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In this paper, the problem of feedback control implemeatetor nonlinear systems is considered. Some
conditions for holding the same control input until an eveetturs are derived. With respect to classical
approaches, where feedback laws are implemented in a padligdfashion, it is suggested new algo-
rithms to use the same control input. By means of these #éltgosi some jumps of the control inputs
occur and the nonlinear system becomes hybrid, since it haseal discrete/continuous dynamics. Un-
der some assumptions, written in terms of Lyapunov funstitmo event-based algorithms are suggested
for nonlinear systems. The first algorithm is directly basadhe variation of the Lyapunov functions.
The last event-based algorithm is based on a selection ofphévariables to be updated. The results are
particularized to linear control systems and illustratgchbmerical simulations of linear and nonlinear
control systems.

Keywords Lyapunov functions, nonlinear systems, hybrid systemsggtotic stability.

1. Introduction

Over the years, researches in control of dynamical systemwes frovided various approaches to design
globally asymptotically stabilizing feedbacks. Traditadly, the controller is implemented in the time
triggered framework where the sampling for the controliectiosen periodic. The analysis of discrete-
time systems has been widely investigated for linear sysi{see Astr()m and Wittenmark 1997, Chen
and Francis 1995) and the references therein). Attempidenéthese results to nonlinear systems were
carried out, but the difficulty to obtain a nonlinear diseréitne model is an important obstacle. Some
approaches based on an approximation of the system (Blediteel 2004) or a redesign of the control
(Nesi¢ and Gruine 2005) where developed but it still rermabmplex. For linear systems, several studies
deal with the robustness of sampled-data controllers wighect to uncertainties in the sampling instants
sequence (jitter) and measurement loss (Cervin, Henrk4socoln, Eker and Arzen 2003, Fridman,
Seuret and Richard 2004, Fujioka 2009, Seuret 2012). The#eoahs typically ensure the stability of
a linear sampled-data system if the sampling period is deiun a certain interval. These results are
very relevant but they consider the worst situation.

More in the spirit of non regular sampling period, one can fivatks dealing with the equiva-
lence between controllability and stabilizability of nordar systems (Clarke, Ledyaev, Sontag and
Subbotin 1997, Marchand and Alamir 2000). In these workes féledback stabilizes the system what-
ever a sufficiently fast sampling (for purpose stability) bat too slow (for robustness purposes). The
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sampling (even if non regular) is however not depending uperstate as in the present work.

In recent years, an interesting method so-called Evened@sntrol suggests to adapt the sampling
sequence to some events related to the state of the systeniddearises in the context of Networked
Control Systems (see for example (Hespanha, NaghshtabhdzXu 2007, Zampieri 2008)) where sys-
tems contain several distributed plants which are condagbr®ugh a communication network. In this
situation, the controlled system works in continuous-tinfeereas the controller provides a discrete-
time input which is hold during a sampling period. It thermefoelaxes the periodicity of computations
and as a consequence reduces the processor usage in emtbevides or the network bandwidth needs
in networked systems. Works on event-based PID have shoaveffltiency of the approach with
for example reduction of control function calls up to 80% (&nd and Marchand 2008yzén 1999).
Event-based control approach were further extended torgenenlinear systems in (Tabuada 2007)
where an update policy based on the existence of a Lipsdtith€ origin) stabilizing control law and
an Input to State Stable Control Lyapunov Function (ISS-Jdkproposed. Various extensions of the
result were done in (Anta and Tabuada 2008, Anta and Tabl@®) o polynomial and homogeneous
systems. Sontag’s general formula for feedback stakidizatas extended to event-based stabilization
in (Marchand, Durand and Guerrero-Castellanos 2013) withsble assumption of the existence of a
smooth CLF. In both cases and as considered in this papeuptiete policy is driven by events issu-
ing from the time derivative of the Lyapunov function. Howevcontrary to the above references, the
notion of Minimal inter-Sampling Intervaas detailed in (Marchand et al. 2013) is not required since
the solutions are intended in the Filipov sense. For thisptioblem of the design of an event-triggered
algorithm is first rewritten as the stability study of a syst&ith a mixed continuous/discrete dynamics
(also called hybrid system), as considered e.g., in (Go8agifelice and Teel 2012, Prieur, Goebel and
Teel 2007, Prieur, Tarbouriech and Zaccarian 2010) in #difft context. Using this framework and
the Lyapunov theory that is now well known on this kind of rinehar systems, we compute two new
event-triggered algorithms for the implementation of fe@ek controllers. The first event-triggered al-
gorithm makes a Lyapunov-like function decrease (see Bm@:1 below for a precise statement). This
algorithm applies to nonlinear control systems for whidls known a (nonlinear) stabilizing controller
under weak assumptions, weaker than those required in @ial2007, Anta and Tabuada 2008, Anta
and Tabuada 2010), and are not restricted to affine systenms(&archand et al. 2013). Finally, a
last algorithm suggests a selection of the input varialnéstupdated when a suitable Lyapunov-based
condition holds.

A preliminary version of this paper has appeared in (Seur@tRxieur 2011) without the proofs and
with less results (in particular only two event-triggerdghbaithms have been considered in (Seuret and
Prieur 2011)).

The paper is organized as follows. In Section 2 some magayiahybrid systems are given, and the
problem under consideration in this paper is introducedSention 3, a synchronized event-triggered
algorithm is given for nonlinear control systems. In Satil a selected event-triggered algorithm is
presented and it is supported by an example of a nonlinearataystem borrowed from the literature.
Then main results are applied to the linear case in Secti@md,illustrated by an example of linear
control system. Section 6 contains some concluding renzarétpoints out some possible open research
lines.

Notation. Throughout the article, the sek§ R*, R", R™" andS" denote respectively the sets
of positive integers, positive scalans;dimensional vectorsn x n matrices and symmetric matrices
of R™". The notation| - | stands for the Euclidean norm. Given a compact.ggtthe notation
IX|x = min{|x—y|, y € <]} indicates the distance of the vectoto the sete/. The superscriptT’
stands for matrix transposition. A functignis said to be of classz, if it is continuous, zero at zero,
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strictly increasing and unbounded. The symbadéd O represent the identity and the zero matrices of
appropriate dimensions. For a given strictly positivegetam, define the set/in = {1,...,m}. For any
j € .m, define the set}), of all possible sequences ptlistinct elements of/p,.

2. Problem formulation

Consider a continuous-time nonlinear system

x = f(xu),

X(IO) = @, (2 1)

wherex € R" andu € R™ stand respectively for the state variable and the inputoveg € R" is the
initial state andf : R" x R™ — R" is a locally Lipschitz function.

Assume that the system (2.1) is globally asymptoticallpititzable, i.e. that there exist a Lyapunov
functionV and a state feedback control lansuch that the derivative of the Lyapunov function along
the trajectories of the closed-loop system is negative ttiefilthis means that:

AssUMPTIONL. There exist a continuously differentiable function®" — R, some functiongy, L
and s in % and a continuous controller UR" — R™ such that ¢0) = 0 and, for all xe R",

(X)) <V (x) < p2([x)),

OV (). £ (%, U(x)) < —pa( ).

This assumption suggests that the control lahas been designed in continuous-time so that the
(continuous)-time derivative of a Lyapunov function is atige definite.

In practice, it is not realistic to implement a control lawdontinuous-time. As the control input is
computed on a digital hardware, only a sampled version ofrtpet is implemented in the actuators.
Generally speaking, the sampling is chosen periodic andaémall period so that the sampled signal
is very close to the continuous one. However the computafitime control values is not done instanta-
neously. It requires a minimum sampling period which gutges that the controller is able to compute
the correct data on time. Consequently, the use of a smafilsamperiod requires an efficient processor
allowing to compute the control value in short time. An aiggive solution is to develop an algorithm
which triggers the sampling period with respect to the stétihe system, as shown in Figure 1. The
contribution of this paper is to let the system decide byfittan update of the control is needed or not.

In order to clarify the notation, a hybrid formulation of tkampled-data system is proposed, using
(Goebel et al. 2012, Prieur et al. 2007, Prieur, Tarbourgwth Zaccarian 2013). More precisely the
sampled-data system is rewritten as

x=f(xs),
s:07 (X7S7p)6y7
P=9(xsp),
(2.2)
Xt =X,

st e D(x,s)u(x)+D~(x,8)s, (x,5,p) € 7,
p* = go(X,s,p),
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FiG. 1. Control scheme with an event-triggered algorithm.

wheres € R™ represents the held value of the control input (that is irmgleted over the sampling
interval), p € RY contains additional parametegs, R" x R™ x RY — R% andgg : R" x R™ x R4 — RY

are two continuous functions of appropriate dimensiond,Zrand_# are two subsets @" x R™ x RY.
These sets are respectively called flow set and jump set arttbgrees of freedom of the event-triggered
algorithm. The functioD : R" x R" = R™ M is a set-valued map, that takes non-empty values when
(x,8,p) € 7, and that is outer semicontinuous and locally bouddBidte that, if it is locally bounded,
then it is outer semicontinuous if and only if its graph isseld. Moreover in (2.2), for allx,s) in

R" x R", D~ (x,s) denotedD~(x,s) = {I —d, d € D(x,s)}. The design of such a function is proposed
in the sequel. The objective of the functidnis to select the control input component to be updated.
Note that the functiol should take values in®d" ", that is the set of all subsets Bf**™. The function

D is set-valued because it comes from the regularization dseodtinuous single valued function.
Such a regularization is useful to ensure a robustness ¢fsihe stability that will be derived in this
paper (see e.g., (Goebel et al. 2012, Chapter 4) for an inttamh on generalization of solutions to
hybrid systems in connection with perturbations). The stibess with respect to measurement noise
or actuation errors follows from general robustness resiflasymptotically stable hybrid systems (see
e.g., (Goebel et al. 2012, Prieur et al. 2007)).

We recall some basic ingredients on hybrid system theoxy,cemthe notion of solutions to (2.2)
(see (Goebel et al. 2012, Prieur et al. 2007)). Due to mixsdrdie/continuous dynamics, a solution
to (2.2) will be defined on a mixed discrete/continuous timendin. Let us define first the notion of
compact hybrid time domain (see (Goebel et al. 2012, Deajimi2i.3)). A seE is acompact hybrid time
domainif

J-1
E = U ([tjatj+1]7 J) )
j=0

for some finite sequence of times=0ty < t;... <ty. Itis ahybrid time domainf for all (T,J) € E,
E N ([0,T] x{0,1,...J}) is a compact hybrid time domain. A solutidr,s, p) to (2.2) consists of
a hybrid time domainiom and functionsx : dom — R", s: dom — R™, and p : dom — R such that
(x,5,p)(t, ) is absolutely continuous infor a fixedj and(t, j) € dom satisfying

1A set-valued mappin® defined orR" is outer semicontinuoui for each sequence € R" converging to a point € R" and
each sequencg € D(x) converging to a poiny, it holds thaty € D(x). It is locally boundedf, for each compact sé C R"
there exists > 0 such thatyek D(X) C B(O, 1), whereB(0, i) is the ball of radiusu centered at 0.
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(S1) for allj € N and almost alt such thatt, j) € dom,

(x(t,]),s(t, ), p(t, ) € Z, x(t,]) = Fx(t,]),s(t,])),
S(taj) = 0
pt,j) = gt j),s(t,]),p(t, ])),

(S2) forall(t, j) € dom such tha{t, j + 1) € dom,

(X(t,j),S(t,j),p(t,j))E/,X(t,j+1) = X(taj)v
s(t,j+1)
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p(t,j+1) = do(X(t,]

Then, the solutiorix,s, p) is parameterized bit, j) wheret is the ordinary time ang is an inde-
pendent variable that corresponds to the number of jumpiseo$dlution. This parameterization may
be omitted when there is no ambiguity. When the stétej) belongs to the intersection of the flow set
and of the jump set, then the solution can either flow or jump.

A solution(x,s, p) to (2.2) is said to beompletef its domain is unbounded (either in thelirection
or in thej-direction),Zenoif it is complete but the projection @fom ontoR ¢ is bounded, anchaximal
if there does not exist another solutigno™(2.2) such thax is a truncation ok o some proper subset
of its domain. Hereafter, only maximal solutions will be satered. For more details about this hybrid
systems framework, we refer the reader to (Goebel et al. ,2Rdi@ur et al. 2007). The following
definition describes the requirements to prove the glohahasotic stability of the solutions to (2.2).

DEFINITION 2.1 Given a closed subsef of R" x R™ x RY the hybrid system (2.2) is said to be

e stable tog: if for eache > 0 there exist® > 0 such that each solutiofx, s, p) to (2.2) with
|(x(0,0),5(0,0), p(0,0)) ., < & satisfied (X(t, ), S(t, ], p(t, )]s < & forall (t, ]) € dom;

e attractive to.o/: if every solutionx to (2.2) is complete and satisfies

lim (X(ta j),S('[, J)7 p(ta J))'Vf =0;

t+ jﬂoo|
¢ globally asymptotically stable te7: if it is both stable and attractive te’.

Given an initial condition @, S0, po) in R" x R™ x R, and a solutior(x, s, p) of (2.2) defined on a
hybrid time domairdom, the set of the sampling time instants, when the controltirppupdated, (plus
0) is denoted” and is{t;}, wheret; is such its domain is written asjc; ([tj,tj+1] x {j}). Among
other results, we state in this paper some properties oreth# slepending on the choice of the event-
triggered algorithm. In particular, in our hybrid systemesmiework,7 is at most countable.

In this paper, several set8 and _# and functiond are defined, and thus several event-triggered
algorithms are considered. Let the particular case wheta € R, D(-) = and such that the dynamics
of the system are rewritten, for afly> 0, as

x=f(x9),
$:0, (XaSaT)GJOZTa

T=1,
(2.3)

Xt =X,
{ st =u(x), (X,8,1T) € f1,

=0

3
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where.#t and _¢7 are the following subsets &" x R™ x [0, T]:

Fr={(xs1),T<T},
(2.4)
1 ={(xs1),T>T}

As shown in (Goebel et al. 2012), the hybrid model expredsesase of periodic sampling. In this

simple algorithm, after each jump, the solution is eithathatequilibrium or has to flow. It avoids the

existence of Zeno solutions, and also it reduces the cortpleken implementing the event-triggered
algorithm. Of course, in general, the system (2.3) is ndbglly asymptotically stable since the update
of the control law does not depend on the system positiorstibine periodically. This motivates us to
consider the following problem:

Problem 2.1 Define appropriate set¥ and ¢ and dynamics of the variablesuch that, after each
jump of the solutions to (2.2), the solutions have to flow, andh that (2.2) is globally asymptotically
stable.

3. Synchronized event-triggered algorithm for nonlinear systems

In this section, the set-valued matrix functiDris chosen constant and equal to the (singleton given by
the) identity matrixl. This means that the matr~ is equal to the null matrix. Coming back to the
definition of the hybrid system (2.2), the dynamics of theeaysevolving in the jump set becomes

x= f(x9),
{ $=0, (X,S,p) € Z,
p:g(X,S, p)a
(3.1)
Xt =X,
{ s :U(X), (X,S, p) € /a
p" = go(X,S P),

Using this framework, all the components of variabiheay have a jump only when the system enters
in the jump set 7. We call this algorithnBynchronized event-triggered algorittsince the updates of
all components of are achieved simultaneously. The objective is to define dtomeand jump sets,
based on the decay of the function in continuous-time.

THEOREM 3.1 Under Assumption 1, consider a given functjoof class. %, such thafu(r) < ps(r),
for allr > 0. Consider the flow and jump sets given by

F1= {(X,S), DV(X).f(X,S) < —N(|X|)}v (3.2)
3.2
H1={(xs), IV(x).f(x;5) = —p(|x])},

and the associated event-triggered algorithm. Then thersy§.1) with.#7 = %, and _# = _#1 (and
without statep) is globally asymptotically stable #0} x R™. Moreover, for each solution to this hybrid
system, at every time when the solution has a jump, eithex-temponent of the state is the origin or
the solution has to flow.

Proof. The proof of Theorem 3.1 is based on the decreasing propéttyecfunctionV given by
Assumption 1, along the solutions to (3.1), withand_# given by (3.2). See (Prieur et al. 2010, Prieur
et al. 2013) for analogous ideas for a different problem.
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Given a switching time instamg € .7, denoting (with a slight abuse of notatiotf}; ) the state after
the jump (and similarly for the other variables), using Asgtion 1, it yields

OV (X(tg))- f(x(tg ), s(tg)) = OV (X).f(x(tg),u(x(ty)))
—us(lx(tJ)I)
—u(x(tg)]) — e(x(tg D),

wheree(|x(tg)]) = ps(|x(tg)]) — H(]X(ty)|) is non-negative and equals O onlyxft;) is vanishing.

Thus, after a jump, two cases may occur:

1) either thex-component of the state is at the origin (and the same fortther gomponents), and then

the solution remains at the origin;

2) orx(ty ) is different to 0. Therfx(ty ),s(ty ) belongs to%; \ _#; and the solution has to flow.
Consider now(x, s) in %1 \ {0}. Then we get

NN

OV(x).f(x,5) = OV(X).(f(x,5)— f(x,u(x)))+ OV (x).f(x,u(x)),
and using Assumption 1, we obtain
OV(X). F(%,9) < —pa(|X) + OV (%).(F(x.9) — F(x.u(x))).

Then, the solutiorfx, s) to system (3.1) with? = .7 and_# = _¢#; stays in% until a statex = x* (if
such a state does exist) defined by

OV (). (F(,8) = O, u(x))) = ps(IX°]) = (X))

Two subcases may occur.

2.a) If there exists suck®, then the coupléx*,s) belongs to_#1, and by definition os", (x**,s")
belongs to%;.

2.b) If there does not exist suah, then the solution to the system (3.1) staysin

For both cases, the derivative\6fis negative whilgx,s) is in %1 andV is constant whilgXx, s) is
in _#1. This implies that the system (3.1) with = .%1 and_# = ¢/ is stable to{0} x R™ (as proven
in the first part of (Goebel et al. 2012, Theorem 3.18)).

To prove the attractivity of the system (3.1) with = .%; and _¢ = _#;, let us apply the LaSalle
invariance property for hybrid systems (see e.g., (Goetal 2012, Theorem 8.2)). Let us consider a
solution to this hybrid system which is included in a level akthe functionV. Let us show that this
solution should be equal to 0.

The solution cannot jump, exceptif it is at the origin (indgiéthe solution is not at the origin, then,
after a jump, the solution has to flow, and thus the valué bés to decrease). Given a solution flowing
for all time, due to Assumption 1, the stateannot stay at the level set¥f Thus the solution has to
be constant and equal to the origin. Therefore, by (Goebal @012, Theorem 8.2), the system (3.1)
with .7 = .%; and_¢ = _¢#, is globally attractive td 0} x R™and therefore it is globally asymptotically
stable. This concludes the proof of Theorem 3.1. O

REMARK 3.1 A main improvementof the proposed method compared famgie to (Anta and Tabuada
2010), is that no Input-to-State Stability (ISS) assumpfior system (2.1) is needed. More precisely
the method that is suggested in (Anta and Tabuada 2010Yesghie existence of functiomsandy of
class., such that, for alk in R",

OV (x). f(x,u(x+€)) < —a([x) +y(le]) -
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Then the event-triggered algorithm is defined by a conditiorthe error between the current value of
the statex and itsmemory m that is the value of the state last time the control was wgglat= m— x
denotes the measurement error. The control is updated assg < y~1(oa(|x|)) ensuring that way
the strict decrease &f for 0 < o < 1. In the present article, instead of an ISS assumption, thaly
global asymptotic stability is needed. As remarked in (89r#007), Assumption 1 is weaker than the
ISS property, and it is sufficient to define the event-trigglalgorithm by the value of the derivative of
the Lyapunov function along the trajectories of the system. o

REMARK 3.2 Another importantissue concerns the possibility thesblution of the system for a given
initial condition, never reaches the sg4;. Itis the case when that the system is already asymptaticall
stable without any control (or with a constant control valaed the control law does not need to be
updated. This situation is not taken into account in the webthroposed in (Anta and Tabuada 2010).

Moreover note that there may exist some Zeno solutions tiwybeid system (3.1) with# = .7
and_# = _¢#;. For such solutions, the attractivity of the origin contadrin the conclusion of Theorem
3.1 holds, as the the quantity- j goes to infinity, as thus as the discrete tijrgoes to the infinity (since
for Zeno solutions, the continuous timées bounded). o

REMARK 3.3 On the other side, there is a drawback of the present mietfibe derivative of the
Lyapunov functiorV needs to be computed at all time instants to check if the disgp system has to
flow or to jump. o

Pickingu = 0in Theorem 3.1 gives a partial result and allows to desiggvant-triggered algorithm
such that the closed-loop system is globally stable. Moeeipely we have

PrRopPOsSITION3.1 Under Assumption 1, consider the flow and jump sets giyen b

F1={(x>9), OV(x).f(x,s) <0},

A1={(xs), OV(x).f(x,s) > 0},

and the associated event-triggered algorithm. Then thersgs(3.1) with = %] and 7 = 7] is
globally stable to{0} x R™. Moreover, for each solution to this hybrid systems, atetiene when the
solution has a jump, either thecomponent of the state is the origin or the solution has te.flo

Proof. The proof follows the lines of Theorem 3.1. More preciselg may check that by selecting
F =71 and _¢ = 7], and by using Assumption 1, the derivative of the LyapunawfionV is
negative while the state of the solutigr s) of (3.1) is in.%#; and is constantx,s) is in _#1. This
implies, with the first part of the proof of (Goebel et al. 20TBeorem 3.18)), that the system (3.1) with
F =F1and ¢ = 7 is stable to{0} x R™.

Finally, using Assumption 1 again, we note that, given atsmuof (3.1) with.# = .%] and ¢ =
71, after each jump (if such a jump does exist), either the s$ettee origin or the solution has to flow.
This concludes the proof of Proposition 3.1. O

4. Selected event-triggered algorithm for nonlinear systems
4.1 General nonlinear systems

From now on, the system under consideration is the one deiinéi2) (without any statg). The
objective of this section is the design of the matrix funetidin order to get a stabilizing event-based
algorithm. In comparison with the approach presented irpteeious section (where all components of



STABILITY OF NONLINEAR SYSTEMS BY MEANS OF EVENFTRIGGERED SAMPLING ALGORITHMS 9 0f 18

the input vector are updated at each jump), the event-trégh&lgorithm is authorized to update only
one or several components of the input vestdrhis problem has already been addressed in (Postoyan,
Tabuada, Nesic and Anta 2011) where the matrix funciois a predefined to schedule the control
input to be updated. Here the main difference with respe(®tstoyan et al. 2011) is that the matrix

D is resulting from an appropriate selection of the contrpLitwhich depends on the current state of
the system. A solution to this problem is described in theusktpr the case of the continuous-time
decrease of the Lyapunov function as proposed in SectioroBs&zjuently, we will also use the same
flow and jump sets¥; and_#1 defined in (3.2) with the appropriate functipn

In order to propose a simple formulation to this problem, @ep the following notations.

_ 1, ifk=i,
v(i,k) € {ym}z’ Ki(k) = { 0, otherwise
and the matrices
Ki(l) 0
V| (S ym, Di = .
0 ... ki(m)

With such a matriXD; and givenu in R™, Dju is the vector with all vanishing components, except the
i-th component which is;. It allows to update the input of system (2.1) using only oomponent of
u(x). Now givenA < ma positive integer and := {iy,...,i, } in %3 (whereiy, assumed to be different
fromiy, for anyk; # k»), we denote

. [k 0
DO' = Z Dil = . .
=1
0 .. ¥iaki(m)

When employing this matrily, for anyuin R™, Dy u allows to updaté components using (see
Theorem 4.1 below for more details).

The set-valued map functidh: R" x R™ = R™ is the Krasovkii's regularization (see e.g., (Goebel
et al. 2012, Definition 4.13) for more details on such a reggdéion) of a discontinuous function

d:R"x R™— R™defined as follows:
For a given statéx,s), d(x,s) = Dy Whereg is an element of#} andA in {1,...,m} are such that

OV, (%,8) := min {OV(x(t)).f(x(t),Dgu(x(t)) + (I —Dg)s(t))}, VA e€{1,....,m}, (4.1a)

oc s}
dv)\ (X,S) <7H(|X|), (41b)
Vi (x,8) >—p(|x]), VA <A. (4.1c)

As for the previous event-triggered algorithms, with thiadtionD, the update of the input vector
is done by using Lyapunov inequalities. More precisely,dbadition (4.1a) computes, for a givén
the minimal value, among all the possible choices when upglanly A component(s) of the control
inputs, of the time-derivative of the Lyapunov functidh

The second condition (4.1b) and the last one (4.1c) comph&gesinimal number of necessary
updates that are needed to ensure the good sign of the Lyapuraiion. With this functiorD, we are
in position to prove the following:
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THEOREM4.1 Under Assumption 1, consider a given functjoof class. %, such thatu(r) < ps(r),
for all r > 0. Consider the flow and jump sets given B and _¢#; respectively, defined in (3.2) and
the associated event-triggered algorithm and the seedahap functiorD defined by (4.1). Then the
system (2.2) with# = #; and ¢ = ¢#1 (and without statep) is globally asymptotically stable to
{0} x R™

The proof is inspired from Theorem 3.1 and is based on thetlfet} after each jump, either the
solution to (2.2) with# = #; and _¢# = ¢, is at the origin, or the solution has to flow. Therefore the
proof of Theorem 4.1 is omitted.

4.2 Affine nonlinear systems

Algorithm 4.1 requires the computation @V (x(t)).f(X(t),Dgu(x(t)) + (I — Dg)s(t)) for all A in
{1,...,m}, that is the effect of any combination between the updatedrabu(x(t)) and its previ-
ous values(t) on the decrease of the Lyapunov function. It asks fBrefaluations of this derivative
(that is as many parts ifil,...,m}). This may be costly and can highly be simplified in the case of
systems that are affine in the control, that is of the follayform:

{IZgrhls wyes,

4.2)
+
{5 n0 (ks s

In that casegV, (x,s) is composed of two terms, the drift being independent froenabntrol value.
Hence:

Vv, (x,s) = OV (x(1)) fa(x(t)) + mp)\ {Bl(X)Tﬁz(X, o)}, (4.3)

where
F1(x) == [OV(x(1)) f2(x(1))] F2(%,0) :=Dgu(x(t)) + (I — Dg)s(t).

The second term to minimize is the scalar product betweemmtbevectorsd,(x) and 9,(x,0), and
the effects of all components of on this scalar product are independent. Therefore, thenmaimi of
91(x)T92(x,0) overa in .#3 can be expressed componentwise as follows:
m
min {< 91(X),92(X,0) >} = dnlionl{(diui +(1—di)s)d;(x)} (4.4)

ge SR =

whereu;, s, J1, anddy, denote the'" term of respectively, s, 91 andd,. Now, recalling thaD in
9 (x,0) is a diagonal matrix composed of zeros and ones, it follows:

Jin {(diui +(1—di)s) 9y, (x)} = min{, (ui(X(1)), I, ()5 (1)} (4.5)

The selection algorithm (4.1) becomes therefore much morgls. It can be computed as follows:

1. Fori € .%m, compute the smallest term betwe2n(x)u; (x(t)) anddy, (X)s (t) and keep the index
only whendy, (X)ui (X(t)) < 91, (X)si(t). The indexes denote the control component that are would
improve the decrease of the Lyapunov function if update Jét of indexes is a subset.g,.
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\Y

>

time
FiG. 2. Effect of the control update on the decrease of the Lyaptdunction. In Case 1, the control is not updated. Cases 2 to

4 corresponds to different update strategies. The dasbiedded line is of slope-(|x|) that imposes the minimal decrease of
the Lyapunov function

2. Sort this set in order to obtain an index sétefined as follows

I = {i1,iz,...,in}, N €I, (4.6a)
suchthat: 9y, (X)ui, (X(t)) < J;, (X, (X()) < -+ < 9, (X)ui, (x(t)) (4.6b)

3. Compute the minimal numbgrof indexes such that:

n
D P, 09U (x(1)) < —p (X)) = OV(X(®) f(x(¥)) = 3 91,(0s(x(1)) (4.7)
=1 i€%m

itz

4. Update the control componamf(x(t)) to ui, (X(t)).

Following this algorithm (or more precisely its Krasovkiregularization), as for Theorem 4.1, it
is obtained that, after each jump, either theomponent of the solution to (2.2) witk = .#; and
J = _Z1is atthe origin, or the solution has to flow. Therefore we get:

THEOREM4.2 Under Assumption 1, consider a given functjoof class. %, such thafu(r) < ps(r),
for all r > 0. Consider the flow and jump sets given.y and _¢#; respectively, defined in (3.2) and the
associated event-triggered algorithm defined by (4.6)}(4Then the system (4.2) witlf = .%; and
7 = _#1 (and without state) is globally asymptotically stable tf0} x R™.

Figure 2 illustrates the different algorithms. At some pgjit may be necessary to update several
components so that is lower that the quantity-u(|x|). With the algorithm suggested by Theorem 4.2,
it is updated the minimal number of inputs so tWats lower that the value-pL(|x|) (Case 3 for this
figure), even if by updating more components (as for Case 4guir€ 2), a lower value fov may be
obtained.
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FiG. 3. From the left to right: time-evolution of the states, loé ttontrol values and of thevariables for the synchronized and
the selected algorithms, given respectively by Theoren{t8), and by Theorem 4.1 (down)

4.3 Nonlinear example

Consider the following nonlinear system borrowed from @and Tabuada 2010, Byrnes and Isidori
1989):
Xp = Uz, X2 = U, X3 = X1X2, (4.8)

where(x1, X2,X3) and(uy, u2) stand respectively for the state and for the control. A §tabg controller
is computed in (Byrnes and Isidori 1989). It is given by, fbr(ay, o, x3) in RS,

U1(X1,X2) = —X1X2 — 2XpX3 — X1 — X3, (4.9)
Uz (X1, X2) = 2XgXoX3 + 3X3 — Xo. '

A Lyapunov function for this system is computed in the sanferemce. It is defined by, for all
(X1,X2,X3) i R3,
V(X) = (x+%3)%/2+ (2 = X§)? /24X,

Thus Assumption 1 holds.

The simulation results for the synchronous and selectearittigns are shown in Figure 3 where
two different numerical simulations are done: 1) the euweigggered algorithm which are considered in
Theorem 3.1, 2) the event-triggered algorithm providedhedrem 4.1. The figure contains the state,
the input and the variabledefined in (2.3) and the variablesepresenting the sampling of each control
input. The following parameters have been selegtéd = 10-3|x|2 +103x/4, A = 0.2. The initial
conditions areq (0) = —10,X2(0) = —5 andxz(0) = 5.

In Figure 3, it can be seen that for a simulation o§4fe synchronized event-triggered algorithm
requires 2x 18 = 36 updates of control inputs, while the selected eveng#iigd algorithm requires
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only 27. This shows that the number of updates of the conimltis can be significantly reduced by the
use of an adequate selection policy of the control inputs.

It is important to stress that the selection of updating tist &r the second control inputs are not
defined in advanced as in (Postoyan et al. 2011).

5. Application to linear systems

Consider now a linear system of the form
X = Ax+ Bu, (5.1)

wherex € R" andu € R™ stand for the state variable and the input vector. The nestAcandB are
constant and known and of appropriate dimensions. Let usvasshat the pai(A, B) is controllable.
Then the proposed control law for this system is Kx whereK in R™" is such that the matria+ BK

is Hurwitz. There also exist a positive scataand a symmetric positive definite matixso that

P(A+BK) + (A+BK)"P < —2aP. (5.2)

Thus Assumption 1 holds with (x) = x" Px andu(x) = Kx for all x € R". Rewriting the closed-loop
system in a hybrid framework, we get:

X = Ax+Bs
{ . (x,8) € 7,
s=0,
(5.3)
xt =x,
{ st = Kx, (x,5) € 7.

By noting that
OV (x)f(x,s) = [ )s( ] I'Il[ X }

S

PA+ATP+2aP PB

wherell; = [ BTP 0

], a € (0, a), the following result follows readily from Theo-
rem 3.1:

PROPOSITIONS.1 Assume there exist a symmetric positive definite mdrin R™", a matrixK in
R™M and a positive scalar satisfying (5.2). Considear € (0, a) and the flow and jump sets defined

by
flL:{(x,sL [’;]Tnl[z]go},
el (2]}

Then the system (5.3) with the event-triggered algorithmived from.7% = %, and ¢ = 7 is
globally asymptotically stable t¢0} x R™. Moreover, for each solution to this hybrid system, at alll
time when the solution has a jump, either the state is thérooigthe solution has to flow.
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REMARK 5.1 In (Fiter, Hetel, Perruquetti and Richard 2011), an LMké&d mapping approach is
proposed in addition to Proposition 5.1. The authors intoethe notion of maps. The idea is to divide
the state space into appropriate sectors. Then off-lireitations allows to attribute a sampling period
to each sector. By this mean, it is possible to create a mapased of sectors such that, when the
system enters in the jump set, the controller only has to findhich sector the state of the system
belongs to choose the appropriate sampling period. Theesttef this method is that this mapping

approach avoid the computation of the test function embeddthe controller. o
X = Ax+Bs
$=0, (X,S,\,T) € .7,
T=1,
(5.4

Xt =X,
st =Kx, (x%sVvT)€ 7.

7 =0,

5.1 Comments on the linear case

The event-triggered algorithms which are exposed abovetprovide any information of the duration
while a control law is held. In the sequel, a complementaghgsis is provided for the case of linear
systems to give an upper-bound and a lower bound of the hplitimes. Consider now the hybrid
representation of system (5.1)

X = Ax+Bs
$=0, (X, SV, T) € .Z,
=1

3

(5.5)

xt =X,
st =KX, (x,svT)€ 7.

=0,

This hybrid system is essentially the same as system (5&péthat a timer has been added to
the dynamics of the system. Lgte R" be the value ok-component in the system (5.5) with the event-
triggered algorithm derived fron¥ = %3 and _# = _#3;, at an instant when the system is jumping,
i.e. X =X(tj) for sometj € .7. In the case of linear sampled-data systems, the relatietvgleny, x
andsare given by

X+ 1) =T (1), S(tk+ 1) =KX,

wherel (1) = e + [T eM®-1d@BK. For the sake of simplicity, we will denote
Jo

X(X,1) = (I (1)X, KX),

for any giveny € R" andt € R*. Based on these linking relations, bounds on the inter sampines
can be provided. This is stated in the sequel.

PrRoPOSITIONS.2 Consider the linear system (5.5) with the event-trigdaalgorithm derived from
F =F L and_¢ = _#;.. Then, the difference between two successive samplingritsts included in
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the interval Ty, Tw] defined as follows

Tmax= MaXcRrn |p|=1 {ma&((p,r)ey’n T} )
Tinin = MiNpegn | p|—1{MaX(p.1)e7y T} -

Proof. Consider any statg in R" for a solution to system (5.3) with the event-triggered &atfm
derived from% = %y and ¢ = #; when a jump is occurring. By simple computations, it is clear
that if, for anyt > 0, X(x, 1) belongs to%; thenX(x/|x|,T) also belongs to#y . Then, from the
definition of Tmin andTmax the next update will happen between these two bounds. O

5.2 Linear example

Consider the linear system (5.1) and the contre! Kx studied in (Naghshtabrizi, Hespanha and Teel
2008, Zhang, Branicky and Phillips 2001) with

a=[8 &= & ]x=[] 6)

Several robust stability conditions dedicated to the previexample of sampled-data systems can
be found in (Fridman 2010, Fujioka 2009, Oishi and Fujiok@®20Seuret 2009). In these articles,
the main idea is to provided the largest upper-botirsb that the closed-loop system is stable for any
asynchronous samplings whose period is lying0iff ]. It was shown in (Seuret 2009) that the system
remains stable with the upper-bouhd= 1.729.

To provide an efficient event-triggered algorithm, the Lyapv matrix is taken from (Seuret 2009)

with T =0.2 and
~ | 20213 10843

~ | 10843 20666 |’

Figure 4 shows the simulations results of the closed sysgéng the continuous-time controller, and the
event-driven control algorithm provided in Propositiod &ith a = 10~2 andA = 0.15. The control
algorithm requires 12 sampling instants over a simulaiioe tof 20sec.

Using Proposition 5.2, the algorithm leads to the followbwyunds on difference between two suc-
cessive sampling instants,, = 0.978 andlmax= 6.96. The event-triggered algorithm allows solutions
for which the length between two successive sampling insiargreater than the upper-bound obtained
using robust approaches from (Fridman 2010, Fujioka 20@8hi@nd Fujioka 2009, Seuret 2009,
Seuret 2012). This shows the main interest of the proposdidaue

P a=0.17.

6. Conclusions

In this paper, using a Lyapunov-like function, three evieigigered algorithms are designed. It is as-
sumed that a stabilizing controller for the continuous oansystem is given, and these algorithms
suggest an implementation method, alternative to theicklgseriodic implementation method. The
event-triggered algorithms require to study a closed-®ggtem with a mixed discrete/continuous dy-
namics (namely this is a hybrid system). Some numerical lsitioms illustrate the stability properties
for nonlinear and linear control systems.

In a forecoming work, the performance issue should be apdlyit is remarked that the event-
triggered algorithms have a different performance. Thé dine@ seems to ensure a good speed of con-
vergence on numerical simulations, whereas the second-#iggered algorithm allows less jumps
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FIG. 4. From the top to down: time-evolution of the states, of\fhfinction, of ther-variables and of the control values (when
closing the loop with the continuous control, or with theaalthm of Proposition 5.1, or with the algorithm of Propasit 5.2,
from left to right)

and thus needs to compute less often the control variables.a@ivantages and disadvantages of each
algorithm will be studied more precisely in a forecoming udor a theoretical point of view (e.g. by
estimating a priori the number of switches), or on applaadi(to understand which algorithm is better
depending on the application).
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