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RESEARCH Open Access

Stability of operational taxonomic units: an
important but neglected property for analyzing
microbial diversity
Yan He1, J Gregory Caporaso2,3, Xiao-Tao Jiang1, Hua-Fang Sheng1, Susan M Huse4, Jai Ram Rideout3,

Robert C Edgar5, Evguenia Kopylova6, William A Walters7, Rob Knight6,8 and Hong-Wei Zhou1*

Abstract

Background: The operational taxonomic unit (OTU) is widely used in microbial ecology. Reproducibility in

microbial ecology research depends on the reliability of OTU-based 16S ribosomal subunit RNA (rRNA) analyses.

Results: Here, we report that many hierarchical and greedy clustering methods produce unstable OTUs, with

membership that depends on the number of sequences clustered. If OTUs are regenerated with additional

sequences or samples, sequences originally assigned to a given OTU can be split into different OTUs. Alternatively,

sequences assigned to different OTUs can be merged into a single OTU. This OTU instability affects alpha-diversity

analyses such as rarefaction curves, beta-diversity analyses such as distance-based ordination (for example, Principal

Coordinate Analysis (PCoA)), and the identification of differentially represented OTUs. Our results show that the

proportion of unstable OTUs varies for different clustering methods. We found that the closed-reference method is

the only one that produces completely stable OTUs, with the caveat that sequences that do not match a

pre-existing reference sequence collection are discarded.

Conclusions: As a compromise to the factors listed above, we propose using an open-reference method to enhance

OTU stability. This type of method clusters sequences against a database and includes unmatched sequences by

clustering them via a relatively stable de novo clustering method. OTU stability is an important consideration when

analyzing microbial diversity and is a feature that should be taken into account during the development of novel OTU

clustering methods.

Background

Rapid advances in DNA sequencing technologies over

the past decade have allowed us to study communities

of microorganisms in far greater depth than was previ-

ously possible. Many of these studies involve PCR ampli-

fication and sequencing of marker genes (often the 16S

small ribosomal subunit RNA (rRNA)) from complex

communities of organisms, which can then be compared

to databases of known sequences to identify the taxa

present in the microbial community. These methods

have led to the discovery of new organisms at a much

faster rate than taxonomists can describe and name. To

facilitate taxonomy-independent analyses and to reduce

the computational resources necessary for such, marker

gene sequence reads are typically clustered based on se-

quence similarity, under the assumption that sequences

with greater similarity represent more phylogenetically

similar organisms. These clusters, or operational taxo-

nomic units (OTUs), are widely used as an analytical

unit in microbial ecology studies [1].

Due to the lack of a gold standard of ‘correct’ OTUs,

several measurements have been used to evaluate the

performance of clustering methods, for example, ration-

ality of OTU structure [2,3], computational efficiency

(that is, runtime and memory requirements) [4], and the

ability to cope with OTU inflation [5]. However, OTU

stability has rarely been studied to date, despite the

importance of this property. Here, we define the stability
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of an OTU by whether it contains the same clustered se-

quence(s) regardless of the number of sequences that are

clustered. If OTUs are found to be unstable when cluster-

ing different numbers of sequences in different clustering

runs, the sequences in a given OTU may be assigned to

different OTUs. Alternatively, sequences assigned to

different OTUs can be assigned to a single OTU.

Roesch et al. [6] reported the above detailed clustering

artifact soon after next-generation sequencing was ap-

plied to 16S rRNA. Using six different sequence subset

sizes (ranging from 10,000 to 53,632 sequences) from a

single Canadian soil dataset, they showed that larger in-

put sequence counts produced steeper rarefaction curves

(Figure 1a). Rarefaction curves plot the alpha-diversity

(for example, the number of species or OTUs) found

within a given number of observations (DNA sequences).

Rarefaction curves are widely used to test whether an en-

vironment has been sufficiently sequenced to observe all

taxa and to extrapolate the total diversity of the sampled

community [1,3]. A rarefaction curve where the slope

changes when calculated from a different number of initial

sequences directly conflicts with the expected behavior of

such a curve and challenges the fundamental principle

that the diversity of a whole community can be estimated

from a sequenced sample.

In this study, we reveal that unstable OTUs lead to

non-overlapping rarefaction curves. We further show

that these unstable OTUs can also affect beta-diversity

analyses. We also evaluated existing de novo and

reference-based clustering methods to show that all de

novo clustering methods are unstable to some extent,

while closed-reference clustering generates stable OTUs.

Closed-reference clustering has the considerable limita-

tion of excluding any OTUs that are not defined in a pre-

existing reference set, which in turn excludes novel OTUs

from analysis. As a compromise between generating OTU

instability and the potential elimination of novel taxa, we

recommend using open-reference OTU clustering [7],

which we show to result in more stable OTUs than fully

de novo clustering methods.

Results and discussion

Changing membership of OTUs at different sequencing

depths (OTU instability) - a neglected but important

property for analyses of microbial diversity

To illustrate the problem created by unstable OTUs, we

reproduced the non-overlapping rarefaction curves using

the same dataset (Canada soil dataset) and the same

clustering method (complete linkage clustering, referred

to as CL clustering) employed by Roesch et al. (Figure 1a).

We randomly subsampled the raw sequences at four

sequencing depths (20%, 40%, 60%, and 80% of the input

sequences) using 30 replicates of each. We then used

complete linkage (CL) clustering to cluster each of the

subsamples (definitions of all clustering methods can be

found in Additional file 1) and generated rarefaction

curves for each sampling depth. In the case of CL cluster-

ing, the rarefaction curve produced by a larger subsample

is steeper than that produced by a smaller subsample.

One goal when generating rarefaction curves is to sup-

port interpolation, meaning that if we create a rarefaction

curve from a full dataset, we would like to use that curve

to determine how many species would be observed for

some number of sequences that amounts to less than the

total. For example, when we interpolate from the rarefac-

tion curve created from a full dataset, we estimate that we

have approximately 4,500 species if we randomly select

30,000 sequences from the full dataset (point A in

Figure 1a). The problem that non-overlapping rarefaction

curves pose for interpolation, however, is that if we instead

randomly subsampled 30,000 sequences from an 80%

subsample of the full dataset, we would estimate that only

Figure 1 Rarefaction curves, principles underlying unstable complete linkage (CL) clustering, and PCoA based on the Bray-Curtis distance.

(a) Rarefaction curves generated with CL clustering at five different depths. Point A is the number of OTUs at 30,000 sequences from the 100%

dataset, and point B is the number of OTUs at 30,000 sequences from the 60% dataset. (b) Principles underlying unstable CL clustering at two

sampling depths. White circles indicate individual sequences that were included in both the small and the large subsamples, and dark circles

indicate sequences that were added only in the large subsample. Lines indicate pairs of sequences with distances equal to or smaller than the

threshold, which could therefore be linked into a single OTU. Large circles in red or blue indicate OTUs in the small and the large subsamples,

respectively. (c) PCoA based on the Bray-Curtis distance, comparing 60% subsamples with the full datasets using CL. All of the subsamples were

rarefied to 30,000 sequences per sample to be included in this analysis.
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4,200 species are represented by these 30,000 sequences

(point B in Figure 1a). This scenario would essentially be

true in cases where only a few sequences were collected

per sample, a phenomenon that conflicts with the

expected behavior of rarefaction curves.

We have observed that the non-overlapping of rarefac-

tion curves, as illustrated in Figure 1a, is actually caused

by the instability of OTU clustering methods. In other

words, the cluster that a sequence is assigned to can be

affected by the number of sequences being clustered. An

illustration of this hypothesis is shown in Figure 1b. If we

observe only two sequences, S1 and S2, within the similar-

ity threshold (indicated by linking with a bar), they are

clustered into a single OTU (OTU1). We then add three

more sequences, S3, S4, and S5, which could be linked to

S1 or to S2, but several pairwise distances exceed the

threshold (these pairs are not linked by bars). By definition

of CL, pairwise distances for all sequences assigned to a

single OTU must fit within the distance threshold [8,9],

which could allow S1 and S2 to be separated into OTU2

and OTU3. OTU1 disappears at this sequencing depth,

and its sequences are reassigned to two different OTUs,

illustrating the problem of OTU instability. Theoretically,

adding more sequences tends to split existing OTUs when

using the CL algorithm. As a result, when being clustered

with a larger dataset versus a smaller dataset, the same

sequences will be grouped into more OTUs. This will re-

sult in a steepening of the rarefaction curve that is derived

from the larger sample and the conclusion that it has a

higher alpha-diversity. Rarefaction curves that arise from

CL are therefore more sensitive to sequencing depth.

Though this effect is weak, it still partially illustrates why,

in some cases, the collecting of a number of sequences

that is based on a smaller sample size would be expected

to produce a rarefaction curve that reaches a plateau, and

instead a continually increasing rarefaction curve is

produced. This phenomenon of an individual being

assigned to different OTUs simply because of increased or

decreased sampling depth is obviously problematic. An

analogous situation based on traditional (macro-scale)

ecology would be if counting different numbers of birds

within a fixed area led to the redefinition of which indi-

vidual birds group together as a species. However, the

above-described instability is not due to the occasional

identification of novel species, as might be the case in

traditional ecology. In contrast, these changes to OTU

membership occur systematically within a large propor-

tion of the sequences being reassigned between OTUs.

To further investigate the effect of unstable OTUs on

biological interpretation, we next explored beta-diversity

using ordination. Using Principal Coordinate Analysis

(PCoA), we compared the microbial communities against

the full dataset using subsamples comprising 60% of the

full dataset. We repeated this subsampling 30 times to

create replicates. We then used CL clustering to cluster all

of the subsamples, as well as the full dataset, and

combined the clustering results by representative OTU

sequence (defined as the most abundant sequence in each

OTU). The samples were then randomly rarefied to

include 30,000 sequences per sample, including the 30

replicate rarefactions that resulted from the clustering of

the full dataset. Following rarefaction, all samples

contained the same number of sequences so that the only

differences among them were the number of sequences

that were initially clustered. PCoA demonstrated that

these samples separated according to the number of se-

quences that were initially clustered, indicating that OTU

instability results in the same samples appearing to have

different compositions (Figure 1c). A similar result was ob-

served when comparing the 20%, 40%, and 80% subsam-

ples against the full dataset (Additional file 2: Figure S1).

Furthermore, 125 OTUs (after false discovery rate (FDR)

correction) and 26 OTUs (after Bonferroni correction)

were determined to be significantly different between these

two groups using the Mann-Whitney U test. We also

tested the effect that unstable OTUs have on calculating

taxonomic composition and found the effect to be very

limited (Additional file 3: Figure S2 and Additional file 4).

This is because these OTUs are still assigned to the same

taxa as a consequence of their phylogenetic proximity,

despite the fact that they are changing when more

sequences are added using CL (also discussed below in the

section detailing the tolerance of PCoA to using phylogen-

etic metrics with unstable OTUs).

Alternative hierarchical and greedy clustering methods

also produce unstable OTUs

All hierarchical methods that are used to determine

OTU membership are based on pairwise distances be-

tween the sequences in OTUs. CL clustering requires

the pairwise distance between all sequences in one OTU

to fit within the distance threshold. Single linkage (SL)

clustering requires the pairwise distance between any

pair of sequences in one OTU to fit within the distance

threshold. Average linkage (AL) clustering requires the

average pairwise distances between all sequences in one

OTU to fit within the distance threshold. As would be

expected when using SL clustering (Figure 2a), OTUs

tend to be merged when more sequences are added,

which is the opposite of the splitting problem that is

observed with CL. Accordingly, rarefaction curves

created using SL become less steep as subsample size

increases (Figure 2b). Beta-diversity is also affected by

unstable SL clustering of OTUs (Figure 2c). For ex-

ample, 167 OTUs (after FDR correction) and 36 OTUs

(after Bonferroni correction) were determined to be dif-

ferentially represented across both the 60% subsample

and the full dataset.

He et al. Microbiome  (2015) 3:20 Page 3 of 10



The instability produced by average linkage is more

complicated because both OTU splitting and OTU

merging can occur. These conflicting effects lead to

more subtle differences in OTU counts, and the resultant

rarefaction curves that are created with AL overlap at dif-

ferent depths (Figure 2d). Furthermore, the AL OTUs

themselves are unstable (Additional file 5: Figure S3) due

to the large number of OTU splitting and merging events

that occur. Additionally, even though these unstable

OTUs affect beta-diversity (Adonis, R = 0.16, P = 0.001),

the major separation in PCoA appears to be caused by

factors other than sample size; for example, the possible

inclusion of differences that result from the input order of

the sequences or the presence or absence of certain key

sequences within different subsamples (Figure 2e). This

observation may result from the sensitivity of AL to the

order of input sequences, which would result in different

clustering patterns. When using AL, 804 OTUs (after FDR

correction) and 5 OTUs (after Bonferroni correction) were

differentially represented across the two sampling depths.

Greedy clustering, such as that which is implemented

in USEARCH, is another commonly used de novo clus-

tering method that is more computationally efficient

than CL, SL, and AL. When using greedy clustering, a se-

quence must be within the distance threshold of a single

OTU centroid to be clustered in that OTU. Furthermore,

sequences are processed in a defined order, and each

query sequence will either be assigned to an existing OTU

or as the centroid of a new OTU. If one query sequence is

within the distance threshold of multiple existing OTU

centroids, it can be assigned to either the closest centroid

(here referred to as distance-based greedy clustering

(DGC)) or the most abundant centroid (here referred to

as abundance-based greedy clustering (AGC)) (Additional

file 1). Alternative approaches exist for breaking such ties;

however, we chose to limit our focus to those that are the

most commonly employed. In the present study, we evalu-

ate USEARCH as a method for greedy clustering (we did

not evaluate UPARSE because its clustering algorithm is

the same as that used in USEARCH).

OTU instability is also a problem in greedy clustering

methods and arises from several sources. First, the

choosing of centroids is highly dependent on the order

in which sequences are processed. Therefore, when the

size of a sample is changed, the order of sequences may

also be changed. Second, when using DGC, even if the

choice of centroids remains stable when the size of the

sample is increased, the added sequences can become

new centroids and attract members from existing OTUs

(this generally will not happen in AGC). For example,

imagine that S10, S11, and S12 form OTU7 with S10 as

the centroid (Figure 3a,b). If in a subsequent sequencing

run another sequence, S13, is added, the processing

order of the larger sample may become S10, S13, S11,

and S12. In this case, S10 will still be a centroid, but S13

will also become a centroid. S13 then recruits S11, as

the distance between the two is smaller than the

distance between S11 and S10. In DGC, S11 will end up

clustering with S13 rather than S10, and the original

OTU7 will be split into OTU8 and OTU9 (Figure 3a). In

Figure 2 Principles underlying unstable single linkage (SL) clustering, rarefaction curves, and PCoA based on the Bray-Curtis distance. (a) Principles

underlying unstable SL clustering at two sampling depths. White circles indicate individual sequences that were included in both the small and the

large subsamples, and dark circles indicate sequences that are added only in the large subsample. Lines indicate pairs of sequences with distances

equal to or smaller than the threshold, which could therefore be linked into a single OTU. Large circles in red or blue indicate OTUs in the small and

the large subsamples, respectively. (b, d) Rarefaction curves generated with SL (b) and average linkage (AL) (d) clustering at five different depths.

(c, e) PCoA based on the Bray-Curtis distance, comparing 60% subsamples with the full datasets using SL (c) and AL (e). All of the subsamples were

rarefied to 30,000 sequences per sample to be included in this analysis.
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AGC, S11 will still cluster with S10 and the original

OTU7 will retain its original structure (Figure 3b).

We used greedy clustering on alpha rarefaction curves

and beta-diversity PCoA to analyze the effects generated

by unstable OTUs. As stated above, DGC and AGC both

suffer from centroid changeability (this effect is not

biased towards OTU splitting or merging), and DGC

additionally suffers from the splitting of existing OTUs.

As a result, DGC and CL clustering produced similar

curves, which became steeper as subsample size increased

(Figure 3c). In contrast, AGC produced overlapped curves

that were unaffected by depth (Figure 3d). However, as

with AL clustering, this does not mean that the OTUs

were stable, but only that similar numbers of (possibly dif-

ferent) OTUs were obtained at the different subsampling

depths. The unstable OTUs produced in DGC and AGC

effect estimations of beta-diversity (Figure 3e,f). In the

case of AGC, 392 OTUs (after FDR correction) and 14

OTUs (after Bonferroni correction) were determined to

be differentially represented across the two depths, and in

the case of DGC, these numbers were 370 and 15,

respectively.

To quantify the differences between these unstable

methods, we compared the proportion of unstable se-

quences and unstable OTUs (Figure 4a,b; Additional file 6:

Table S1). CL produced the highest proportion of unstable

sequences (approximately 22%), while AL (13%) and AGC

(12%) performed slightly better than SL (15%) and DGC

(14%). These results were not always consistent when com-

paring the use of alternative datasets (Additional file 7:

Figure S6); however, AGC generally demonstrated the best

performance versus the other de novo methods. For

unstable OTUs, CL and DGC produced the highest

proportion of unstable OTUs: approximately 60% of OTUs

with centroids with frequencies greater than or equal to 10

were observed to be unstable in each of the methods

(>90% were found to be unstable when analyzing certain

datasets, as shown in Additional file 7: Figure S6). AL and

SL are more stable than either CL or DGC but still

resulted in greater than 30% OTU instability for centroids

being observed at least 10 times. AGC was found to be the

most stable de novo method, especially for OTUs with

highly abundant centroids.

One de novo clustering method that does produce

stable OTUs is dereplication or the clustering of

sequences that are identical and of equal length

(Additional file 8: Figure S4a). As with closed-reference

OTU clustering, all OTUs remain absolutely stable

across different sequencing depths because clustering is

not affected by the composition of the sequence collec-

tion being clustered. As a result, rarefaction curves

produced using dereplication are overlapping across

different depths (Additional file 8: Figure S4b), and beta-

diversity is not affected by the size of the subsamples

(Additional file 8: Figure S4c). Moreover, not a single

OTU is determined to be significantly different between

the two groups. It is important to note that dereplication

is highly vulnerable to identifying spurious OTUs that

result from sequencing error. Due to its stability in

binning OTUs, it also produces overlapping rarefaction

Figure 3 Principles underlying unstable distance-based greedy clustering (DGC) and abundance-based greedy clustering (AGC), rarefaction curves,

and PCoA based on the Bray-Curtis distance. (a, b) Principles underlying unstable DGC (a) and AGC (b) at two sampling depths. White circles

indicate individual sequences that were included in both the small and the large subsamples, and dark circles indicate sequences that were

added only in the large subsample. Yellow dots indicate OTU centroids. Lines indicate pairs of sequences with distances equal to or smaller than

the threshold, which could therefore be linked into a single OTU. Large circles in red or blue indicate OTUs in the small and the large subsamples,

respectively. (c, d) Rarefaction curves generated with DGC (c) and AGC (d) at five different depths. (e, f) PCoA based on the Bray-Curtis distance,

comparing 60% subsamples with the full datasets using AGC (e) and DGC (f). All of the subsamples were rarefied to 30,000 sequences per sample

to be included in this analysis.
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curves across different depths, indicating that unstable

OTUs (rather than sequencing errors) are the main cause

of non-overlapping rarefaction curves. Furthermore, the

stability of the dereplication method suggests that a higher

similarity threshold for clustering may reduce the occur-

rence of unstable OTUs, as de novo clustering methods

become more similar to dereplication as the similarity

threshold increases. In practice, dereplication clustering

yields high numbers of OTUs, which is computationally

expensive to employ downstream. Thus, modern dataset

sizes prevent us from working with sequences that have

only been dereplicated. It is possible that future methods

may use approaches based on dereplication to manage the

problem of OTU instability. Another extreme example

would be the clustering of all sequences into one OTU

while that OTU remains absolutely stable. Nevertheless,

unlike dereplication, OTUs can be utilized in further

analyses, such as alpha-diversity, beta-diversity, and taxo-

nomic composition. Furthermore, clustering all sequences

into one OTU can hardly be called ‘clustering’ and is

completely useless for downstream analysis.

Reference-based methods minimize the problem of

unstable OTUs

One feature that all unstable clustering methods have in

common is that cluster definitions are dependent upon

the input sequences. Closed-reference OTU clustering

avoids this dependence with one major practical limita-

tion: during closed-reference OTU clustering, reads are

clustered against a reference dataset (for example, the

Greengenes database [9]) of pre-calculated centroids and

no new centroids are created during clustering, which

results in perfectly stable OTUs (Figure 5a). As a result,

alpha- and beta-diversity estimations based on closed-

reference clustering are not affected by the size of samples

(Figure 5b,c), and no OTUs are determined to be signifi-

cantly different between the two depths. In addition to

producing stable OTUs, closed-reference clustering pro-

vides several other convenient features. First, the names of

the reference sequences can be used as universal OTU

identifiers rather than using arbitrarily assigned names,

thus facilitating the direct comparison of OTUs across

studies. Second, sequence reads from different marker

gene regions can be clustered together if the reference

dataset consists of full-length marker genes. Finally,

closed-reference clustering can parallelize OTU clustering

for large datasets. The major limitation of closed-reference

OTU clustering is that reads that are outside the similarity

threshold to any reference centroids are discarded, such

that only the OTUs that are already represented in the

database can be ‘observed.’ In processing the Canada soil

dataset, approximately 14% of the sequences could not be

matched to the reference sequences and were therefore

discarded after clustering. This limitation of closed-

reference OTU clustering may become trivial as projected

improvements are made to reference datasets, leading the

corresponding references needed for specific research pro-

jects (for example, the gut microbiome) to become more

highly developed.

To overcome the limitations of closed-reference OTU

clustering, open-reference OTU clustering can be used.

Open-reference clustering begins in the same way as

closed-reference clustering but continues to cluster the

sequences that do not match the reference collection in

a de novo manner. Although existing de novo clustering

methods produce unstable OTUs, open-reference clus-

tering can be much more stable than such methods

because many sequences are initially clustered by the

closed-reference approach. We evaluated OTU stability

in open-reference clustering using AGC for the de novo

clustering step (Figure 4a,b,c) and found it to be a much

more effective method than using de novo methods alone.

The majority of the unstable OTUs were low abundance

sequences with no reference match (a category of

Figure 4 Proportion of unstable sequences, proportion of unstable OTUs, and MCC value of each method. (a) Proportion of unstable sequences

as created by method. Unstable sequences are defined as sequences that are clustered to one centroid in the 60% subsample but clustered to a

different centroid in the 100% (full) dataset. (b) Proportion of unstable OTUs as created by method and by frequency of cluster centroids (the

values for closed-reference and dereplication are zero and are thus not included in this figure). If an OTU was identical in the 60% and 100%

datasets (not including sequences that are not present in the 60% subsample), it is defined as stable. (c) MCC value of each method. Higher

values correspond to greater stability.
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sequences that is commonly considered to be error-prone).

Open-reference OTU clustering produces overlapping rar-

efaction curves (Additional file 9: Figure S5a), and even

though the instability of open-reference OTU clustering

still affects PCoA analysis (Additional file 9: Figure S5b),

the PC and R value (by ADONIS, R = 0.03) is lower than

with any other de novo method alone, as is the number of

OTUs that are differentially represented across the two

groups (104 OTUs after FDR correction and 2 OTUs after

Bonferroni correction). We compared open-reference clus-

tering methods with other de novo methods on additional

datasets, focusing on the proportion of unstable sequences

and unstable OTUs and found that these results are gener-

ally consistent across environment types and sequencing

technologies (Additional file 7: Figure S6).

In addition to quantifying the instability of OTUs, we

used the MCC index to investigate how the clustering of

sequence pairs changed based on clustering of the full

dataset versus the 60% subset (Figure 4b, Additional file 6:

Table S2). It is clear that the two reference-based methods

and dereplication clustering have the highest stability by

this metric and that AGC is the most stable of the de novo

clustering methods (Kruskal-Wallis test, P < 0.05). AL had

the lowest MCC value, indicating that the clustering of

many sequences pairs changed when using this method.

Alternatively, SL produced a higher MCC value than most

of the de novo methods, including AL and CL. Neverthe-

less, part of the reason for the high MCC value of SL is that

its FP value equals 0 (sequences that are separated in a

smaller subsample will be merged into a single OTU in a

larger subsample, but the reverse situation does not happen

at all). Thus, due to its severe problems with OTU merging,

SL should not be considered a much more stable method.

Phylogenetic beta-diversity metrics minimize the effect of

OTU instability

Unlike non-phylogenetic metrics, where all OTUs are con-

sidered equally dissimilar from each other, phylogenetic

metrics such as UniFrac take into account the phylogenetic

relationship between OTUs when calculating distances

between samples. Unstable OTU clustering methods will

move sequences between OTUs that would usually be

closely related evolutionarily so that the calculated distance

between samples should generally remain more similar

than it would when using non-phylogenetic diversity

metrics. We re-analyzed the effect of unstable OTUs on

beta-diversity using CL, SL, AL, AGC, and DGC based on

UniFrac distance (Additional file 10: Figure S7). The results

show that unstable OTUs of CL, AGC, and DGC minim-

ally affect beta-diversity using UniFrac distance, confirming

the hypothesis that when sequences are changing between

closely related OTUs with these unstable methods,

phylogenetic metrics are more tolerant to that instabil-

ity. Nevertheless, in SL clustering, distantly related

OTUs can ultimately be joined into a single OTU, so

that beta-diversity can be affected even when using

UniFrac distance. In AL, the major separation is still

caused by different clustering patterns, as with the non-

phylogenetic metrics.

Conclusions

Assigning an organism to a different species based on

the number of individuals included in a given census is

obviously problematic in traditional macro-ecology. Un-

fortunately, due to an artifact of many OTU clustering

methods, the equivalent situation is common in micro-

bial ecology studies that use taxonomic-independent

methods. This study demonstrated for the first time that

the problem of depth-dependent rarefaction curves that

is inherent in most of the de novo clustering algorithms

arises from unstable OTUs and not from sequencing

errors. Furthermore, unstable OTUs may also contribute

to depth-dependent beta-diversity estimates and OTU

membership. Our results demonstrate that the closed-

reference OTU clustering method provides stable OTUs,

while all other de novo clustering methods (except

Figure 5 Principles underlying stable closed-reference clustering, rarefaction curves, and PCoA based on the Bray-Curtis distance. (a) Principles

underlying stable closed-reference clustering at two sampling depths. White circles indicate individual sequences that were included in both the

small and the large subsamples, and dark circles indicate sequences that were added only in the large subsample. Diamonds indicate reference

sequences. Lines indicate pairs of sequences with distances equal to or smaller than the threshold, which could therefore be linked into a single

OTU. Large circles in red or blue indicate OTUs in the small and the large subsamples, respectively. (b) Rarefaction curves generated with

closed-reference clustering at five different depths. (c) PCoA based on the Bray-Curtis distance, comparing 60% subsamples with the full

datasets using closed reference clustering. All of the subsamples were rarefied to 30,000 sequences per sample to be included in this analysis.
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dereplication) produce unstable OTUs. Unfortunately, the

closed-reference OTU method is limited by the availability

of databases of known marker gene sequences, which ex-

cludes novel OTUs from analysis. To balance this caveat

of closed-reference OTU clustering against the problem of

OTU instability, we recommend using open-reference

OTU clustering employing AGC (for example, as imple-

mented using uclust [4] in QIIME [7]), a relatively stable

de novo method, to cluster sequences that did not map to

the reference database. This allows for clustering of all

sequences and introduces minimal OTU instability

compared to de novo OTU clustering methods (which

also cluster all sequences). As new OTU clustering al-

gorithms continue to be rapidly developed, we suggest

that OTU stability should be an important consider-

ation in future endeavors. However, we do not argue

that OTU stability is the most important quality of

clustering methods. Other attributes of clustering

methods, such as diminishing sequencing errors,

rational OTU structure, niche consistency, and time

efficiency, should also be considered when choosing a

method for a specific type of analysis or evaluating a

novel approach to clustering. Furthermore, as the 16S

rRNA gene database is expanding, closed-reference

OTU clustering and new algorithms that bypass OTU

clustering altogether during microbiome analysis may

render problems concerning OTU instability obsolete.

Methods

The ‘Canada soil’ dataset [GenBank:EF308591-EF361836]

was originally used to describe that rarefaction curves

generated from the same dataset but at different depths

often do not overlap [6] and is used here to demonstrate

unstable OTUs. This dataset was one of the earliest

reported 454 datasets, and quality information was not

available for the sequences contained therein. Although

we demonstrated in the results section (via the dereplica-

tion method) that OTU instability is introduced by

clustering algorithms and not by sequencing errors, we

nevertheless removed sequences that contained ambigu-

ous bases (N), potential chimeras identified by UCHIME

using the de novo mode (using –minchunk 20 –xn 7 –

noskipgaps 2) [10], and sequences that were of a length

that ranged outside of two standard deviations from the

mean. Such sequences were removed for quality control

purposes (in the absence of quality scores). The original

dataset contained a total of 53,246 sequences, and 13,469

unique sequences remained after dereplication. Following

our quality control measures, a total of 50,542 sequences

with 13,293 unique tags remained, ranging in length from

86 to 120 bp.

The hierarchical clustering algorithms, CL, AL, and SL,

were run using MOTHUR 1.27 [11]. The same pairwise

Needleman-Wunsch distance matrix (with default

parameters) was calculated for each pair of unique se-

quences and used in the three clustering algorithms at a

97% identity threshold. We used the QIIME 1.7.0 [12]

USEARCH 6.1 wrapper [4] for the AGC and DGC greedy

clustering algorithms. We used QIIME 1.7.0 [12] with the

Greengenes 13_8 database for closed- and open-reference

clustering. These clustering methods are further defined

in Additional file 1, along with commands used the

execute them.

To investigate the effect of sequencing depths on

rarefaction curves, we subsampled our input data (prior

to OTU clustering) at 5 depths (20%, 40%, 60%, 80%,

and 100% of the total data), with 30 replicates at each

depth. We then clustered each of these datasets with

each of the clustering methods and created rarefaction

curves. The presented data included the average rarefac-

tion curve across all replicates for each clustering

method at each depth.

To demonstrate the effect of sequencing depth on

beta-diversity, we subsampled our input data to include

60% of sequences prior to OTU clustering and compared

it with the full dataset (the first round of subsampling was

to create a 60% subsample to compare with the full data-

set). Because de novo clustering methods do not provide

universal OTU identifiers, after clustering each of these

datasets, we combined the clustering results according to a

representative sequence of each OTU (which we chose to

be the most abundant sequence in each OTU). In this way,

OTUs with the same representative sequences were

merged into a single OTU. We then created a BIOM file

[13] from the merged OTUs for further analyses. We com-

puted beta-diversity using QIIME 1.7.0 with all samples

rarefied to 30,000 sequences per sample (60% of the total

dataset, the second round of subsampling; to diminish the

effect of depth on PCoA, we only tested the effect of un-

stable OTUs on PCoA). To accomplish this, we employed

the Bray-Curtis distance (a non-phylogenetic metric) and

weighted UniFrac (a phylogenetic metric). Adonis was

used to test whether the samples from the full dataset and

the 60% subset clustered independently of each other and

to quantify the size of that effect (this was performed

by running compare_categories.py –method adonis -i

dm.txt -m Map.txt -c Treatment -o adonis_out -n 999).

We used a proportion of unstable sequences, a pro-

portion of unstable OTUs, and Matthews’s correlation

coefficient (MCC) to quantify OTU stability. Unstable

sequences were defined to include unique sequences

that were represented by different OTU centroids at

the different sequencing depths. Unstable OTUs were

defined to include OTUs whose membership changed

at different sequencing depths (in other words, if an

OTU is composed of the same sequences at different

sequencing depths, excluding sequences that were not

included in the smaller subsample, then that OTU is

He et al. Microbiome  (2015) 3:20 Page 8 of 10



defined as being stable). To compute the percent of un-

stable sequences and unstable OTUs, we compared the

clustering result of the full dataset with that of the 60%

subsample using different clustering methods to analyze

30 replicates for each method. If a unique sequence was

represented by the same representative sequence in both

the 60% and the full dataset (excluding sequences not

present in the 60% dataset), we considered the sequence

to be stable. Otherwise, the sequence was considered to

be unstable. If an OTU in the 60% subsample contained

all of the same sequences as the full dataset (not including

any sequences not present in the 60% subsample), we con-

sidered the OTU to be stable. Otherwise, we considered

the OTU to be unstable. We additionally grouped all of

the OTUs according to the frequency of their centroid at

counts of 1, 2, 3 to 5, 6 to 10 and higher than 10, for the

purpose of evaluating the stability of each of these groups.

To compute MCC, we recorded how each pair of

sequences was clustered in the 60% subsample and the

full dataset. The MCC value is calculated as follows:

MCC ¼
TP� TN−FP� FNð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPþ FPð Þ � TPþ FNð Þ � TNþ FPð Þ � TNþ FNð Þ
p

If two sequences were clustered together in the full

dataset and also in the 60% subsample, we recorded it as a

true positive (TP). If two sequences were clustered separ-

ately in the full dataset and also in the 60% subsample, we

recorded it as a true negative (TN). If two sequences were

clustered together in the full dataset but not in the 60%

subsample, we recorded it as a false negative (FN). Finally,

if two sequences were clustered separately in the full data-

set but together in the 60% subsample, we recorded it as a

false positive (FP). Higher MCC values indicate enhanced

stability of the clustering method.

Additional files

Additional file 1: Box 1. Definitions of OTU clustering algorithms and

executing commands, as used in this paper.

Additional file 2: Figure S1. PCoA based on the Bray-Curtis distance,

comparing 20%, 40%, 60%, and 80% subsamples with the full datasets

using CL. All of the subsamples were rarefied to 10,000 sequences per

sample (20% of the full dataset) to be included in this analysis.

Additional file 3: Figure S2. Phylum level composition, comparing

60% and full datasets using CL. All of the subsamples were rarefied to

30,000 sequences per sample (60% of the full dataset) to be included in

this analysis.

Additional file 4: Taxonomic composition from phylum to genus

level, comparing 60% and full datasets using CL. All of the subsamples

were rarefied to 30,000 sequences per sample (60% of the full dataset) to

be included in this analysis.

Additional file 5: Figure S3. Cytoscape network diagram showing the

changes in OTUs at 60% and 100% subsamples of datasets using the AL

method. Red dots represent OTUs in the 60% dataset, and blue dots

represent OTUs in the full dataset. The size of the OTU is in proportion to

the frequency of the centroid or representative sequence in each OTU.

OTUs that changed between datasets but that share the same sequences

are linked, and the line width is in proportion to the number of shared

sequences between the two OTUs. OTUs that are exactly the same in the

two datasets are not shown in the picture, such that each dot in this

figure represents an unstable OTU.

Additional file 6: Tables S1 and S2 Table 1. Multiple comparisons of

unstable sequences between different clustering methods after the

Kruskal-Wallis test. Table 2. Multiple comparisons of MCC values between

different clustering methods after the Kruskal-Wallis test.

Additional file 7: Figure S6. Rarefaction curve analyses and percentage

of changed OTUs with seven additional datasets (a1-f1) AGC; (a2-f2)

closed-reference; (a3-f3) open-reference; (a4-f4) proportion of unstable

sequences by method; (a5-f5) percentage of unstable OTUs for different

centroid frequencies. (a1-a5) Illumina sequencing of V6 regions from

Azorean shallow marine vents (SRX011425); (b1-b5) 454 sequencing of V3

V5 regions of HMP project data male stool (SRS011410); (c1-c5) 454

sequencing of V5 V6 regions from Little Sippewissett Marsh (SRX210127);

(d1-d5) 454 sequencing of V3 region of a stool sample (SRP005150);

(e1-e5) 454 sequencing of V3 region of a stool sample (SRS052471);

(f1-f5) Illumina sequencing of V6 region (overlapped sequence) of a

mangrove sediment sample (MG-RAST 4490068.3).

Additional file 8: Figure S4. Principles underlying stable dereplication

clustering, rarefaction curves, and PCoA based on the Bray-Curtis distance.

(a) Principles underlying stable dereplication clustering at two sampling

depths. White circles indicate individual sequences that were included in

both the small and the large subsamples, and dark circles indicate

sequences that were added only in the large subsample. Large circles in

red or blue indicate OTUs in the small and the large subsamples, respectively.

(b) Rarefaction curves generated with dereplication clustering at five different

depths. (c) PCoA based on the Bray-Curtis distance, comparing 60%

subsamples with the full datasets using de-replication clustering. All of the

subsamples were rarefied to 30,000 sequences per sample to be included in

this analysis.

Additional file 9: Figure S5. Rarefaction curves and PCoA based on

the Bray-Curtis distance. (a) Rarefaction curves generated with open-

reference OTU clustering at five different depths. (b) PCoA based on the

Bray-Curtis distance, comparing 60% subsamples with the full datasets

using open-reference OTU clustering. All of the subsamples were rarefied

to 30,000 sequences per sample to be included in this analysis.

Additional file 10: Figure S7. PCoA with weighted UniFrac, comparing

60% subsamples with the full datasets using de novo clustering methods.

All of the subsamples were rarefied to 30,000 sequences per sample to

be included in this analysis.
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