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Abstract— This paper proposes stability analysis techniques
for Networked Control Systems (NCSs) with uncertain, time-
varying network-induced delays. A discrete-time model, de-
scribing an NCS with delays, that can be both smaller and
larger than the sampling interval, is presented. This model
includes the effects of message rejection and vacancy sampling.
The conditions are kept less conservative by exploiting the real
Jordan form of the continuous-time model in the discretization.
Based on this discrete-time NCS model sufficient LMI condi-
tions are proposed for the stability analysis.

I. INTRODUCTION

Networked Control Systems (NCSs) are control systems

in which (part of) the control loop is closed over a real-

time network. The advantages of the use of an NCS are its

flexible architecture [1] and a reduction of installation and

maintenance costs [2]. The main disadvantages of NCSs are

the network effects that influence the control loop, such as

delays, variable sampling intervals and packet dropouts. De-

spite these disadvantages, NCSs are applied in a broad range

of systems, e.g. mobile sensor networks, remote surgery,

automated highway systems and unmanned aerial vehicles

[1], [2]. In this paper the focus will be on the effects of

delays on the stability of the control loop, where we restrict

ourselves to systems without packet dropouts and with a

constant sampling interval.

Most of the NCS literature on stability analysis deals

with constant delays or time-varying delays smaller than the

sampling interval. Here, we study NCS models including

large delays, i.e. delays than can be both smaller and larger

than the sampling interval. In [3], [4], a discrete-time NCS

model, based on the NCS model of e.g. [5], [6] is proposed,

for time-varying delays τk that vary solely in the interval

(d − 1)h ≤ τk ≤ dh, where d is a constant integer, h

the sampling interval and τk the time-varying delay. As

a consequence, time-delays that vary in an interval larger

than the sampling interval, i.e. τk ∈ [τmin, τmax], with

τmax − τmin > h are not considered in [3], [4]. Note that

this is a fundamental difference with arbitrary time-varying

delays (τmax − τmin > h), where message rejection can

occur.

Discrete-time models that consider arbitrary time-varying

delays that take values in an interval larger than the sampling
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interval are described in [7] and [8]. The model in [7] is

based on [5] and describes the effects of multiple control

updates during one sampling interval and vacancy sampling,

where no new control input becomes available during the

current sampling interval. The effect of message rejection,

where more recent control data becomes available before

the older data is implemented and therefore the older data

is discarded, is, however, not considered in [7]. In [8]

another stability analysis approach is described, without an

explicit definition of the NCS model for large delays. For

the analysis, the uncertain time-varying delays are divided in

a constant and a time-varying part, where the time-varying

part is allowed to be larger than the sampling interval. This

results in a set of constant and uncertain matrices. Based on

an overestimation of the uncertain matrices and a Lyapunov-

Kraskovskii approach for discrete-time systems, sufficient

conditions for the stability analysis are proposed.

An alternative modeling approach is based on impulsive

delay-differential equations, in which NCSs with variable

sampling intervals, time-varying delays and packet dropouts

are considered, see [9]. A main advantage of this modeling

approach is the possibility to incorporate time-delays larger

than the sampling interval without increasing model com-

plexity, as is the case in the discrete-time modeling approach.

In this paper, we extend the model of [7], such that it

includes message rejection. Due to this discrete-time repre-

sentation, it is a different modeling approach than [9], which

presents models in terms of continuous-time delay impulsive

systems. Compared to the work in [8], we give an explicit

definition of the uncertain functions, which depend on the

uncertain time-varying delay, instead of an implicit one. We

rewrite the proposed large-delay NCS model, using the real

Jordan form of the continuous-time system matrices, such

that we can separate constant and time-varying parameters,

which removes conservativeness from the analysis. Based

on this model, we propose LMIs that are sufficient for the

stability analysis.

The paper is organized as follows. In Section II, we

introduce the discrete-time NCS model for time-variations in

the delay that are larger than one sampling interval. Section

III discusses the stability analysis. In Section IV, simulation

results illustrating the effectiveness of the proposed approach

are presented. Finally, Section V gives the conclusions.

Notation: We denote the transpose of a matrix A by AT

and we write P > 0 (or P < 0) for a positive (or negative)

definite matrix. With ∗ we denote the symmetric part of a

matrix, with dim(J) the dimension of the square matrix J

and 0m,n denotes a matrix of zeros of size m × n.
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II. NCS MODELS FOR LARGE DELAYS

The NCS consists of a continuous-time plant, sampled

with a constant sample-rate, and a discrete-time controller as

is schematically depicted in Figure 1. In the model, both the

computation time and the networked induced delays, i.e. the

sensor-to-controller delay τsc and the controller-to-actuator

delay τca, are incorporated. Under the assumption that the

sensor acts in a time-driven fashion (i.e. sampling at the

times kh, k ∈ N), that the controller and actuator act in

an event-driven fashion (i.e. responding instantaneously on

newly arrived data) and that the controller is static and time-

invariant, all three delays can be combined into one single

delay τk that delays the control input uk with respect to the

corresponding measurement yk [10].

The continuous-time model of the NCS is given by:

ẋ(t) = Ax(t) + Bu∗(t)
u∗(t) = uk, for t ∈ [kh + τk, (k + 1)h + τk+1],

(1)

with A ∈ R
n×n, B ∈ R

n×m, the system matrices, u∗(t) ∈
R

m the continuous-time control input if all inputs are imple-

mented to the plant, i.e. all data at both the controller and

actuator are received in a sequential order, which means that

message rejection can not occur, x(t) ∈ R
n the state, kh

the sampling instants, h the sampling-interval, uk ∈ R
m the

discrete-time control input calculated from the measurements

at sampling instant kh and τk the time-delay experienced by

the output y(kh) = x(kh) at sampling instant kh. At the

end of this section, we will adapt the expression for u∗(t),
such that the effects of message rejection are included.

Clock

Sensor

Controller

PlantZOH

τscτca

uk u∗(t) yk

r(t) = 0

Fig. 1. Schematic overview of the networked control system.

To derive a discrete-time NCS model for time-varying

delays that vary in an interval larger than the sampling-

interval (τk ∈ [τmin, τmax], with τmax − τmin > h),

including message rejection, we use the standard, discrete-

time NCS model for constant large-delays, see e.g. [5]. This

model is an exact discretization of (1), given by:

xk+1 = eAhxk +
∫ h−τ∗

k−d+1

0
eAsdsBuk−d+1+

∫ h

h−τ∗

k−d+1

eAsdsBuk−d,
(2)

with d =
⌈

τk

h

⌉

, the smallest integer larger than or equal to
τk

h
and τ∗

k = τk−(d−1)h. This model is limited to constant

time-delays or delays that vary at most within one sampling

interval (i.e. [τmin, τmax] ⊆ [(d−1)h, dh] for some constant

integer d). This can be explained using Figure 2. In Figure 2,

the delays are allowed to take values in [0, 2h], which shows

that the number of active control inputs in one sampling

interval is variable and depends on the previous and current

time-delay, which is not handled by (2).

sk−3 sk−2 sk−1 sk sk+1 sk+2 sk+3 tk+4

uk−4

uk−3

uk−2

uk−1

uk

uk+2

uk+3

τk−3

τk−2

τk−1

τk
τk+1

τk+2

τk+3

Message rejected

Fig. 2. Influence of time-delays that can be smaller and larger than the
sampling interval (with e.g. sk+1 := (k + 1)h and τk ∈ [0, 2h]).

In the case that τk ∈ [0, 2h], the model that describes the

NCS consists of the following subsystems:

xk+1 =

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
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


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

























eAhxk +
∫ h−τk

0
eAsdsBuk +

∫ h

h−τk
eAsdsBuk−1,

if τk ≤ h ∧ τk−1 ≤ h

eAhxk +
∫ h−τ∗

k−1

0
eAsdsBuk−1+

∫ h

h−τ∗

k−1

eAsdsBuk−2, if h ≤ τk ≤ 2h∧

h ≤ τk−1 ≤ 2h

eAhxk +
∫ h

0
eAsdsBuk−1,

if h ≤ τk ≤ 2h ∧ τk−1 ≤ h

eAhxk +
∫ h−τk

0
eAsdsBuk +

∫ h−τ∗

k−1

h−τk
eAsdsBuk−1

+
∫ h

h−τ∗

k−1

eAsdsBuk−2, if τk ≤ h∧

h ≤ τk−1 ≤ 2h ∧ τk−1 − h < τk

eAhxk +
∫ h−τk

0
eAsdsBuk +

∫ h

h−τk
eAsdsBuk−2,

if τk−1 − h ≥ τk,
(3)

with τ∗
k−1 = τk−1 − h. The last subsystem describes the

case where message rejection occurs, which results in loss

of some control data (uk−1 in this case). Moreover, the

second subsystem corresponds to (2) (with d = 2). An NCS

modeling approach that considers these different subsystems,

except message rejection, is given in [7]. We will use their

model description, which is based on (2), to develop an NCS

model, including message rejection. In our model, during the

sampling interval [kh, kh+h), the control u∗(t) takes values

from the delayed inputs uj at the random instants kh + tkj ,

with 0 ≤ tkj ≤ h. The integer j satisfies k − d ≤ j ≤ k − d,

with d = ⌊ τmin

h
⌋, the largest integer smaller than or equal

to τmin

h
and d =

⌈

τmax

h

⌉

the smallest integer larger than or

equal to τmax

h
. The time kh+ tkj depends on the time-delays

and the values of d and d, according to:

tkj = min[max{0, τj − (k − j)h},
max{0, τj+1 − (k − j − 1)h}, . . . ,
max{0, τk−d − dh}, h]

(4)

with j ∈ {k − d, k − d + 1, ..., k − d}, the superscript k

indicating the sampling interval [kh, kh + h), tkj ≤ tkj+1 and

0 = tk
k−d

≤ tk
k−d+1

≤ . . . ≤ tkk−d ≤ tkk−d+1 := h.

Then, the NCS model for large delays becomes:

xk+1 = eAhxk +

k−d
∑

j=k−d

∫ h−tk
j

h−tk
j+1

eAsdsBuj (5)
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with tkk−d+1 := h, tkj defined in (4) for k − d ≤ j ≤ k − d.

This model contains all possible control inputs that can be

active during the sampling interval [kh, kh + h). Note that

tkj = tkj+1 corresponds to the situation that the integral

related to uj in (5) is zero and results in an inactive control

input uj during the sampling interval [kh, kh+h). This cor-

responds to the case of message rejection, vacancy sampling

or a control input that has already been implemented in the

previous sampling interval or will be implemented in the next

sampling interval, due to the size of the time-delay.

Note that (5) is sufficient to model all the different

situations that are given in (3), because each subsystem can

be obtained by the definition of tkj as in (4).

Remark Equation (5) was also stated in [7], however,

without the explicit definition of tkj as we presented in

(4). Moreover, in [7] it is implicitly assumed that message

rejection does not occur, as tkj < tkj+1 should hold for all k−

d ≤ j ≤ k−d. Finally, the model proposed here exhibits less

uncertain parameters than that in [7], because we consider

only tkj as uncertain, time-varying parameters, while in [7]

additional parameters are introduced that denote if a control

input is active in the sampling interval [kh, kh + h).

To make the model of (5) suitable for the stability analysis,

we rewrite it in a state-space form with the state-vector ξk =
(

xT
k uT

k−1 uT
k−2 . . . uT

k−d

)T

. Then, the state-equation

of the NCS model is given by:

ξk+1 = M(τk)ξk + N(τk)uk, (6)

with M(τk) =















eAh B̃1 B̃2 . . . B̃d

0 0 0 . . . 0
0 I 0 . . . 0
...

. . . . . .

0 . . . 0 I 0















,

N(τk) =
(

B̃T
0 I 0 . . . 0

)T
and

B̃ρ(τk) =

∫ h−tk
k−ρ

h−tk
k−ρ+1

eAsdsB (7)

for ρ ∈ {0, 1, ..., d} and tkk−ρ defined in (4), with j = k− ρ.

Note that for ρ < d, it holds that B̃ρ = 0.

Based on the insights obtained above, we can also adapt

the control u∗(t) in the continuous-time NCS model (1), such

that it allows for message rejection of the current input uk.

Let us define k∗(t) := max{k ∈ N|kh + τk ≤ t}, which

denotes the most recent control input available at time t.

Then it holds for the NCS of (1) that

u∗(t) = uk∗(t), (8)

with u∗(t) a piecewise constant signal. This is a kind of

implicit description of the ZOH-based control signal in the

NCS. To follow the common representation of the control

signal in the NCS literature, we make this more explicit in

the following paragraph.

Let us define the additional integer parameter vk as the

smallest integer, with vk ≥ 1, such that uk+vk
is a control

input that is implemented after kh + h. In other words, if

uk is implemented, vk denotes the next input uk+vk
that is

implemented after uk. If uk is rejected vk denotes the next

input uk+vk
that is implemented after uk−1, and so on if

uk−1 is rejected as well. The parameter vk is defined as:

vk =

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






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1, if τk+1 − h < τk+2 ∧ τk+1 − 2h < τk+3 ∧

. . . ∧ τk+1 − dh < τ
k+d+1

2, if τk+1 − h ≥ τk+2 ∧ τk+2 − h < τk+3 ∧

. . . ∧ τk+2 − (d − 1)h < τ
k+d+1

.

.

.

d, if τk+1 − (d − 1)h ≥ τ
k+d

∧

τk+2 − (d − 2)h ≥ τ
k+d

∧ . . .∧

τ
k+d−1

− h ≥ τ
k+d

∧ τ
k+d

− h < τ
k+d+1

d + 1, if τk+1 − dh ≥ τ
k+d+1

∧

τk+2 − (d − 1)h ≥ τ
k+d+1

∧ . . .∧

τ
k+d−1

− 2h ≥ τ
k+d+1

∧ τ
k+d

− h = τ
k+d+1

.

(9)

Based on this definition of vk, the continuous-time NCS

model that incorporates delays larger than the sampling

interval and message rejection becomes, for known values

of vk:

ẋ(t) = Ax(t) + Bu∗(t)
u∗(t) =

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uk, for t ∈ [kh + τk, (k + vk)h + τk+vk
]

∧τk − vkh < τk+vk
∧ 1 ≤ vk ≤ d + 1

uk−1, for t ∈ [(k − 1)h + τk−1, (k + vk)h + τk+vk
]

∧ τk − vkh ≥ τk+vk

∧ τk−1 − (vk + 1)h < τk+vk
∧ 1 ≤ vk ≤ d

.

.

.

u
k−d+1

, for t ∈ [(k − d + 1)h + τ
k−d+1

, (k + vk)h + τk+vk
]

∧τk − vkh ≥ τk+vk
∧

τk−1 − (vk + 1)h ≥ τk+vk
∧ . . .∧

τ
k−d+2

− (v + d − 2)h ≥ τk+vk
∧

τ
k−d+1

− (vk + d − 1)h < τk+vk
∧ 1 ≤ vk ≤ 2

u
k−d

, for t ∈ [(k − d)h + τ
k−d

, (k + vk)h + τk+vk
]∧

τk − vkh ≥ τk+vk
∧

τk−1 − (vk + 1)h ≥ τk+vk
∧ . . .∧

τ
k−d+1

− (vk + d − 1)h ≥ τk+vk
∧ vk = 1,

(10)

with k = ⌊ t
h
⌋. Note that in the last subsystem in (10),

τk−d+1 − (vk + d − 1)h > τk+vk
will never occur, but

τk−d+1−(vk +d−1)h = τk+vk
is still possible if τmax = d.

III. STABILITY OF NCSS WITH LARGE DELAYS

In this section, we propose techniques for the stability

analysis of the NCS model described in Section II. To do

so, we first define a different formulation of the NCS model

of (6). To solve the integrals in the matrices B̃ρ in (7)

in a general way, the real Jordan form [11], [12] of the

continuous-time system matrix A is used, which is given

by:

A = QJQ−1, (11)

with J the real Jordan form, representing the eigenvalues

and Q a matrix that contains the generalized eigenvectors.

Suppose that A has p distinct eigenvalues λĩ, with Jĩ,j̃

the corresponding Jordan blocks for the eigenvalue λĩ and

j̃ = {1, 2, . . . , gĩ}, with gĩ the geometric multiplicity of the
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ĩth eigenvalue, with ĩ = 1, 2, ..., p. Then, it holds, for real

eigenvalues λĩ, that:

eJs =

p
∑

ĩ=1

aĩ−1
∑

j̆=0

sj̆

j̆!
eλĩsSĩ,j̆ , (12)

with Sĩ,j̆ an appropriate matrix of the same dimension as J ,

with a one at the matrix entries corresponding to sj̆

j̆!
eλĩs and

a zero at all other matrix entries and aĩ ∈ Z
+ the size of the

largest Jordan block that corresponds to λĩ, i.e.

aĩ = max
j̃∈{1,2,...,gĩ}

(dim Jĩ,j̃). (13)

Similar expressions can be obtained for complex eigenvalues.

Rewriting (6), (7), using (11) and (12), leads to the

following general NCS representation:

ξk+1 =

(

F0 +

β
∑

i=1

αiFi

)

ξk+

(

G0 +

β
∑

i=1

αiGi

)

uk, (14)

with Fi and Gi constant matrices that are obtained by solving

the integrals in (6), (7) with A replaced by (11) and αi,

i ∈ {1, 2, ..., β}, a time-varying parameter that depends on

the eigenvalue λĩ, h and one of the time-varying delays

introduced through tkj in (4). The parameter β denotes the

number of time-varying parameters in the sampling interval

[kh, kh + h):
β =

(

d − d
)

ν, (15)

with ν the number of parameters (from (12)) that depend on

the eigenvalues of A:

ν =

p
∑

ĩ=1

aĩ, (16)

with ν always smaller than or equal to n. As an illustration,

the matrices Fi and Gi, i = {0, 1, ..., β}, are given for the

case with all eigenvalues equal to zero in Appendix II.

A. Stability Analysis

To derive stability conditions for the discrete-time NCS

model (6), we adopt the control law

uk = −Kξk (17)

with K ∈ R
m×(dm+n). Note that the state-feedback control

law uk = −Kxk, is a special case of (17), with K =
(

K 0
)

, K ∈ R
m×n and 0 a matrix with zeros. System (14),

with control law (17) contains the uncertain time-varying

parameters αi, which may be nonlinear in the parameter tkj .

These parameters form, together with the constant matrices

Fi and Gi, i = {0, 1, ..., β}, sets of matrices that describe

all possible system equations of (6):

F =
{

F0 +
∑β

i=1 αi(t
k
j )Fi : tkj ∈ [tkj,min, tkj,max]

}

G =
{

G0 +
∑β

i=1 αi(t
k
j )Gi : tkj ∈ [tkj,min, tkj,max]

}

.

(18)

To determine the minimum and maximum values of the

uncertain parameters αi in (18), we define the minimum and

maximum values of tkj , dependent of the size of the time-

delays. We define the minimum value of tkj as:

tkj,min =

{

τmin − dh if j = k − d

0 if j < k − d,
(19)

and the maximum value of tkj as:

tkj,max =

{

h if j > k − d + 1

τmax − (d − 1)h if j = k − d + 1.
(20)

To guarantee the stability of the equilibrium point ξ = 0
of system (14), with the uncertain parameters tkj , defined

in (4), we will use a common quadratic Lyapunov function

V (ξk) = ξT
k Pξk. Consequently, the following LMI condition

is sufficient:

P = PT > 0
C(τ)T PC(τ) − P < −γP,∀τ ∈ [τmin, τmax],

(21)

with C(τ) = F0 − G0K +
∑β

i=1 αi (Fi − GiK) and 0 ≤
γ < 1. This is, based on the Schur complement, equal to:
(

(1 − γ)P ∗

P
(

F0 − G0K +
∑β

i=1 αi(Fi − GiK
)

P

)

> 0. (22)

Obviously, (22) represents an infinite number of LMIs. In
Theorem 1, we will propose a stability condition for τk ∈
[τmin, τmax], with 0 ≤ τmin ≤ τmax, based on a finite
number of LMIs.

Theorem 1: Consider the NCS of (6), with a known
controller (17) and time-varying delays taken from a bounded
set τk ∈ [τmin, τmax], 0 ≤ τmin ≤ τmax. Define the sets of
matrices HF and HG :

HF =
{

F̄0 +
∑β

i=1 δiF̄i : δi ∈ {0, 1}, i = {1, 2, ..., β}
}

,

HG =
{

Ḡ0 +
∑β

i=1 δiḠi : δi ∈ {0, 1}, i = {1, 2, ..., β}
}

,

(23)

with F̄0 = F0 +
∑β

i=1 αiFi, F̄i = (αi − αi)Fi, Ḡ0 = G0 +
∑β

i=1 αiGi, Ḡi = (αi − αi)Gi, and

αi = maxtk
j ∈[tk

j,min,tk
j,max] αi(t

k
j ),

αi = mintk
j ∈[tk

j,min,tk
j,max] αi(t

k
j ),

(24)

the maximum and minimum value of αi, respectively, with
tkj,min and tkj,max defined in (19) and (20), respectively.

If there exist a matrix P ∈ R
(n+dm)×(n+dm) and a scalar

0 ≤ γ < 1, such that the following LMI conditions are
satisfied:
(

(1 − γ)P (HF,s − HG,sK)T P
P (HF,s − HG,sK) P

)

> 0,

∀HF,s ∈ HF and ∀HG,s ∈ HG ,

(25)

and s = {1, 2, . . . , 2β}, then (10), (17) is GAS for any
sequence of time-varying delays τ ∈ [τmin, τmax].

Proof: The proof is given in Appendix I.

These LMIs contain only stability analysis results. Note that

performance measures can be included in these LMIs as well.

In [13], the LMIs are augmented such that a certain ISS

bound can be guaranteed in the face of disturbances.

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 FrA15.1

5020



IV. ILLUSTRATIVE EXAMPLE

In this section, we will apply the proposed results to

a second-order motion control example, obtained from the

document printing domain, as in [14]. We limit ourselves

to one single motor driving one roller pair that is used to

transport a sheet through part of the printer paperpath. The

continuous-time motor-roller model is given by:

ẋ = Ax + Bu

y = Cx,
(26)

with A =

(

0 1
0 0

)

, B =

(

0
nrR

JM+n2JR

)

, C =

(

1 0
0 1

)

and

x =
(

xT
s ẋT

s

)

the state vector, which contains the sheet

position and velocity. Moreover, JM = 1.95 · 10−5kgm2

the inertia of the motor, JR = 6.5 · 10−5kgm2 the inertia

of the roller, rR = 14 · 10−3 m the radius of the roller,

n = 0.2 the transmission ratio between motor and roller and

u the motor torque. We assume that the sampling interval

h = 1 ms is constant and that the state-feedback controller

is given by uk = −Kxk, with K =
(

K1 K2

)

and a

constant position controller gain K1 = 50. We determine the

controller gains K2 that still stabilize the system with time-

varying delays τk ∈ [0, τmax], with τmax ≤ 2h, according

to Theorem 1 with γ = 0. The maximum and minimum

allowable controller gains K2 are given by the solid line

in Figure 3. Note that for delays larger than the sampling

interval h, the possibility of message rejection is included,

as given in (5), (4). Compared to the previously published

stability conditions in [14], which are depicted by the dotted

line in Figure 3, the results obtained by Theorem 1 are

clearly less conservative, due to the usage of the Jordan

form representation of (14) of the NCS, which results in

a reduction of the number of LMIs and a much tighter

overapproximation of Fi and Gi than in [14]. The dashed line

in Figure 3 gives the values of a periodic delay sequence with

two delays (τa, τb, τa, τb, ...), with τa = 0.2ms and τb = 0.6
ms (K = [50 11.8], h = 1ms), that yields an unstable closed-

loop system. However, for constant delays (i.e. only τa or

only τb) the corresponding system is stable (see for more

details [14]). For comparison, the minimum and maximum

allowable controller gains for constant time-delays equal to

τmax are depicted by the dash-dotted line in Figure 3. Such

examples underline the need fot stability results for time-

varying delays. We remark that the difference between the

lines for constant and time-varying delays is similar for other

values of K1. This difference reveals the fact that the stability

bound is hardly conservative.

V. CONCLUSIONS AND FUTURE WORKS

In this paper we extended the NCS model for large delays

of [7] to incorporate the effect of message rejection. More-

over, we introduced an explicit definition of this extended

discrete-time NCS model. For this NCS model, sufficient

LMI conditions for stability analysis are proposed. By using

the real Jordan form of the original continuous-time plant,

the number of uncertain parameters is much smaller than in

0 5 10 15 20 25 30 35
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1
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1.6

1.8

2
x 10

−3

K2

τ m
a
x
[s

]

Theorem 1
Constant τk

From [14]
Periodic τ [14]

Fig. 3. Minimum and maximum allowable controller gains K2, for
h = 1ms, K1 = 50 and time-varying delays in the interval [0, τmax]
for Theorem 1 and based on [14], and for constant delays equal to τmax.

[14], thereby resulting in a reduction of the number of LMIs

and the conservatism, as illustrated by the example.

Future work will deal with a model extension including

that packet dropouts.

APPENDIX I
PROOF OF THEOREM 1

The proof of Theorem 1 consists of three parts. First,

we exploit a convex overapproximation of the sets F and

G, defined in (18). Second, we prove the stability of the

discrete-time NCS model, based on the common quadratic

Lyapunov function V (ξk) = ξT
k Pξk. Third, we investigate

the intersample behavior to prove stability of the continuous-

time NCS model (10), (17). For the time-varying parameter

αi, given in (24), we can write any αi ∈ [αi, αi] as αi =
αi + δi(αi − αi), for some δi ∈ [0, 1] and i = {1, 2, ..., β}.

Hence, the sets F̄ and Ḡ , are defined as:

F̄ =
{

F̄0 +
∑β

i=1 δiF̄i : δi ∈ [0, 1], i = {1, 2, ..., β}
}

,

Ḡ =
{

Ḡ0 +
∑β

i=1 δiḠi : δi ∈ [0, 1], i = {1, 2, ..., β}
}

,

with F̄0 = F0 +
∑β

i=1 αiFi, F̄i = (αi − αi)Fi, Ḡ0 = G0 +
∑β

i=1 αiGi, Ḡi = (αi−αi)Gi. This is an overapproximation

of the set F and G in the sense that F ⊆ F̄ and G ⊆ Ḡ,

respectively. Due to the definition of the new uncertainty

parameters δi, the sets F̄ and Ḡ are still infinite. However,

each matrix in this set can be written as a convex combination

of the generators of this set, which are defined as the

set HF and HG in (23). Note that the set HF and HG

consist of 2β matrices, which we denote individually by

HF,s, HG,s, s = {1, 2, ..., 2β}. Based on these generators,

a convex overapproximation of F̄ and Ḡ can be given by:

co(HF ) = {
∑2β

s=1(µsHF,s) :
∑2β

s=1 µs = 1, µs ∈ [0, 1],
s = {1, 2, ..., 2β}},

co(HG) = {
∑2β

s=1(µsHG,s) :
∑2β

s=1 µs = 1, µs ∈ [0, 1],
s = {1, 2, ..., 2β}},
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in the sense that

F ⊆ F̄ ⊆ co(HF ),
G ⊆ Ḡ ⊆ co(HG).

(27)

Next, we show that indeed (25) is sufficient to guarantee the

satisfaction of (22). Since (25) holds for all HF ∈ HF and

HG ∈ HG , for any µs ≥ 0 and
∑2β

s=1 µs = 1, (23) implies

0 <
∑2β

s=1 µs

(

(1 − γ)P ∗
P (HF,s − HG,sK) P

)

=

(

(1 − γ)P ∗
∑2β

s=1 µsP (HF,s − HG,sK) P

)

.

(28)

Consequently, it holds that:
(

(1 − γ)P ∗
P
(

HF,s − HG,sK
)

P

)

> 0, (29)

∀HF,s ∈ co(HF ) and ∀HG,s ∈ co(HG), s ∈ {1, 2, . . . , 2β}.
Based on (27), we have that (29) implies (22), which is,

based on the Schur complement, equal to (21). This shows

that V (ξk) = ξT
k Pξk is a common quadratic Lyapunov

function for (14), (17) which proves GAS of the origin ξ = 0
of (14), (17) and by equivalence of (6), (17).

With a similar reasoning as in [14], it can be proven that

the intersample behavior (and therefore the continuous-time

system) is GAS if the NCS model is GAS, i.e. the LMIs (25)

are feasible. This proves GAS of x = 0 of (10), (17).

APPENDIX II
JORDAN FORMS OF THE LARGE DELAY NCS MODEL

For the case with all eigenvalues equal to zero the param-

eter αi in (14) is defined as:

αi =



















































































(

h − tkk−d

)j̆

j̆!
, for j̆ = i − 1 ∧ i ∈ {1, 2, . . . , ν},

(

h − tkk−d+1

)j̆

j̆!
, for j̆ = i − ν − 1∧

i ∈ {ν + 1, ν + 2, . . . , 2ν},
...
(

h − tk
k−d+1

)j̆

j̆!
, for j̆ = i − (β − ν + 1)∧

i ∈ {β − ν + 1, . . . , β}.

The corresponding matrices are given by:

F0 =















Θ1 0n,m 0n,m . . . Θ2

0 0 0 . . . 0
0 I 0 . . . 0
...

. . .
...

0 . . . 0 I 0















, Fi =

(

Ψi

0dm,n+dm

)

,

with Θ1 = QeJhQ−1, Θ2 = Q
∑aĩ−1

j̆=0
hj̆+1

(j̆+1)j̆!
Sĩ,j̆Q

−1B and

G0 =





0n,m

Im,m

0(d−1)m,m



 , Gi =

(

Ξ
0dm,m

)

.

Before we give Ψi and Ξi, let us first define Υi =
QTiQ

−1B, s̃1 = (d−d−1)m, s̃2 = s̃1−m and s̃2 = s̃2−m.

Then, it holds that

Ξi =

{

Υi, if i ∈ {1, 2, ..., ν} ∧ d = 0
0n,m, if i > ν ∧ d = 0 or d > 0,

Ψi =



































































(

0n,n −Υi 0n,s̃1

)

, if i ∈ {1, 2, . . . , ν} ∧ d = 0,
(

0n,n+dm Υi −Υi 0n,s̃2

)

,

if i ∈ {ν + 1, ν + 2, . . . , 2ν} ∧ d = 0,
or i ∈ {1, 2, . . . , ν} ∧ d > 0,

(

0n,n+(d+1)m Υi −Υi 0n,s̃3

)

,

if i ∈ {2ν + 1, 2ν + 2, . . . , 3ν} ∧ d = 0
or i ∈ {ν + 1, ν + 2, . . . , 2ν} ∧ d > 0,

...
(

0n,n+(d−2)m Υi −Υi

)

,

if i ∈ {(d − d − 1)ν + 1, . . . , β}

and for d > 0 it holds that Ξi = 0n,m ∀i ∈ {1, 2, ..., β}.

Moreover, it holds that:

Ti =






















S1,j̆ for j̆ = i − 1 ∧ i = {1, 2, . . . , ν},

S1,j̆ for j̆ = i − ν − 1 ∧ i = {ν + 1, ν + 2, . . . , 2ν},
...

S1,j̆ for j̆ = i − β + ν − 1 ∧ i = {β − ν + 1, . . . , β}.
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