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Abstract. We derive variational formulas of natural first order functionals and obtain
criteria for stability in particular at Riemannian subimmersions.

1. Introduction

Any function Φ: Sym+(m) → R+
0 on symmetric (m×m) matrices which is invariant under

conjugation by O(m) gives rise to a functional EΦ : C∞(Mm, Xk) → R+
0 . Here (Mm, g)

and (Xk, h) denote compact Riemannian manifolds of dimensions m and k, carrying

Riemannian metrics g and h, respectively. We denote by df∗ ∈ Γ Hom(f ∗TX, TM) the

adjoint of the differential df ∈ Γ(Hom(TM, f ∗TX)) with respect to the Riemannian

metrics on M and X. More explicitely it is defined by the condition that h(df v, x) =

g(v, df ∗x) holds for any p ∈ M and v ∈ TpM , x ∈ Tf(p)X. The Φ-energy of a smooth map

f : M → X is the integral

EΦ(f) =

∫
M

Φ(df∗df) .

Essentially the Φ-energies are the natural locally computable functionals whose density

depends explicitely only on the first derivatives of f and does not involve (derivatives of)

the Riemannian curvature tensors (cf. [2], [10]).

Examples of such functionals are the 2-energy, Φ(A) = Tr(A), the p-energies, Φ(A) =

(Tr(A))p/2 (cf. [6]), the exponential energy, Φ(A) = eTr(A) (cf. [7], [5]), but also Φ(A) =

Tr(Ap), Φ(A) = Tr(eA), the volume and the Jacobians, Φ(A) = (σl(A))q, where σl(A) de-

notes the l-th elementary symmetric polynomial in the eigenvalues of A. By a theorem of

Glaeser, [8], all these functions Φ may be written as Φ(A) = Φs(Tr(A), Tr(A)2, . . . , Tr(A)m)

with some smooth function Φs : Rm → R. Functionals with Φ(A) = F (Tr(A)) have been

studied by Ara in [1].

In this paper we will derive (un)stability criteria for the Φ-energies at Riemannian

subimmersions. These are maps f such that df∗df is an orthogonal projection of constant

rank. Examples of such maps are immersions (cf. [5], [6], [1], [3]) and Riemannian

submersions like G-maps f : G/H → G/K, H ⊂ K ⊂ G, between compact normal

homogeneous spaces.
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By a Φ-harmonic map we mean a critical point for EΦ. Such a map f is called stably

Φ-harmonic if the index form, i.e., the second variation, of EΦ is nonnegative at f . At

a Riemannian subimmersion f of rank k these properties depend on a few parameters

determined by Φ: Let λk(Φ), λ′k(Φ), µk(Φ), νk(Φ) ∈ R be the parameters for Φ defined by

expanding the first and second derivatives of Φ at the orthogonal projection pk : Rm → Rk

in terms of traces (cf. (2.8) and (2.9))

dpk
ΦA = λk Tr A + λ′k Tr AV and d2

pk
Φ(A) = µk Tr(A2

H) + νk(Tr A)2 + . . . .

In Proposition 3.2 we show that for all Φ with λk(Φ) 6= 0 the Φ-harmonic Riemann-

ian subimmersions are those with minimal image and fibres. If λk(Φ) = 0, then any

Riemannian subimmersion is Φ-harmonic.

The second variation of the 2-energy ETr has always finite index at a harmonic map

but usually there are few stably critical maps of the 2-energy. For instance, the identity

map on the standard k-sphere Sk is unstable for ETr if k ≥ 3, cf. [13]. More generally,

a stable harmonic map Sm → X or X → Sk is constant if m, k > 2, cf. [16], [11]. In

these assertions the sphere may be replaced by certain Riemannian symmetric spaces, see

[12], [9]. In [1], [5], [6] stability criteria for isometries have been derived for functionals of

the type
∫

M
F (‖df‖), F : R+

0 → R+
0 , such as the exponential energy or the p-energy. For

Riemannian submersions in this case, see [14].

For the Φ-energy at a Riemannian subimmersion we compute the leading symbol of

the second variation. By Proposition 3.8 the second variation d2
fEΦ of the Φ-energy at a

minimal Riemannian subimmersion f has finite index if λk(Φ), λk(Φ) + λ′k(Φ), λk(Φ) +

2µk(Φ) + 2νk(Φ) and λk(Φ) + µk(Φ) are all positive.

Any Riemannian submersion f : M → X of rank k with totally geodesic fibres is Φ-

harmonic. For vector fields v along f the second variation of EΦ at f is given in Theorem

3.10. Some results of Urakawa on the 2-energy, cf. [15], immediately carry over to these

more general functionals. For instance, if the identity map on X is Φ-unstable, then the

same holds for f (cf. (3.13)). Conversely, if the identity map on X is stably Φ-harmonic,

we can make f stably Φ-harmonic by shrinking its fibres. For equivariant maps among

normal homogeneous spaces one can explicitely compute the index of the second variation

by translating the Jacobi operator into Lie theory and computing its small eigenvalues,

analogous to [15]. This will be pursued elsewhere.

2. Preliminaries

2.1. Variational formulas for the Φ-Energy

We first recall the general variational formulas for the Φ-energy from [3]. We may always

extend Φ to a function Φ: M(m) → R on all real (m × m)-matrices which remains

invariant under conjugation by orthogonal matrices. A straightforward calculation yields
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the following formulas for the first and second variations. Denote by ∇M , ∇X the Levi-

Civita connections on M , X, and by ∇ the induced connection on f ∗TX or TM∗⊗f ∗TX.

A smooth map f : M → X is Φ-harmonic, i.e., a critical point of the Φ-energy if

(2.1) dfE(v) =
d

dt
EΦ(ft) =

∫
M

ddf∗dfΦ((∇v)∗df + df∗∇v) = 0

for any smooth one parameter variation ft = F (t, ·), F : (−ε, ε) × M → X with v =

(d/dt) ft. In [3] the tension field τΦ(f) ∈ Γf ∗TX defined by (d/dt) EΦ(ft) = 〈τΦ(f) | w〉
is computed. For the 2-energy, Φ = dΦ = Tr, d2Φ = 0, we have

τ(f) = τTr(f) = Tr∇df .

In [3, Proposition 2.3] the index form of the Φ-energy at a Φ-harmonic map f : M → X

is computed. It is given by

d2
fE(v, w) =

d2

dtds
EΦ(ft,s) =

∫
M

IΦ(f)(v, w) , where

IΦ(f)(v, w) = ddf∗dfΦ
(
−df∗RX(·, v)w − df∗RX(·, w)v

)
+ ddf∗dfΦ ((∇v)∗(∇w) + (∇w)∗(∇v))

+ d2
df∗dfΦ (df∗∇v + (∇v)∗df, df ∗∇w + (∇w)∗df) .

(2.2)

The vector fields v = (d/dt) ft,s, w = (d/ds) ft,s along f are variation fields of a smooth

2-parameter family ft,s = F (t, s, ·), F : (−ε, ε)× (−ε, ε)×M → X. By RX we denote the

Riemannian curvature tensor of X and by df∗RX(·, w)v the homomorphism Rv,w : TM →
TM defined by 〈Rv,wx | y〉 = 〈RX(dfx, w)v | dfy〉.

The second variation of EΦ can be written in the form d2
fEΦ(v, w) = 〈JΦ(f)v | w〉 with

a second order differential operator, the Jacobi operator of Φ, acting on vector fields v, w

along f . Its leading symbol is calculated from (2.2).

Corollary 2.3 (see [3, Proposition 2.5]). The leading symbol of the second variation of

EΦ is given by

〈σ(ξ)v | w〉 = d2Φ (df∗v ⊗ ξ + ξ ⊗ df∗v, df∗w ⊗ ξ + ξ ⊗ df∗w)

+ 2〈v | w〉ddf∗dfΦ(ξ ⊗ ξ) ,

where ξ ∈ TM = TM∗ by the Riemannian metric, v, w ∈ f ∗TX. If σ(ξ) > 0 for all

ξ 6= 0, then JΦ(f) is elliptic and the second variation of EΦ has finite index.

2.2. A Bochner Formula

In Section 3 some stability criteria of Riemannian submersions will be derived by com-

paring (2.2) with the following Bochner formula. With ‖A‖2 = Tr A∗A and B = ∇df ,
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B(v), B(df∗v) defined by 〈B(v)x | y〉 = 〈v | (∇xdf)y〉, resp. B(df∗v) = ∇df∗vdf , a

straightforward calculation gives for a closed manifold M that

1

2

∫
M

‖df∗∇v + (∇v)∗df‖2 =

∫
M

‖df∗∇v‖2 − Tr
(
RX(·, df ∗v)v

)
+ (Tr(df∗∇v))2

− 〈∇df∗vv | τ(f)〉 − Tr (df∗∇vB(v))

+ 〈τ(f) | v〉Tr (df∗∇v) + Tr ((∇v)∗B(df∗v)) .

(2.4)

2.3. Derivatives of Φ at a projection

The endomorphism df∗df of a Riemannian subimmersion f is the projection onto the hor-

izontal distribution. We therefore need the derivatives of Φ at a projection. Decomposing

Rm = Rk ⊕ Rm−k and accordingly

(2.5) Sym(m) = Sym(k)⊕ Sym(m− k)⊕M(k × (m− k)) ,

we determine the components of dΦ and d2Φ. Since the projection pk onto the first factor

Rk is fixed by conjugation with O(k) × O(m − k), the first and second derivatives of Φ

at pk can be expressed in terms of traces and involve only few parameters. In order to

derive this expansion we choose a curve X(s) ∈ Sym(m) through X(0) = pk and a skew

symmetric matrix

v =

(
P Z

−Zt Q

)
∈ so(m)

with P ∈ so(k), Q ∈ so(m − k) and Z ∈ M(k × (m − k)). Since Φ is invariant under

conjugation by O(m), we have

d

dt

∣∣∣∣
t=0

Φ(e−tvX(s)etv) = dX(s)Φ[X(s), v] = 0 and(2.6)

d2

dsdt

∣∣∣∣
s=0,t=0

Φ(e−tvX(s)etv) = d2
pk

Φ(Ẋ ⊗ [pk, v]) + dpk
Φ[Ẋ, v] = 0 .(2.7)

The only linear invariants on the first two summands Sym(k) and Sym(m − k) in (2.5)

are multiples of traces. Since

[pk, v] =

(
0 Z

Zt 0

)
,

it follows from (2.6) that dpk
Φ vanishes on the third summand M(k × (m − k)) in (2.5).

Hence there are λk = λk(Φ), λ′k = λ′k(Φ) ∈ R such that

(2.8) dpk
ΦA = λk Tr A + λ′k Tr AV
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for A ∈ Sym(m) and AH ∈ Sym(k), AV ∈ Sym(m− k) and AVH ∈ M(k × (m− k)) such

that

A =

(
AH AVH

At
VH AV

)
.

For the second derivative we get from (2.7) with Ẋ =

(
0 Y

Y t 0

)
, resp. Ẋ =(

R 0

0 S

)
, that

d2
pk

Φ(

(
0 Y

Y t 0

)
⊗

(
0 Z

Zt 0

)
) = −dpk

Φ

[(
0 Y

Y t 0

)
,

(
P Z

−Zt Q

)]
= −2λ′k Tr(Y tZ)

and

d2
pk

Φ(

(
R 0

0 S

)
⊗

(
0 Z

Zt 0

)
) = −dpk

Φ

[(
R 0

0 S

)
,

(
P Z

−Zt Q

)]
= −λ′k Tr(SQ) = 0 ,

since S is symmetric and Q is skew symmetric. Finally, since pk is fixed under conjugation

with O(k)×O(m− k) and since the only quadratic O(q)-invariants on B ∈ Sym(Rq) are

linear combinations of Tr(B2) and (Tr(B))2, we get that

d2
pk

Φ(

(
R 0

0 S

)
⊗

(
U 0

0 V

)
)

is a linear combination of

Tr(RU) , Tr(SV ) , Tr(R) Tr(U) , Tr(S) Tr(V ) , Tr(S) Tr(U) + Tr(R) Tr(V ) .

The second derivative may therefore be put into the form

d2
pk

Φ(A) = d2
pk

Φ(A⊗ A)

= µk Tr(A2
H) + νk(Tr A)2 − 2λ′k Tr(At

VHAVH)

+ µ′k Tr(A2
V) + ν ′k(Tr AV)2

+ κk Tr AH Tr AV

(2.9)

with coefficients µk = µk(Φ), µ′k = µ′k(Φ), . . . ∈ R determined by Φ. Only the coefficients

λk, λ′k, µk, νk will show up in the index form. We list these for some examples in Table 1.

Here σp(A) denotes the p-th elementary symmetric polynomial in the eigenvalues. It is

determined by the relation

det(1 + tA) =
m∑

p=0

σp(A)tp .
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Φ(A) Tr A Tr(Ap), p > 1 (Tr A)p eTr A Tr eA σp(A)

λk 1 p pkp−1 ek e
(

k−1
p−1

)
λ′k 0 −p 0 0 1− e

(
k−1
p−2

)
µk 0 p(p− 1) 0 0 e −

(
k−2
p−2

)
νk 0 0 p(p− 1)kp−2 ek 0

(
k−2
p−2

)
Table 1. Coefficients for some functionals

3. Riemannian subimmersions

A Riemannian, or metric, subimmersion of rank k is a map f : M → X such that for every

point p ∈ M there exist a neighborhood U of p, a k-dimensional manifold Y , a metric

submersion π : U → Y and an isometric immersion ı : Y → X such that f |U = ı ◦ π. We

denote by V = ker df and H = (ker df)⊥ ⊂ TM its vertical and horizontal distributions

and by N = (im df)⊥ ⊂ f ∗TX the pull back of the normal bundle of M in X. We

denote by XV = pV X, XH = pH X and X⊥ = p⊥ X the orthogonal projections onto

V , H and N , respectively. Let T ker ∈ Γ Hom(V ⊗ V ,H) and T im ∈ Γ Hom(H ⊗ H,N )

be the second fundamental forms of the fibres and the image of f , respectively. Let

A ∈ Γ Hom(H⊗H,V) be the tensor field A(h, h′) = pV ∇hh
′. We will denote the various

adjoints by the same letters and write

〈A(h, h′) | u〉 = 〈∇M
h h′ | u〉 = 1/2 〈u | [h, h′]〉 = −〈h′ | ∇M

h u〉 = −〈A(u)h | h′〉

= −〈h′ | A(h, u)〉 = −〈A(h)h′ | u〉 = −〈∇M
h′ h | u〉 ,

〈h | T ker(u, u′)〉 = 〈h | ∇M
u u′〉 = −〈∇M

u h | u′〉 = −〈T ker(h)u | u′〉 ,

〈r | T im(h, h′)〉 = 〈r | T im(h)h′〉 = 〈r | ∇X
h h′〉 = −〈∇X

h r | h′〉 = −〈T im(r)h | h′〉

for vector (fields) h, h′ ∈ H, u, u′ ∈ V , r ∈ N , see [4]. The second fundamental form ∇df

may be expressed in terms of the second fundamental forms T im, T ker and A,

(3.1) (∇Xdf)Y = T im(XH, YH)− T ker(XV , YV)− A(XH, YV)− A(YH, XV) .

In the sequel (3.1) will be used to simplify the expressions (2.1) and (2.2) for the first and

second variation at a Riemannian subimmersion of rank k.

3.1. The tension field at Riemannian subimmersions

For the tension field, (2.1) and (2.8) yield the following

Proposition 3.2. If f is a metric subimmersion of rank k, then we have

(3.3) τ(f) = Tr T im − Tr T ker
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and

(3.4) τΦ(f) = λk(Φ)τ(f) .

In particular, all Φ with λk(Φ) 6= 0 have the same critical subimmersions of rank k as

the 2-energy. A Riemannian subimmersion is harmonic for such Φ if and only if both the

image and the fibres are minimal.

Proof. The first formula (3.3) is immediate from (3.1) since the terms involving the A-

tensor do not contribute to the trace τ(f) = Tr∇df .

For the second formula (3.4) we identify TpM ∼= Rm = Rk ⊕Rm−k ∼= Hp ⊕Vp, pk = pH
and pn−k = pV , and apply (2.8). The integrand in the first variational formula (2.1) thus

becomes

ddf∗dfΦ((∇v)∗df + df∗∇v) = λk Tr((∇v)∗df + df∗∇v) + λ′k Tr((∇v)∗df + df∗∇v)V .

Since df ◦ pV = 0, the second term on the right hand side vanishes and we finally obtain

ddf∗dfΦ((∇v)∗df + df∗∇v) = λk Tr((∇v)∗df + df∗∇v) .

But this is λk times the integrand in the first variational formula for the 2-energy. There-

fore τΦ(f) = λk(Φ)τ(f).

Finally if τ(f) vanishes then both Tr T im ∈ ΓN and Tr T ker ∈ ΓH vanish.

�

3.2. The index form at Riemannian subimmersions

The first and second derivative of Φ at pH = df∗df are given by (2.8) and (2.9). As

before we will identify v ∈ f ∗TX ∼= H ⊕ N ⊂ TM ⊕ N and ∇v ∈ TM∗ ⊗ f ∗TX ∼=
TM∗ ⊗ (H⊕N ) ⊂ TM∗ ⊗ (TM ⊕N ).

In order to evaluate the index form (2.2) on a vector field v ∈ Γf ∗TX = Γ(H⊕N ) we

need to compute (2.8) for A1 = df∗RX(v, df ·)v + (∇v)∗(∇v) for the terms involving the

first derivative of Φ and (2.9) with

A2 = df∗∇v + (∇v)∗df =

(
pH ((∇v)∗ +∇v) pH pH∇v pV

pV(∇v)∗ pH 0

)
for the second order terms.

With Tr A∗A = ‖A‖2 and Tr A1,V = ‖∇v‖2
V =

∑m
i=k+1 |∇ei

v|2, for a local orthonormal

framing {ek+1, . . . , em} of V , we infer

IΦ(f)(v, v) = 2λk

(
‖∇v‖2 − Tr〈RX(df ·, v)v | df ·〉

)
+ 2λ′k‖ p⊥∇v‖2

V

+ µk Tr
(
A2

2,H
)

+ 4νk(Tr pH∇v)2
(3.5)
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Let div x = Tr∇Mx denote the divergence of a vector field x on M . We will need the

following relations.

p⊥∇vH pV = pH∇v⊥ pV = 0 ,

Tr
(
A2

2,H
)

= Tr
(
(pH∇v)∗ + pH∇v)2

)
= Tr

(
(pH∇vH)∗ + pH∇vH)2

)
+ 4‖T im(v⊥)‖2

+ 8 Tr
(
(pH∇vH pH)T im(vH)

)
,

Tr pH∇v = Tr pH∇vH + Tr pH∇v⊥

= div vH − Tr T ker(vH) + Tr T im(v⊥) .

(3.6)

Inserting (3.6) into (3.5) yields

IΦ(f)(v, v) = 2λk

(
‖∇v‖2 − Tr〈RX(df ·, v)v | df ·〉

)
+ 2λ′k‖∇⊥v⊥‖2

V

+ µk

[
Tr
(
(pH∇vH)∗ + pH∇vH)2

)
+ 4‖T im(v⊥)‖2

+8 Tr
(
(pH∇vH pH)T im(vH)

)]
+ 4νk

(
div vH − Tr T ker(vH) + Tr T im(v⊥)

)2
.

(3.7)

This specializes to the formulae in [3] for isometric immersions. As in (2.3) we get

Proposition 3.8. The leading symbol of the second variation of a functional EΦ at a

minimal Riemannian subimmersion of rank k is

σ(ξ) = 2λk|ξ|2 + 2λ′k|ξV |2 p⊥ +2µkξH ⊗ ξH + 2µk|ξH|2 pH +4νkξH ⊗ ξH .

In particular, the p-energy, the exponential energies and the Jacobians have elliptic second

variation with positive symbol and finite index at Riemannian subimmersions, cf. Table 1.

3.3. Riemannian submersions with totally geodesic fibres

We will consider in more detail the case of Riemannian submersions with totally geodesic

fibres. Then T im = 0, T ker = 0, v = vH ∈ H ⊂ TM and

Tr〈RX(v, df ·)v | df ·〉 = −RicX(v, v) = −RicM(v, v)− 2‖A(v)‖2 .

The Bochner formula (2.4) becomes

(3.9)

∫
M

1

2
‖∇v + (∇v)∗‖2 =

∫
M

‖∇v‖2 − RicX(v, v) + (div v)2 − 2 Tr (∇v ◦ A(v)) .

The left hand side is

1

2
‖∇v + (∇v)∗‖2 =

1

2
‖ p∗H Lv g‖2 + ‖∇v‖2

V ,

where p∗H Lv g denotes the horizontal component of the Lie derivative of the metric of M .

From (3.7) and (3.9) we therefore get the following expressions for the second variation.
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Theorem 3.10. The index form of a Riemannain submersion f : M → X with totally

geodesic fibres is given by∫
M

IΦ(f)(v, v) =

∫
M

2λk

(
‖∇v‖2 − RicX(v, v)

)
+ µk‖ p∗H Lv g‖2 + 4νk(div v)2(3.11)

=

∫
M

2λk

(
‖∇v‖2

V + 2 Tr (∇v ◦ A(v))
)

+(λk + µk)‖ p∗H Lv g‖2 + (4νk − 2λk)(div v)2

=

∫
M

(2λk + 2µk)
(
‖∇v‖2 − RicX(v, v)

)
− 2µk‖∇v‖2

V(3.12)

+(2µk + 4νk)(div v)2 − 4µk Tr (∇v ◦ A(v)) .

3.4. Applications

There are a number of immediate consequences of these formulas. Let f : Mm → Xk as

before be a Riemannian submersion of rank k with totally geodesic fibres and Φ: M(m) →
R be O(m)-invariant. In case λk(Φ), µk(Φ), νk(Φ) ≥ 0, it follows from (3.11) that f is

stably Φ-harmonic if it is stably harmonic.

3.4.1. Positive elliptic symbol. By Proposition 3.8 the second variation of EΦ has positive

symbol at f if

λk(Φ), λk(Φ) + µk(Φ), λk(Φ) + 2µk(Φ) + 2νk(Φ) > 0 .

Hence in this case we always have finite index and nullity of the second variation of EΦ.

Some results of Urakawa, [15], for the 2-energy extend to such Φ-energies. For instance,

from (3.11), the second variation of EΦ at f restricted to basic vector fields coincides

with the second variation of EΦ at the identity map of X. Hence the index, nullity and

smallest eigenvalue of the Jacobi operator JΦ(f) can be compared to the corresponding

quantities of the identity map on X by (cf. [15], Proposition 6.3)

index d2
fEΦ ≥ index d2

idX
EΦ ,

nullity d2
fEΦ ≥ nullity d2

idX
EΦ ,

λ1(JΦ(f)) ≤ λ1(JΦ(idX) .

(3.13)

Combining this with the instability result of [3, Theorem 3] yields

Proposition 3.14. If Φ has λk(k − 2) > 2µk + 2νkk, then any Riemannian submersion

f : Mm → Sk with totally geodesic fibres onto the standard k-sphere is unstable for EΦ.

The canonical variation of the metric g on M is by definition the 1-parameter family gt

of metrics on M obtained by rescaling the metric on the fibres f−1(x), x ∈ X, by a factor

t ∈ R+, i.e., gt = p∗H g + t2 p∗V g. The second variation may be written as

d2
fEΦ = QV + QH



10 STEFAN BECHTLUFT-SACHS, ANDREAS DÖRING

with QV(v, w) = 〈v | JVw〉 = 2
∫

M
λk‖∇v‖2

V and QH(v, w) = 〈v | JHw〉 collecting

the remaining horizontal terms in (3.11). The vertical Jacobi operatorJV coincides with

that of [15] and the horizontal Jacobi operator JH is the one of [15] plus the terms

involving µk and νk. Let Qt be the second variation with respect to the metric gt. Then

Qt = t−2QV+QH = (t−2−1)QV+Q1. We decompose L2(f ∗TX) = ker JV⊕(ker JV)⊥ and

identify ker JV with the space of basic vector fields and (ker JV)⊥ with those vector fields

whose average along the fibres of f vanishes. A straightforward calculation shows that

QH(v0, v⊥) = 0 for v0 ∈ ker JV , v⊥ ∈ (ker JV)⊥. Furthermore, JV is the Laplacian along

the fibres with values in the vector bundle f ∗TX. Hence the restriction of JV to (ker JV)⊥

has a smallest eigenvalue λ1(J
V) > 0. Let −C be a lower bound for the spectrum of JΦ

(for t = 1) and choose t ≤ (C + 1)−1/2. Then

Qt(v) = (t−2 − 1)QV(v⊥) + Q1(v
0) + Q1(v

⊥) ≥ Q1(v
0) .

Thus, if the identity map on X is stably Φ-harmonic, we always have Q1(v
0) ≥ 0 and

infer that f is stably Φ-harmonic with respect to sufficiently small t (cf. Theorem 7.3 in

[15]). As an example, any Riemannian submersion with totally geodesic fibres is stably

harmonic for the exponential energy if the fibres are suitable rescaled, since the identity

map is always stable for the exponential energy (cf. [5]).

3.4.2. Small Ricci curvature. If the Ricci-curvature of X is small relative to the A-tensor,

we use the estimate

‖∇v‖2
V + ‖A(v)‖2 ≥ 2 |Tr (∇v ◦ A(v))|

together with (3.12). It follows for instance that if

RicX(v, v) ≤ −‖A(v)‖2 , λk ≥ |µk| , 2νk ≥ −µk ,

then a Riemannian submersion f : M → Xk with totally geodesic fibres is stably Φ-

harmonic. This applies to all the functionals in Table 1.
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