.5 inches were
made in order to study the "finite case" for aspect ratios 20 and 50
respectively, One of width 0.75 inch was made for use in the "infinite
case" experiment. A rectangular gasket cut from thin rubber was placed
between the plexiglass and the aluminum plates in order to prevent leak-
age of the test fluid. The assembly was drawn together by means of thread-
ed rods. Provision was made for the introduction and removal of the test
fluid by simple gravity feed.

A vertical plane in the fluid was illuminated by passing light
through a slot at the top of the test section, as shown in Figure 21.
This light was reflected from tracer particles suspended in the fluid,
The motion of these particles could then be observed or photographed
from the front of the test section. A 500-watt slide projector was used
as the light source. The slit was approximately 1/8 inch wide. The beam
of light diverged to a thickness of about 3/& inch at the bottom of the
slot,

Temperature measurements were made with sheathed copper-con-
stantan thermocouples imbedded in the alﬁminum plates. The sheaths
were passed through the back of the flow chambers and were sealed there
by Conax glands. The thermocouples on the heated side of the test sec-
tion were located as shown in Figure 21. Only three thermocouples were
used on the cooled side. They were placed along the vertical centerline
of the aluminum plate, The signals from the thermocouples could be read
on either a precision hand potentiometer (Leeds and Northrup Model 8662)

or a printing recorder (Leeds and Northrup Speedomax Model S).
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Figure 21. Test Section.
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Figure 22 is a photograph of the apparatus.

Silicone oils were used ag test fluids in the experiments
which correspond to the “finite case.” This selection was based on
the following desirable properties of these fluids:

(1) They are available with kinematic viscosities ranging
from 0.65 c¢s to 10,000 cs with other properties essential-
ly constant.

(2) They are Newtonian at low shear rates.

(3) Their variation of properties with temperature is small
compared to many fluids.

(4) Their light transmissivity is excellent.

Dow Corning silicone fluid DC 200/100 was utilized in the tests at an
aspect ratio of 20, and DC 200/5 was utilized in the tests at an aspect
ratio of 50.

Air was used for the test corresponding to the "infinite case."

B, Procedure

The kinematic viscosity of each silicone fluid was measured at
100°F and found to agree well with the value reported by the manufacturer.
A small quantity of aluminum particles (Alcoa Aluminum pigment no. 10005)
was suspended in the fluid.

All cold water lines in the system were opened for at least one
hour prior to each test, in order to attain a steady line temperature.
The silicone fluid, with suspended aluminum particles, was introduced
into the test section, and the apparatus was brought to a steady operat-
ing condition with cold water circulating through the cooling coll in the
distilled water loop. This did not result in a quiescent test fluid be-

cause the distilled water was heated a few degrees by the energy dissipated
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Figure 22. Photograph of Experimental Apparatus.
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by the pump motor. Next the temperature of the hot wall of the test
section was very slowly increased in order to attain quasi-steady
states at various wall temperature differences, This was achieved
by reducing the flow in the cooling coil and by activating the im-
mersion heater, A typical rate of wall-temperature rise was about
0.15°F/min. At each quasi-steady state for which data was obtained,
the outputs of the six thermocouples located on the vertical center-
lines of the plates were measured with the precision potentiometer.
Then all twelve thermocouple outputs were recorded continuously by
the printing recorder while one or two time-lapse photographs were
taken, The six centerline thermocouple outputs were then remeasured
with the precision potentiometer. The variation of wall temperature
with both time and thermocouple location was less than about 0.5°F
during the time required to obtain this data.

A1l photographs were taken on Polaroid Land type 47 film
(ASA speed 3000) using a Graphic camera.

Bending of the light rays due to the change with temperature
of the index of refraction of the silicone fluids made it difficult
to obtain a uniformly-illuminated plane. This difficulty was alleviated
by placing a lens system between the slit and the test section which
caused the light rays to diverge, thereby compensating for the
refraction. Because of the nature of the reflection of light from
the Aluminum particles, a polarizing filter in front of the camera lens
was found to increase the constrast between the streaklines and the

background.
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The procedure followed to obtaln data with air as a test
fluid was identical, with the exception of the visualization technique.
In this case a small amount of cigarette smoke was introduced into the
top of the test section. Portions of this smoke were entrained by the
turning boundary layer and stretched into long filaments circuiting
around the slot along the streamlines. Photographable stream patterns
could be obtained in this manner for four or five minutes before dif-

fusion of the smoke particles caused too much clouding.

C. Results and Comparison with Analysis

The Rayleigh (or Grashof) number was computed for each state
at which a photograph had been taken. These computations were made in
terms of properties evaluated at the mean of the two wall temperatures.
Each photograph was then examined and the flow was catagorized as being
either parallel (in the central portion of the slot), cellular, or tur-
bulent. The results of the examination of the data are represented in
Figure 23. 1In this figure each of the flow classifications is indicated
by a different symbol. Bach horizontal row of data points represents
one run, The critical Rayleigh (or Grashof) numbers can be estimated
from this figure. The critical wave numbers were estimated by directly
measuring the size of the cells in the photographs.

The tests which were carried out at an aspect ratio of 20 are
to a large extent a verification of Elder's(l5) experiment with high
Prandtl number fluids. The velocities were quite low in these tests
and 1t was virtually impossible to discern the pattern of the flow by
direct visual observation. The streak photographs, however, gave a
Cclear representation of the pattern. Figure 24 shows three photo-

graphs taken at Rayleigh numbers near the critical value. In Figure 2ha
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the flow is essentially parallel and hence stable. In Figure 24b the
flow has become unstable as evidenced by the appearance of a cellular
secondary flow in the neighborhood of the interface between the rising
and falling columns of fluid. In Figure 2h4c the cellular flow is some-
what stronger. Figure 25 is a view of a well-developed cell, This
pattern can be compared with that of Figure 17 which was obtained ana-
Lytically.

Figure 26 is a similar sequence of photographs for the tests
which were carried out with air in order to approximate the "infinite

t

case," Figure 26c can be compared with Figure 16. The bright spots
in these photographs are caused by small dust particles which adhered
to the walls,

In both of the above cases the laminar cells were quite steady.
The cells often remained stationary for five minutes or more., There
did appear to be a very small upward drift of the cells. The cells
appeared to be very nearly two-dimensional, as could be discerned by
moving the light slit forward and backward.

A stationary instability was not observed in the test at an
aspect ratio of 50. Instead, the flow became turbulent at a Rayleigh
number of about 3.3 x 105 . It was not discerned whether the turbulence
originated in the growing boundary layers near the end regions, or if
it actually originated in the central portion of the slot.

Figure 27a 1s a streak photograph of the turbulent flow at
Ra = 5.2 x lO5 taken with an exposure interval of 10 sec. Although
this motion appears to be chaotic, the 3-sec exposure shown in Figure

27b bears a striking resemblance to the laminar cellular flows dis-

cussed above. Similar patterns were observed in several short time
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Figure 25. Streak Photograph of
a Cell, H/d = 20,
Ra = 4.5 x 107.
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10-Sec exposure 3-Sec exposure

(a) (v)

Figure 27. Visualization of Turbulent
Motion, H/d = 50, Ra = 5.2 x 10° .
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duration photographs, Hence it might be conjectured that the struc-
ture of the turbulence in this flow is closely related to the cellular
instabilities which have been considered in this dissertation.

The experimentally-determined critical states are indicated

and compared with the analytical results in Table I and in Figure 28.
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TABLE 1

SUMMARY OF RESULTS

Racy Qer
H/d Pr Experiment Analysis Experiment Analysig
20 900 | 3.7 x 10° | 3.12 x 10° 3.5 1.85
Turbulent
50 77 at 7.05 x 107 S 1.6
3.4 x 107
% 71| 8.7 x 103 | 7.88 x 103 2,74 2.65
(Conduction

Regime)
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Figure 28. Comparison of Analytical and Experimental
Critical States.




APPENDIX I

INVISCID CONSIDERATIONS

On the basis of simple physical arguments and existing experi-
mental evidence, it was assumed in Chapter II that stationary mecdes of
instability exist in antisymmetric flows of the type considered here.
The following remarks concerning the inviscid stability analysis of
these flows provide further insight concerning such modes.

It was found above that the stability of fully-developed anti-
symmetric natural convection was not effected by the buoyancy forces.

TIn fact the buoyancy-force term: in the disturbance momentum equation
becomes identically zero as the Prandtl number approaches zero. For
this: reason the essence of the stability analysis of these flows can
be gleaned from a study of the Orr-Sommerfeld equation alone.

The Orr-Sommerfeld equation and appropriate boundary conditions

for this problem are

(D2-a2)°® -iaGnr {(ﬂ—c)(Da-ﬂﬂ)(ﬁ - (Dzﬁ)a?} =0  (1-1)

I+

O(zL) =Da(zt)= 0. (1-2)

since XGr is large compared with unity, in the vicinity of
the critical Grashof number, a first approximation to this equation is
that obtained by letting X G»>® | i.e. the inviscid form of Equa-

tion (I-1).

(H-c)P7"-02@) -U"P = O (1-3)

_94_
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Q%) = o. (1))

This equation has been studied in detail by Tollmien(hu) for parallel
flows of the symmetrical and boundary-layer types. The major difficulty
in solving this equation is that introduced by its singularity at the
point or points where the wave speed and base velocity are equal. By
imploying a series solution of Equation (I-3) in conjunction with con-
siderations of the complete Orr-Sommerfeld equation, Tollmien was able
to circumvent this difficulty and prove a number of important theorems
regarding the existence of certain types of solutions of Equation (I-3).
The following arguments concerning stationary modes of instability are
based on Tollmien's analysis.

For states of neutral stability the wave speed, c¢ , is a real
quantity. Equation (I-3) is then singular at each point where ZZ==C .
In the case of antisymmetric velocity profiles such as those considered
in this dissertation there are three such singular points if ¢ = o
(Figure I-1). These singular points are denoted as Y1, Yo, and y3-

The Wronskian of Equation (I-3) is given by

T = @+ dCﬂ* - wri‘i— 2 (I-5)

which is proportional to the disturbance Reynold's stress. Here GQV
and Qﬂi<ienote the real and imaginary parts of the solution respectively.
By applying the method of Frobenius to Equation (I—3) Tollmien shows that
the Wronskian increases suddenly by an amount ld%)z é%é%—]Tﬂ upon

transition through a ecritical point, %, , in the positive direction of
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Figure I.1. Antisymmetric Velocity Profile.
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vy (defined here as the direction away from the wall in each half of the
channel). Since the singular point Yp 1s an inflection point of the
velocity profile, this quantity is zero at y,. According to the theory
of ordinary differential equations the Wronskian must be constant in =
region which contains no singularities, so it must be zero in (yl, yg)
and (yg, y3). Hence no jump in 7’ can occur at the boundaries y; and
y3 . This condition is automatically satisfied in the present case be-
cause of the boundary conditions on (ﬁ . Thus a necessary condition for
the existence of a solution of Equation (I-3) with c = o is satisfied.
Although solutions with ¢ = o exist for symmetrical and
boundary-layer flows, Tollmien shows that they exist only for A=0, i.e.
for disturbances off infinite wave length. In the case of antisymmetric
=
plane Couette flow, to which the above arguments also apply, -%—EO S0
the only solution of Equation (I-3) with ¢ = o 1s the trivial solution,
Cﬂ =0 . Body-force generated antisymmetric flows would appear to be
unique among parallel flows in fulfilling all the above conditions.
%%fchin 7, Y] , Sturm-Liouville theory states

that only imaginary values of ¥ exist. (See for instance Reference 26).

If ¢ = o and

rreld
In the present case%%r < (0 throughout the domain and thus the existence
of solutions of Equation (I-3) with c¢ = o 1is possible, but not proved.
(24)

Stuart has applied similar reasoning to the somewhat ana-

logous problem of the stability of flow near a rotating disk.



APPENDIX IT

EVALUATION OF INNER PRODUCTS

In the application of Galerkin's method 1s was necessary to

evaluate a large number of inner products of the form

t4
($5l7m152) = S_i Y75 5 dy (11-1)

Here &2 was either the C or ,S function or the cosine or sine function
and g, was one of these functions or a derivative of one of them.
These integrations were carried out by integrating by parts four times

and recalling that

v
v _ 4 A~ — 4
Ch =An C:oq ) Siﬂ = kK, :;m
(11-2)
. 2 . v_ e '
CR,, = L Co2, ) A, = >gn A
As a simple example, the evaluation of (Cm1PY}SM> is carried out

in detall:

A = (Y vls,)

=-(culvle,) -(culs.)

(Coltlgr) + (cz1sl) +(c418s)
~(eh sy - (cilsr) - 2(cs18k)

= k2 (ClylS.) + (Col84) + 3(Cal 8))
o (Calyls) = 405 -p8 (C.132)

_98_
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But, according to Reference 38,

(Conl82) = (M- 12)7 I S

+%
1
2
8o,

(Coml 11 80) = BN, - 1w2) S CL(4) S (4) .

The only cases in which such a simple scheme does not suffice
are those in which C2 S,,,,, ,,,,, or M appear. In these cases
the integration was carried out directly. Reid and Harris(38> have

tabulated such inner products for cases in which they involve just the

C and 8 functions and their derivatives.

The following tabulation of 56 non-zero inner products is
Presented in the hope that it may be of benefit to others concerned with

related analyses.

1. (ColCan) =1
20 (CAICom) = EXF Cal (£)CU(E) = (Mo Tanh (22))°
5, (CUlCm) = A
s (CL1Ca) = (M s (2 (£)Cr (L) - 20 (4)0ms))
5. (ColtlS,) = BAL -p& )2 Con (3) S0()
o, (CLI718) = 2(a% -ma) L CU (L) S/ -5C ()80 (D)
FOU(R) L4 — 408 (- ) el )]
1 (el 82 = 20d-m) B GG L) -l 814
S CUE)SIE) - Ant - YL ) 81 ()



10.

11.

12,

13.

1k,

15,

16.

18.
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(CLl72I8n) = Wh-wd) {ECL A8 (L) -8 (ColUl S,)
24 (M- 1d) G (£) S 1£)

(Cnlr2187) = (-2 )[R CLIE) S1(B) - 2CL ) 81 14)
FBRE (Cll 1) - 24 WA (NG -1AY 0L (2) SI))

Col31S,) = e w8){12(Cl w21 22) + 36 (C W1 SY)
-48 (M- pt) Ol (3)80 (4)]

Col7218.) = (A 1) (G 3 18) -4 CL ) S

+ 2 CIE)S4) = 1278, (Ch 121 8.)

36 A% (Col113,) + 48 (Wi CLES )
(S.18,) =1
(3216,) = 51482 (4)80(%) - (B, coth (Bm))°
(S)18,) = M

(218,) = (wi-pt) (280088, (4) 282 (£)S7(4))

(S.141C,) = 8(Ki-x4 )2 s(£)Cl(E)

(S 191G ) = 2(mi-p2) (£ 8(2)C (4) - 237 #)CE)
+ S2(F)CL () - 4mF (B2

(S 0flcs) = 2(BA-r2) ' {F SIE) Cy () -
- Sr )G ) -4 ak (wEps) SJ:(—%)C;’ (-ZL)
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20.

21.

22,

23,

2k,

25,

26,

27,

28,

29.

30.
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(0 121C,) = (Wt A2) £ S0 E)CIE) - BuE (S04 C.0)
t2a(mi-as) SIL)CI(4))

(Snlv21C) = (wh-as) [ESIBICB) -2 3.2(%) c(4)
+BAL (S, 17ICy) - 2an (si-at) 82 (4) C,é’(zi)}

(S 1431 C.,)

(M_/\m-/{,g (S,.1v21c) + 36(S,.191¢")
48 (AL)S N (£) Cold) ]

{zé SYE)CHE) -F 82 L)
+ 2 SLE)CL (L) —12mE(Ss1velC,)

=36 M (S, 191 C.) +48(md- 1378 E)C (Jé)}

(S21%31C.,)

i

(Comleon ) = 28,008 -22)7 CL(4£) 410 (£)
(Sim [ 2in,) = =2 K, (M2 ) B0 () coe (52)
(coaln| 8m) = 2., (A= 14)18% (L) ain (£)
(i) Con) = = 2K, (KE - M4 CH(E) c (L)
(cotam lCoanm) =
(con, | con,) —--/Jﬂ-z-

(cotm | abnn) = =4 LK (B2 -142) 22 () e (X2
(Cotm 3] aim, ) = A8 80 km (B2-W2) P/ +2KE(B2-12) "]

0im(%2) coe (52) = 32, Kon (A2= 12 ) oin [ Z)ecl )
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32,

33.
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35

36.

37

38.

39.
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(M’MIMM> = —22_
2
(it | mn) =~ 2"

(i 1] C2) = =4 Xm0 (K2, = 22) e (582) aim ()
(@irm |3 Coam) = 4B Xm A (42 =52 211 +252(K5-22)"]"
- o2 (822) i (£) ~3m o (x5 b (52) i (B)
(Cr1m218,) =k {2 Gl 87 (E) - 2 CI(2) ST ()
A8 B 198 + 24 (08, - s oL (.%)3;’(%)]}
(Calte18]) = (Wo-md)" -2 CLE)S (£) + 8147 (Cmll 8.)
+24 (M4 -M2) CJ’(z’—)Sj’(i)}
(C.l97187) = % -w2) " [H (G S/ (8) - Cld) s118)
-2 CIE)SIE) v w2 (cal vl s))
+ 36 (Col1 8] + 2 (A5 -k LS )]
(Colvilse) = Wa-i) (& C(E)STE) - CLE) SR
A6 (Cl38) ) + 72(C. 42 $4)+ 96 (G, 1713,)]
+4.8 (3% - wr’ ChE)S ()}
Crlylsa) = (Wh-wi) {L Car (R)32(2) - 16 A% (Calv3l s.)
—72(Crivels,.) - 96 (CL14ls,)
48 (M) CL (B3 1))
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L3,

L,

Ls,

L6,
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(Calvéls) = NV (B CIE)3/E) + i (CrB)si(3)
= Cn(£)87(4) - 2003 [ 19418,) + 6(C.01315,)]
- 240 (G 1%3[3,) - 120(C2 )1 8.) ]

(Col9%18,) = (A% -12) {20 (Coly4] 82) + 120 (Coml73]87 )
+240 (C,.|¥287) + 120(ClylS,) }

(S 121C,) = (ka-a3) " 280 (@)Chth) - £ 4)02(5)

-u3la(szIvIC.) + 24 (s -x) s (B & 5]

(Smlvelcs) = (aons )" -5 3(£)CL) + 82 (.1 %IC.)
r24 (mh-)3)TCI(E)SIE) ]

(Sn 13102 ) = (i-pt ) (F(SPE)Cr(4) - SLE)CH )
2 8I(E)CE) w24 [z (8, w=/c'>
*36(38, 171 )] +2 (KA-x8Y SuEC )

(Salv41C) = (=N {EFSUEICHE) - SL(E) CLE)
+ )4 6 (s, 1v31c2) + 72(8..1v2CL)

96 (S, 110,)] + 48 (w22 Y CLE)S )]

(B41441 C) = (A= x8) ' {E SIE)C) (L) = 1612 (3, vC)
~72(821v3lc,) - 96 (S)1v1C,)

~48 (1-xt) B Crd) |
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50.
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52,

53-
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(Sa1751Ca) = (wd-n8){FSIE)CHE) + 75 (S7()C/))
- Su(E) Cld)) -20 2 [(SL 174 Car6(Salv310)
- 240 (32172C,) - 120 (3711 C.) |

(Salsie,) = (mt-az)"{20(s, vel ) « 120 (S, lw3l )

+ 240 (S.lv2lcs ) + 120 (S.,19]C, )}

(Conltlcoe) = (No-02) {-ﬁ Co (%) 0in(Le) + 28 Chilh)ain(Z)
+4f’4(cmlcav.m)}
(G 97 co, ) = (Nemt) " {28 CL L) caim (£)

22 [B(Coltl coatn) + 12 (Corl coe) ]}
(Sltlaints) = (53-X2) D105 () coe()-2X, 50 (B)em (59

+aXE (5] i) )
(Soly2laim,) = (2-4)" % Ko S (£) e (%)

G [8(S Il eins) + 12 (3] 0]}
(Cotm |1 H4] iy, ) = (ﬁm?-xﬁ)—’%‘%m ain(£n) coe (%)

+ij(mmlwimm)—72(cﬂ,,,,lﬂ12)w,’n>}

(coep |¥E] 4in,,,) = (%E—HE,)_/{-/O(MMJ%)M;)

~20 (e 193] 2, |
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5. (aing|74conl) = (282" (& X coa () im ()
* 882 (o 1% coa,) = 12 (e, o4 ¥y
6. (@i velcm,) = (k3-897{~10 (win,, 194l cous)

~20 (b, 13| con ) |
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