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Abstract. We analytically investigate the stability of a discrete viscoelastic system
with negative stiffness elements both in the time and frequency domains. Parametric
analysis was performed by tuning both the amount of negative stiffness in a standard
linear solid and driving frequency. Stability conditions were derived from the analyti-
cal solutions of the differential governing equations and the Lyapunov stability theorem.
High frequency response of the system is studied. Stability of singularities in the dissipa-
tion tan δ is discussed. It was found that stable singular tan δ is achievable. The system
with extreme high stiffness analyzed here was metastable. We established an explicit
link for the divergent rates of the metastable system between the solutions of differential
governing equations in the time domain and the Lyapunov theorem.

1. Nomenclature.

M , m1, m2: mass.
K, k1, k2: stiffness for positive stiffness elements.
c, c1, c2: damping coefficient.
α, α1, α2: ratio between the two spring elements in a standard linear solid. α = α1 when
α2 = 0.
γ1, γ2: ratio of damping coefficient of a standard linear solid to that of a damper parallel-
connected to the standard linear solid, i.e., γ = η/c.
δ: phase angle. Define tan δ = �(k∗)/�(k∗), where k* denotes the dynamic complex
spring constant.
κ1, κ2: ratio of stiffness of the series spring in a standard linear solid to that of a spring
parallel-connected to the standard linear solid, i.e., κ = y/k.
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Fig. 1. Spring-mass system, one degree of freedom (dof).

y, y1, y2, z, z1, z2: stiffness for standard linear solid elements, to be tuned. y1 = κ1k1,
y2 = κ2k2, y = y1, z = z1.
η, η1, η2: damping coefficient for standard linear solids. η1 = γ1c1, η2 = γ2c2, η = η1.
u, u1, u2: displacement coordinate of a node.
u̇ : du

dt .
F , F1, F2: applied force at a node.
ω, Ω: frequency.
H : Hamiltonian.
D: differential operator, d

dt .
h: superscript, homogeneous solutions of a differential equation.
p: superscript, particular solutions of a differential equation.
subscripts: labels of components in a model.

2. Introduction. A bulk solid object of negative stiffness materials is not stable.
However, it might be possible to create a stable configuration for composites with a neg-
ative stiffness component embedded. Extreme material properties and stability-related
issues have been reported in [3]–[6] and [11]–[14]. Here, we first review the stability of a
simple discrete mechanical model, a spring-mass system, to mathematically demonstrate
its internal stability [9] and the stability under external excitations. Then we investigate
the stability of systems with negative stiffness components. This single degree of freedom
(dof) system is shown in Figure 1.

By Newton’s second law, the equation of motion is

mü + ku = F, (1)

where m is the mass, k the stiffness, u = u(t) the displacement, and F = F (t) the external
driving force. A superdot indicates the derivative with respect to time. The solution of
the equation of motion in the time domain is as follows. Assume F = P + A cosΩt and
P and A are constants.

u = uh + up, (2)

where the homogeneous solution uh = C1e
λ1t +C2e

λ2t, where λ1,2 = ±iω and ω2 = k/m,
and C1 and C2 are constants to be determined by initial conditions. As for the particular
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36 YUN-CHE WANG and RODERIC LAKES

solutions, up, one can express them as follows.

up =
P

k
+

A cosΩt

−mΩ2 + k
, when Ω �= ω. (3)

up =
P

k
+

t

2Ω
A sin Ωt, when Ω = ω. (4)

It is clear to see that instability occurs only when Ω = ω, due to time-growing be-
havior in its particular solution. Therefore, from this time domain analysis, the stability
criterion is that the system is stable when Ω �= ω. This stability criterion can also be
obtained through analysis in the frequency domain. Applying a Fourier transform on
Eq. (1), one converts the governing equation into an algebraic equation, as follows.

ũ

F̃
=

1
−mω2 + k

. (5)

The instability of the system occurs only when ω2 = k/m, which is consistent with
previous results from Eq. (4). Furthermore, the results indicate that the system is
internally stable when F = 0 and k/m > 0. Moreover, the system is also stable when
k < 0 and m < 0. For k/m < 0, there are no oscillatory solutions for the system, only
real exponential ones. Hence, it is internally unstable.

The internal stability is the stability of a system under no external forcing. However,
in some cases, it is important to investigate a dynamical system with time variables
explicitly (i.e., non-autonomous systems), such as flutter analysis. A general method for
attacking this problem is to consider the time variable as an ordinary spatial variable [10].
However, by doing so, the Lyapunov indirect method will not be suitable for stability
analysis since it is local. The Lyapunov direct method can be applied, but stability must
be checked at all times in the time domain [8].

Alternatively, one can rigorously derive the stability criteria of a mechanical system
by using the so-called extended energy method [7]. Using the system depicted in Eq. (1)
as an example, we first rewrite the equation of motion for the system as follows.

q̈ + ω2q =
A

m
cosΩt (6)

where q = q(t) is the generalized coordinate, ω2 the ratio of k to m, and Ω the driving
frequency. q(t) is different from u(t) in that the latter contains the contribution from the
dead load P . The total energy of the system can be calculated as follows.

E =
∫ t

0

(q̈ + ω2q − A

m
cosΩt)q̇dt =

1
2
q̇2 +

1
2
ω2q2 −

∫ t

0

(
A

m
cosΩt)q̇dt. (7)

It is clear to see that the energy is not a first integral of the system. From Eq. (7), it
is understood that the Hamiltonian and non-conservative force can be written as follows.

H =
1
2
p2 +

1
2
ω2q2, and (8)

N =
A

m
cosΩt. (9)
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Here p = q̇. Define φ = φ(q, λ, Ω) = dE, and, for E = E(q, p, Ω), the explicit
representations of φ and dφ are as follows.

φ =
∂H

∂q
− N + G = 0, G =

∂H

∂p

dp

dq
(10)

dφ =
∂φ

∂q
dq +

∂φ

∂λ
dλ +

∂φ

∂Ω
dΩ = 0 (11)

or

(
∂2H

∂q2
− ∂N

∂q
+

∂G

∂q
)dq + (

∂G

∂λ
− ∂N

∂λ
)dλ + (

∂2H

∂Ω∂q
− ∂N

∂Ω
)dΩ = 0. (12)

Here λ is the characteristic frequency of the system. In the present case, λ is chosen
to be Ω, and Ω is the control parameter in the stability analysis, which means the results
of the stability analysis will indicate a specific value or region for Ω to make the system
unstable. In order to calculate φ in terms of λ explicitly, we assume the solution for q as
follows.

q = B cos(λt + Φ) = B cos(Ωt + Φ). (13)

Here B and Φ are to be determined. Consequently, p can be found as follows.

p = q̇ = −BΩ sin(Ωt + Φ) = −Ω
√

B2 − q2. (14)

Thus, the G in Eq. (12) can be calculated as follows.

G = p
dp

dq
= (−Ω

√
B2 − q2)(−Ω

1
2

1√
B2 − q2

(−2q)) = Ω2q. (15)

When the instability occurs, dq/dq = ∞. The instability occurs when the following
equation is satisfied.

∂2H

∂q2
− ∂N

∂q
+

∂G

∂q
= 0, or ω2 − Ω2 = 0. (16)

Clearly, Eq. (16) suggests the system is unstable only when the driving frequency is
equal to the natural frequency of the system, as expected.

The above results can be generalized to the problem with many degrees of freedom.
With external excitations, a system becomes unstable when the driving frequency co-
incides with one of the natural frequencies of the system. However, the system can be
stabilized in the sense that no unbounded responses occur when damping elements are
included. Without driving force, the system is internally stable when both mass and
stiffness are positive or negative. Following the similar spirit in Eqs. (2)–(5), we explore
the stability of the 2-dof viscoelastic models, shown in Figure 2, with negative stiffness el-
ements under external excitations, and cross-link our results with the Lyapunov indirect
theorem.

3. Equations of motion. The mechanical system considered here is shown as Figure
2(a), in which the left module is called element 1, and the right one is called element 2.
Figure 2(b) is a simplified version of Figure 2(a), intended to be used in later parametric
study. The subscripts indicate to which module a component belongs. The mass points
m1 and m2 are called node 1 and node 2, respectively. Following Newton’s second law,
the equations of motion of the mechanical system can be expressed as follows.
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m1
η1
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Fig. 2. (a) The 2-dof viscoelastic model. (b) The simplified version
of (a), used in parametric study.
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[
m1 0

0 m2

](
ü1

ü2

)
+

[
c1 + c2 −c2

−c2 c2

](
u̇1

u̇2

)
+

[
k1 + k2 −k2

−k2 k2

](
u1

u2

)
+
(

f1 − f2

f2

)
=
(

F1

F2

)
(17)

where

f1 +
γ1c1

y1 + α1y1
ḟ1 =

α1y
2
1

y1 + α1y1
u1 +

y1γ1c1

y1 + α1y1
u̇1, (18)

f2 +
γ2c2

y2 + α2y2
ḟ2 =

α2y
2
2

y2 + α2y2
(u2 − u1) +

y2γ2c2

y2 + α2y2
(u̇2 − u̇1), (19)

are the constitutive equations for the internal force and deformation in the standard
linear solids (i.e., the y1 − η1 − z1 or y2 − η2 − z2 module). The symbols f1 and f2

denote the internal force in the standard linear solid elements. Also, we define yi = κiki,
ηi = γici and zi = α2yi, where i = 1, 2, to facilitate our later parametric study.

3.1. Solutions in the frequency domain. Investigating the solutions of the equations is
helpful in understanding the response of the systems at different frequency. After Fourier
transform, the governing equations of the system, Eqs. (17)–(19), can be converted into
the following algebraic equations.

T
(

ũ1

ũ2

)
=

(
F̃1

F̃2

)
, (20)

where

T =
[ −ω2m1 + k1 + k2 + iω(c1 + c2) + d1 + d2 −(k2 + iωc2) − d2

−(k2 + iωc2) − d2 −ω2m2 + k2 + iωc2 + d2

]
, (21)

d1 =
α1y

2
1 + iωy1γ1c1

y1 + α1y1 + iωγ1c1
, (22)

d2 =
α2y

2
2 + iωy2γ2c2

y2 + α2y2 + iωγ2c2
. (23)

It is noted that the determinant of the coefficient matrix, Eq. (21), dominates the
boundedness of the displacement responses in frequency domain. In other words, if the
coefficient matrix becomes singular, the system will be unstable in the sense that finite
input produces unbounded output. However, it is not required for T to be positive
definite for stability. We remark that for gyroscopic systems, T is not symmetric, as
discussed in [1], [2], [7] and references therein. One usually encounters gyroscopic systems
when follower forces are considered. Our system is not gyroscopic. The effective complex
compliance (jeff ) and effective stiffness (keff ) can be calculated at a specified frequency
as follows.

jeff = j′eff + j′′eff =
ũ2

F̃2

, and (24)

keff = k′
eff + k′′

eff =
F̃2

ũ2
. (25)
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The effective tan δ is defined as follows.

tan δ =
k′′

eff

k′
eff

, or tan δ = − j′′eff

j′eff

. (26)

For the special case m1 = m2 = 0, c1 = c2 = 0, y2 = 0, k1 = 10, and k2 = 5 kN/m,
the overall tan δ can be obtained from tan δ = h/g, where

h(y, z, η, ω) = 5ωηy2A2, (27)

g(y, z, η, ω) = (ω2η2 + z2)(ω2η2 + (y + z)2) + 25y(ω2η2 + z(y + z))A2 + 150y2A4, (28)

A =
∣∣∣∣1 +

z

y
+ i

ωη

y

∣∣∣∣ . (29)

Here z = αy. Choosing zero masses is done to reduce some mathematical complexities,
and at the same time, simulates a composite material in the continuum sense. This is
the special case studied in [13]. Later, we will discuss some interesting singular behavior
of the overall tan δ for this special case.

3.2. Solutions in the time domain. The general solution of Eq. (17) in the time do-
main is quite complicated. For the purpose of demonstrating extreme properties of the
mechanical system due to a negative stiffness element, we assume c2 = 0, κ2 = 0, and
γ2 = 0, as shown in Figure 2 (b). One should be aware that artificially setting material
properties to be zero causes certain degrees of degeneracy in solutions. We will point
out the effects of degeneracy along with our derivation. The governing equation can be
expressed as follows.[

m1 0
0 m2

](
ü1

ü2

)
+

[
c1 0
0 0

](
u̇1

u̇2

)
+

[
k1 + k2 −k2

−k2 k2

](
u1

u2

)
+
(

f1

0

)
=
(

F1

F2

)
. (30)

To decouple the above equation, one multiplies the inverse of the stiffness matrix (non-
singular stiffness matrix is assumed) on the both sides of the equation, and then obtains
the following.[

m1
k1

m2
k1

m2
k1

k1+k2
k1k2

m2

](
ü1

ü2

)
+

[
c1
k1

0
c1
k1

0

](
u̇1

u̇2

)

+
[

1 0
0 1

](
u1

u2

)
+

(
f1
k1
f1
k1

)
=

(
F1
k1

+ F2
k1

F1
k1

+ k1+k2
k1k2

F2

)
.(31)

It can be seen that the above equation is not fully decoupled yet. However, if one
makes a further assumption that m1 = m2 = 0, the equations can be decoupled as
follows.

u̇1 +
k1

c1
u1 +

f1

c1
=

1
c1

(F1 + F2), (32)

u̇2 +
k1

c1
u2 +

f1

c1
=

F1

c1
+

k1 + k2

c1k2
F2, (33)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



STABILITY OF NEGATIVE STIFFNESS VISCOELASTIC SYSTEMS 41

where

f1 = e
−y1(1+α1)t

η1

[∫ t

0

(
α1y

2
1

γ1c1
u1 + y1u̇1)e

y1(1+α1)t
η1 dt + f1(0)

]
. (34)

The zero mass assumption is implemented in later numerical study by assigning m1 =
m2 = 10−8. Also, the assumption is legitimate in our study since the analysis is intended
to model composites in the continuum sense. Note again, by doing so, m-degeneracy
is unavoidable. Appendix A shows the effects of the m-degeneracy through a 1-dof
example. Eq. (34) is the solution of Eq. (18). f1(0) is the initial condition, equal
to y2u1(0). Observing Eq. (33), it can be found that the solution of u2 is completely
determined by that of u1, as in Eq. (35). From now on, we assume F1 = 0 throughout
the rest of the analysis. The physical rationale is to simulate the mechanical behavior
of two phase composites, in which the interface between the two phases has no external
force applied independent of the solid phases.

u2 = e
−k1t

c1

[∫ t

0

(
k1 + k2

c1k2
F2 − f1

c1
)e

k1t
c1 dt + u2(0)

]
. (35)

As for the solution of u1, one introduces Eq. (34) into Eq. (32), and differentiates
both sides of the equation with respect to time to eliminate the integral from f1.

c1ü1 + (k1 + y1 +
y1(1 + α1)

γ1
)u̇1 + (

k1y1(1 + α1)
γ1c1

+
α1y

2
1

γ1c1
)u1 =

y1(1 + α1)
γ1c1

F2 + Ḟ2. (36)

Eq. (36) is a second-order constant coefficient ordinary differential equation with non-
homogeneous (or forcing) terms. Let F2 = P2 + A2 cosΩ2t; one can find the general
solution as follows. P2 and A2 are pre-chosen constants.

u1 = uh
1 + up

1, (37)

uh
1 = C1e

λ1t + C2e
λ2t, (38)

where

λ1,2 =
−(k1 + y1 + y1(1+α1)

γ1
) ±

√
(k1 + y1 + y1(1+α1)

γ1
)2 − 4(k1y1(1+α1)

γ1
+ α1y2

1
γ1

)

2c1
, (39)

up
1 =

y1(1 + α1)
γ1c1

[
1

λ1λ2
P2 +

A2

Ω2
2 + λ2

2

(
λ1λ2 − Ω2

2

Ω2
2 + λ2

1

cosΩ2t +
(λ1λ2)Ω2

Ω2
2 + λ2

1

sin Ω2t)
]

− 1
(D − λ1)(D − λ2)

Ḟ2. (40)

Here, D is the differential operator, defined as d/dt. In the solution, C1 and C2

are constants to be determined by initial conditions, and the particular solution can be
carried out more explicitly. However, it is enough for stability discussion.

Observe that if c1 = 0, the solution of Eq. (36) is

u1 = e
−k1y1(1+α1)−α1y2

1
η1(k1+y1)

[∫ t

0

Ḟ2

k1 + y1
e

k1y1(1+α1)+α1y2
1

η1(k1+y1) dt + u1(0)

]
, where k1 + y1 �= 0.

(41)
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Consequently, following Eq. (33),

u2 =
k1 + k2

k1k2
F2 − f1

k1
, (42)

where f1 is determined by Eq. (34). It noted that when k1 + y1 = 0, u1 becomes
unbounded, and so does u2 consequently. Based on the solutions for the displacements,
Eqs. (34) and (41), one can define two time constants, as follows.

τ1 =
η(k1 + y)

k1y(1 + α) + αy2
, for u1. (43)

τ2 =
η

y(1 + α)
, for u2. (44)

It is noted that Eq. (43) is the relationship between the time constant and the rate of
overall divergence for the system, as discussed in [14] by using the Lyapunov indirect
method. As for c1 �= 0, the solutions of Eqs. (32) and (33) are more complicated, and
can be shown as follows, when F1 = 0.

u1 = C1e
λ1t + C2e

λ2t + up
1, and (45)

u2 = e
−k1t

c1

[∫ t

0

(
k1 + k2

c1k2
F2 − f1

c1
)e

k1t
c1 dt + u2(0)

]
, (46)

where

λ1,2 =
−(k1 + y1 + c1y1(1+α1)

η ) ±
√

(k1 + y1 + c1y1(1+α1)
η )2 − 4c1(

k1y1(1+α1)
η + α1y2

1
η )

2c1
,

(47)

f1 = e
−y1(1+α1)

η

[∫ t

0

(
α1y

2
1

γ1c1
u1 + y1u̇1)e

y1(1+α1)
η dt + f1(0)

]
. (48)

Similarly, time constants for the solutions can be defined as follows.

τ0 = − 1
λ1

and τ1 = − 1
λ2

, for u1, (49)

τ2 =
η1

y1(1 + α1)
, for u2. (50)

If the time constant is positive, the solution, corresponding to the relevant degree of
freedom, is exponentially decaying. Negative time constants indicate instability. The
applied force (F2) and particular solution (up

1) do not change the boundedness of the
solutions if F2 is a bounded function with respect to time.

4. Stability analysis. It is understood that the Lyapunov indirect method, or
Routh-Hurwitz criterion, for stability analysis is based on a first order approximation. In
other words, if a system fails the stability test with the Lyapunov indirect method, the
response of the system is unbounded under infinitesimal perturbation. However, the rate
of divergence may be controllable. For the mechanical system, as shown in Figure 2(b),
one needs to find the eigenvalues of the Jacobian matrix of Eq. (51), which is derived
from Eqs. (17)–(19) through the state-space technique [8] with κ2 = 0 and γ2 = 0. Then,
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by tuning the parameters y, η, and α, we identify that the regimes containing eigenvalues
with positive real part are unstable. α is a dimensionless parameter, defined as α = z/y.

u̇1

u̇2

v̇1

v̇2

ḟ

 =


0 0 1 0 0
0 0 0 1 0

−k1+k2
m1

k2
m1

− c1+c2
m1

c2
m1

− 1
m1

k2
m2

− k2
m2

c2
m2

− c2
m2

0
αy2

η 0 y 0 − y(1+α)
η




u1

u2

v1

v2

f

+


0
0
F1
m1
F2
m2

0

 . (51)

However, since the solutions for the system, shown in Figure 2 (b), have been explicitly
derived, as expressed in Eqs. (41) and (42) for c1 = 0, or Eqs. (45) and (46) for c1 �= 0,
one can examine the stability of the system via the boundedness of the solutions as time
approaches infinity. Direct investigating the boundedness of the solutions is equivalent
to Lyapunov indirect method for stability analysis. The major benefit of investigating
the solutions in the time domain is that the stability analysis can be done in a more
transparent manner. Later, in our parametric study, we directly solve the eigenvalues
of the Jacobian matrix in Eq. (51). It has been identified that the time constant in
Eq. (43) is responsible for the only eigenvalue with positive real part in the Jacobian
matrix, as discussed in [14]. In the following, we derive stability criteria on the physical
quantities of our model from the solutions in the time domain. First, for c1 �= 0, from
Eq. (46), the conditions for u2 to be bounded are as follows.
(a) k1/c1 > 0, so that there will be no exponentially growing behavior due to u2(0).
(b) f1(t) and F2(t) need to be non-exponentially growing functions, such as constant,
trigonometric functions, or exponentially decaying functions.

In contrast, when c1 = 0, from Eq. (42), Condition (a) does not exist for u2(t) to be
bounded. Furthermore, even in the case c1 �= 0, since we assume that k1 > 0 and c1 > 0
throughout, Condition (a) is trivial. Since F2 is the only applied force, one can artificially
set it to satisfy Condition (b). The behavior of f1(t) needs further investigation. From
Eq. (34), it can be determined that the following conditions must satisfy Condition (b).
(c) y > 0 and α > −1, or y < 0 and α < −1, so that there will be no exponentially
growing behavior due to f1(0).
(d) u1(t) and u̇1(t) must be non-exponentially growing functions.

In order to satisfy Condition (d), one needs to look into the solution of u1, Eq. (45),
carefully. It can be understood that the particular solution of u1 will be bounded if F2

is bounded and the driving frequencies are not equal to the resonant frequencies of the
system (rigorously speaking, it is not the conventional resonant frequencies (≈√K/M),
but λ1 and λ2; see Eq. (47)). As for the homogeneous solution of u1, one can derive the
stability conditions from Eq. (47) as follows, with the definition of y = κk. One of the
following two conditions is enough to ensure the stability.
(e) 1 + κ + κ(1+α)

γ > 0 and (1 + κ + κ(1+α)
γ )2 − 4(κ(1+α)

γ + ακ2

γ ) < 0.

(f) 1 + κ + κ(1+α)
γ > 0 and (κ(1+α)

γ + ακ2

γ ) > 0.
For the second equation in Condition (e), we have checked that α does not have

purely real-number solutions in κ = −100 to 100, for γ = 1, 10, 100, 1000. Therefore,
we conjecture that the inequality cannot be satisfied for a wide range of α, κ, and γ.
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Consequently, Condition (e) will not be satisfied. Further analysis shows that Condition
(f) can be replaced by the following two conditions.
(f1) κ > 0 and α > −γ

κ − γ − 1, or κ < 0 and α < −γ
κ − γ − 1, for the first inequality in

(f).
(f2) κ > 0 and ακ +α + 1 > 0, or −1 < κ < 0 and α < − 1

1+κ , or κ < −1 and α > − 1
1+κ ,

for the second inequality in (f).
Conditions (f1) and (f2) have to be satisfied simultaneously to fulfill Condition (f). In

contrast, when c1 = 0, from Eq. (35), Condition (e) is not necessary, and Condition (f)
must be replaced by the following one.
(g) ky(1+α)+αy2

η(k+y) > 0.
Condition (g) can be further simplified as follows, with the definition of y = κk, when

k/η > 0.
(g’) 1 + κ > 0 and ακ2 + ακ + κ > 0, or 1 + κ < 0 and ακ2 + ακ + κ < 0.

It can be shown that Condition (g’) is equivalent to Condition (f2). In the case for
y < 0 (negative stiffness in the standard linear solid element), Conditions (c)2 and (e), or
Conditions (c)2, (f1), and (f2) must be satisfied to ensure bounded responses, as shown
in Figure 3, the shaded area as an example of stability regimes with a negative stiffness
element. The first quadrant of Figure 3 also indicates stability, corresponding to positive
stiffness for all the elements.

5. Discussion. It is noted again that the parametric study here and in the following
is based on the model shown in Figure 2(b). The stability map, as shown in Figure 3,
is valid as long as the driving force, F2, is a non-exponentially growing function and its
driving frequency is not the natural frequency of the system. The dotted line indicates
the asymptote of the stability boundary. From the stability analysis above, one can
identify the stability regions as follows.
(I) κ > 0 and α > 0 (not interesting, since positive stiffness for all the elements),
(II) −1 < κ < 0 and α < − 1

1+κ , and
(III) κ < −1 and α > − 1

1+κ , depending on γ.
The shaded area is the stable region for any γ. For the c-degenerate case, i.e., c = 0, γ

must be set as large as possible to maintain finite η, the damping in the standard linear
solid. In this case, case (III) does not depend on γ any more. However, it does not
mean that the region, α > − 1

1+κ , is stable because of Condition (c). This result implies
that if the response of the system at node 1 is stable, i.e., bounded, then that at node
2 is stable, as well. Thus, the trajectories of the symbols, solid square and open circle,
coincide. One is the stability boundary and the other is the trajectory causing infinite
compliance with c = 0 and η = 0 for the 1-dof case, i.e., k2 = 0, η2 = 0 (see Eq. (63) in
Appendix B). As will be seen later, to achieve extreme high stiffness, one needs to be in
the region where κ < −1.

Figure 4(a) shows the quasi-static response of the model in Figure 2(b) with respect to
the negative stiffness element (y). The highest compliance at y = −1.6 kN/m is reached
simultaneously for nodes 1 and 2 due to stiffness neutralization in Element 1. The lowest
compliance (i.e., highest stiffness) occurs at about y = −2.6 kN/m. The real part of the
compliance of the system at node 1 is negative when y < −1.6 kN/m, and that at node
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Fig. 3. Stability map for α, γ, and κ, based on the solutions of
governing differential equations in time domain. The shaded region
and the first quadrant (i.e., κ > 0 and α > 0) correspond to stability.

2 is negative when −2.6 < y < −1.6 kN/m. The stability analysis based on Lyapunov’s
theorem shows a stable regime, as indicated in Figure 4(b). Since α is negative, the role of
the negative stiffness element switches between the y- and z-springs, again by definition
z = αy. Thus, the system becomes unstable when y > 0 and y < −1.6 kN/m. The
parameters η and ω are assumed to be 0.0001 kN-s/m and 0 rad/s, respectively, in both
Figures 4 and 5. It is noted that for such a small viscosity η, a standard linear solid with
no negative stiffness elements has a time constant (τ ≈ viscosity/stiffness) on the order
of 10−5 seconds, if the stiffness of spring elements is about 10 kN/m. Consequently, the
Debye peak for the tan δ of the standard linear solid will be at a frequency of about 105

rad/s. In Figure 5, we plot the compliance curves and the stability-losing eigenvalue with
respect to the negative stiffness (y), for different α′s. It can be seen that the spacing
between extreme high compliance and stiffness can be reduced by increasing α. But,
the distance cannot be reduced arbitrarily much, as can be seen for large α′s. Also, the
stability-losing eigenvalue has larger magnitude, indicating higher rate of divergence, i.e.,
more unstable, for large α. It is noted again that the stability boundary from previous
analysis is at extreme high compliance.
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(a)

(b)

Fig. 4. Quasistatic behavior: no inertial terms. (a) Compliance,

�(ũ1/F̃2) and �(ũ2/F̃2) , on a linear scale (left) and absolute com-

pliance, |ũ1/F̃2| and |ũ2/F̃2| , on a logarithmic scale (right) vs. y
with ω = 0 and α = −1.2. (b) Overall compliance and the stability-
losing eigenvalue vs. y with ω = 0 and α = −1.2. We define z = αy,
where y and z are stiffness in Figure 2 (b) with c1 = 0. The unstable
branch for y > 0 is due to α < 0.
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Fig. 5. Quasistatic behavior: no inertial terms. Effective compliance
(|jeff |) vs. negative stiffness (y) in the purely elastic limit with

different α′s. k1 = 10, k2 = 5 kN/m, m1 = m2 = 10−8 kg, η =
0.0001 kN-s/m and ω = 0 rad/s. We define z = αy, where y and
z are stiffness in Figure 2 (b). For clarity, compliance curves are
separated by multiplying by a constant.

In Figures 6, 7, and 8, we show the high frequency responses of the system under the
influence of negative stiffness with η = 0.0001 kN-s/m and α = −5. All peaks are struc-
tural resonant and anti-resonant frequencies. The purpose of studying high frequency
responses is to understand the process of neutralization due to negative stiffness. Figure 6
shows the frequency response of compliance at discrete negative stiffness in y. It is noted
when y = −15 kN/m, there is no anti-resonant-like behavior. In Figure 7, the peaks are
also structural resonances for high frequency responses. It shows that the anti-resonant
peaks (high stiffness) move to the low negative stiffness regime (i.e., in the stable zone,
if negative stiffness is low enough), as driving frequency increases. Excessive negative
stiffness makes anti-resonances disappear. From Figures 6 and 7, it also can be seen
that by tuning either frequency or negative stiffness, one can alter the spacing between
resonant and anti-resonant peaks, or even flip their order of appearance with respect to
frequency or negative stiffness. We emphasize that at the low frequency limit the up-
ward or downward peaks in compliance are not structural resonant phenomena, but at
high frequency the peaks indicate the natural frequencies of the system. The shift in the
natural frequency is due to cancellation in overall stiffness. The stability analysis of the
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Fig. 6. Dynamic compliance vs. frequency with different negative
stiffness (y) in units of kN/m. m1 = m2 = 10−8 kg. k1 = 10, k2 = 5
kN/m, α = −5, η = 0.0001 kN-s/m. Absolute compliances at node

1 and node 2 are calculated from |ũ1/F̃2| and |ũ2/F̃2|, respectively.
The symbol |j| denotes compliance either at node 1 or node 2. Based
on Figure 2(b) with c1 = 0. The upward and downward peaks are
structural resonances and anti-resonances, respectively. Thin solid
lines are the compliance at node 1 and thick ones are the effective
compliance of the system. For clarity, curves are separated by mul-
tiplying by a constant.

system driven at 25k rad/sec is shown in Figure 8, with respect to negative stiffness. It
shows that the extreme high stiffness (y = −7 kN/m) is located in the stable regime. The
result is not too surprising physically, because one can easily obtain extreme dynamical
stiffness due to the structural anti-resonant response and negative stiffness plays a role to
shift the structural anti-resonance, but the methodology is based on Lyapunov’s indirect
theorem. Again, the instability in the regime y > 0 is due to α < 0. When y < −7 or
y > 0, eigenvalues split. The eigenvalue whose real part is greater than zero causes the
system to be unstable, as discussed in [12].

In Figure 9 (a), we plot the h and g function in Eqs. (27) and (28) to demonstrate
the singularities in tan δ. This phenomena have been reported in [13] and [14]. Here, we
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Fig. 7. Dynamic compliance vs. y with different frequencies. Fre-
quency is in units of 103 rad/sec. m1 = m2 = 10−8 kg. k1 =
10, k2 = 5 kN/m, α = −5, η = 0.0001 kN-s/m. Absolute compli-

ances at node 1 and node 2 are calculated from |ũ1/F̃2| and |ũ2/F̃2|,
respectively. The symbol |j| denotes compliance either at node 1 or
node 2. Based on Figure 2(b) with c1 = 0. Peaks indicate struc-
tural resonances for high frequency responses. For clarity, curves are
separated by multiplying by a constant.

mathematically investigate the behavior of tan δ under the influence of negative stiffness.
It is noted that in this analysis, we set z = 5 kN/m and ω = 1 rad/sec. As seen, when η

is small (less than about 0.4 kN-s/m), there are two zeros in the g function, indicating
two singularities in tan δ, since the h function is finite, in the negative stiffness range
plotted. When η is large, the singularities in tan δ disappear and the tan δ curve appears
as a hump, as reported in [13] and [14]. In Figure 9 (b), we show that the stability
boundary, calculated based on Lyapunov’s indirect theorem, coincides at the right hand
side of the first zero (from the origin) in g. It indicates that the singularities of tan δ are
located in the unstable (or metastable) regime. However, in a limiting case, as η → 0,
one can achieve stable singular tan δ.

6. Conclusions. We rigorously derive the stability criteria for the 2-dof viscoelastic
system containing a negative stiffness element. The stability conditions derived from the
time domain solutions of the differential systems are good for the response of the system
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Fig. 8. Routh-Hurwitz eigenvalues and dynamic compliance vs. y,
at ω = 25k rad/sec. m1 = m2 = 10−8 kg. k1 = 10, k2 = 5 kN/m,
α = −5, η = 0.0001 kN-s/m. Based on Figure 2(b) with c1 = 0. The
unstable branch for y > 0 is due to α < 0.

at any frequency. Stable extreme stiffness at high frequency is demonstrated. Stable
extreme tan δ at low frequency is verified. In the low frequency limit, the system shows
stable extreme high compliance and metastable extreme high stiffness.

7. Appendix A: A case of m-degeneracy. The purpose of this appendix is to
demonstrate the effects of c-degeneracy and m-degeneracy. We consider the 1-dof vis-
coelastic model, as shown in Figure 10. The governing equation of the system can be
expressed in the state-space representation, as follows. u̇

v̇

ḟ

 =

 0 1 0
− k

m
c
m − 1

m
αy2

η y − y(1+α)
η


 u

v

f

+

 0
F
m

0

 . (52)

It is understood that the characteristic equation of the Jacobian matrix in Eq. (52) is a
complicated third-order polynomial. The solutions of the characteristic equation are the
eigenvalues for the Lyapunov stability analysis. However, for c = 0 (c-degeneracy), one
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Fig. 9. Singularities in tan δ and their stability, calculated with k1 =
10, k2 = 5, z = 5 kN/m, ω = 1 rad/s. Based on Figure 2 (b) with
c1 = 0. (a) Singularities in tan δ. g = 0 indicates singularities. (b)
Stability of the singularities in tan δ. Curved lines are calculated g
function with respect to various η, defined in (a). Stability analysis
is based on Eq. (51).
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Fig. 10. One-dof viscoelastic model.

can write down the simpler characteristic equation as follows.

λ3 +
y(1 + α)

η
λ2 + (

k

m
+

y

m
)λ +

αy2

mη
+

y(1 + α)
mη

= 0. (53)

However, if one further assumes m = 0 (m-degeneracy), the characteristic equation
becomes

λ =
k(ακ2 + ακ + κ)

η(1 + κ)
. (54)

As seen, from Eq. (53) to (54), the numbers of roots of the characteristic decrease from
3 to 1, which means that there is some information missing for stability analysis due to
degeneracies.

8. Appendix B: Further demonstration through a 1-DOF viscoelastic
model. The purpose of this appendix is to show the statement made in the first para-
graph in the discussion. Consider the mechanical model shown in Figure 10. The corre-
sponding governing equations in time domain are as follows, when m = 0.

ku + cu̇ + f = F, (55)

f +
η

y + z
ḟ =

yz

y + z
u +

yη

y + z
u̇, (56)

where y = κk, z = ακk, and η = γc. The symbol f denotes the internal force in the
standard linear element. Through Fourier transform, the governing equations in the
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frequency domain are

(k + icω)ũ + f̃ = F̃ , (57)

(y + z + iωη)f̃ = (yz + iωyη)ũ. (58)

One can calculate the effective compliance as follows.
ũ

F̃
=

A

A2 + B2
− i

B

A2 + B2
, (59)

where

A = k + k1
α(1 + α) + ω2β2

(1 + α)2 + ω2β2
, (60)

B = ωc(1 +
γ

(1 + α)2 + ω2β2
), and (61)

α = k2/k1, β = η/y, γ = η/c. (62)

For c = η = 0, i.e., B = 0, the extreme (infinite) compliance occurs at A = 0, i.e.,

y = −1 + α

α
. (63)

For a fixed k, one can draw two hyperbolic curves on the α − y plane. To derive the
solution of Eq. (55) and (56) in time domain directly, we first rewrite the governing
equation in the following way.

cü + (k + y +
y(1 + α)

γ
)u̇ + (

ky(1 + α)
γc

+
αy2

γc
)u =

y(1 + α)
γc

F + Ḟ . (64)

The general solution of Eq. (64) is as follows.

u = uh + up. (65)

The homogeneous solution is

uh = C1e
λ1t + C2e

λ2t, (66)

where C1 and C2 are determined by initial conditions and

λ1,2 =
−(k + y + y(1+α)

γ ) ±
√

(k + y + y(1+α)
γ )2 − 4(ky(1+α)

γ + αy2

γ )

2c
. (67)

The positive real part of λ′s indicates that the homogeneous solution, uh, becomes un-
bounded as time increases, which is unstable in the sense of Routh-Hurwitz. In order to
obtain stable (non-growing) solutions, one of the following two sets of inequalities must
be satisfied, for k > 0. Let y = κk and c �= 0.
(B-1) 1 + κ + κ(1+α)

γ > 0 and (1 + κ + κ(1+α)
γ )2 − 4(κ(1+α)

γ + ακ2

γ ) < 0 . It is conjectured
that the second inequality will not hold for a wide range of α, γ, and κ.
(B-2) 1 + κ + κ(1+α)

γ > 0 and (κ(1+α)
γ + ακ2

γ ) > 0.
As seen, Condition (B-2) here is the same as Condition (f) in the 2-dof case. Figure

11 shows the compliance curves, based on Eq. (59), and the results from Lyapunov’s
stability analysis. It shows that if the amount of negative stiffness is more than that
corresponding to the highest compliance, the system will be unstable. Since negative α

is used in the graph, there is another unstable branch when y is sufficiently positive.
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Fig. 11. Compliance and eigenvalue analysis of the 1-dof system in
Figure 10.
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