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ABSTRACT: We study the stability of steady nonlinear waves on the surface 
of an infinitely deep fluid [1, 2]. In section 1, the equations of hydro- 
dynamics for an ideal fluid with a free surface are transformed to 
canonical variables: the shape of the surface ~(r, t) and the hydrody- 
namic potential ~(r, t) at the surface are expressed in terms of these 
variables. By introducing canonical variables, we can consider the 
problem of the stability of surface waves as part of the more general 
problem of nonlinear waves in media with dispersion [g, 4]. The re- 
sults of the rest of the paper are also easily applicable to the general 
case. 

In section 2, using a method similar to van der Pohi's method, we 

obtain simplified equations describing nonlinear waves in the small 
amplitude approximation. These equations are particularly simple if 
we assume that the wave packet is narrow. The equations have an 
exact solution which approximates a periodic wave of finiteamplitude. 

In section 3 we investigate the instability of periodic waves of finite 
amplitude. Instabilities of two types are found. The first type of in- 
stability is destructiveinstability, similar to the destructive instability 
of waves in a plasma [g, 6]. In this type of instability, a pair of waves 
is simultaneously excited, the sum of the frequencies of which is a 
multiple of the frequency of the original wave. The most rapid de- 
structive instability occurs for capillary waves and the slowest for 
gravitational waves. The second type of instability is the negative- 
pressure type, which arises because of the dependence of the nonlinear 
wave velocity on the amplitude; this results in an unbounded increase 
in the percentage modulation of the wave. This type of instability 
occurs for nonlinear waves through any media in which the sign of 
the second derivative in the dispersion law with respect to the wave 
number (d2~/dk 2) is different from the sign of the frequency shift due 

to the nonlinearity. 

As announced by A. N. Litvak and V. I. Talanov [7], this type of 
instability was independently observed for nonlinear electromagnetic 

waves. 

1. Canonical variables. We consider the potential flow of an ideal 
fluid of infinite depth in a homogeneous gravity field. We choose the 
coordinates so that the undisturbed surface of the fluid coincides with 
the xy-plane. The z-axis is directed away from the surface. In what 
follows, all vectors are two-dimensional vectors in the xy-plane. 

Let ~(r, t) be the shape of the surface of the fluid and let ~(r, z, t) 
be the hydrodynamic potential. The fluid flow is described by Laplace's 

equation, 
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with two conditions at the surface, 
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and a condition at infinity, 

{b--->-0 aS z - + - -  ex-. 

Here g is the acceleration due to gravity and a is the coefficient 

of surface tension. 
Equations (1.1)-(1.8) conserve the total energy of the fluid, 
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The first term in this expression is the kinetic energy and the 
second and third terms are the potential energy in the field of gravity 
and the potential energy due to surface forces. We introduce thequan- 
tity 9(r, t) = ~(z, r, t) i z=~" Specifying the quantities ~ and g, fuIIy 
defines the fluid finw since the boundary-value problem for Laplace's 
equation has a unique solution. Using the equation 

we obtain 
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Equations (1.2) and (1.5). together with Laplace's equation, are 
equivalent to Eqs. (1.1)-(1.3). We can prove that Eqs. (1.1) and (1.8) 
can be put in the form 

07 8E 0iF 5E 
ot--5~ ' ot ----T~-" (1.6) 

Here E is the energy; the symbols 6E/6~ and 5E/69 denote the 
variational derivative. 

Consider first the variation of g~. Obviously., the variation of the 
potential energy is zero. We transform the kinetic energy by means 
of Green's formula: 
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Here ds is a differential surface element. The normal derivative 
0~/0n is linked with ~ by the Green's function for the boundary-value 

problem of Laplace's equation; 

00  (s) I On - -  a(s ,  ,h)~F(,h)dsl , (1,7) 

Here s and s 1 are points on the surface. The function G is symmetric; 

i.e., G(s, s D ; G(si, s). 
The variation of the kinetic energy has two terms: 

0@(s) , . 0 8 0 ( s ) ] d s .  8E* = t f [SW (s) - - T ~  -l- ~ (s) -g~ . 
s 

From (1.7) and the symmetry of the Green's function, we see that 

both terms are the same: 

~ > o+ . O7- 1/1 + Vq ~" dr �9 
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From this we obtain (1.2) instantaneously. 
Consider now variation in ~ (this simple proof is due to R. M. 

Garipov). 
Variation of the potential energy at once gives the terms on the 

left-hand side of (2.5). Variation of the kinetic energy gives 
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Here 6~ is the var ia t ion in the potent ia l  due to a change  in the 
boundary.  Since ~ satisfies Laplace 's  equat ion,  we can apply the Green 's  

theorem to the  second integral :  

l i l  ~ 17 8(I3 ds 
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Final ly we have 

2 [ az } 47 (V~ 1 Vq)) Oz._z ]z=n 8rl (r) d r .  

Hence  we obtain (1.5). 
Thus,  Eqs. (1.2) and (1.5) are Hami l ton ' s  equations and $ and 

are canonica l  variables,  ~ being a genera l ized  coordinate  and ~] a 
genera l i zed  m o m e n t u m .  The  energy E of the fluid is the Hami l ton ian .  

To close Eqs. (1.1) and (1.5) we have  to solve the boundary-va lue  
problem for Laplace 's  equat ion.  We find the  solution of this problem 
in the form of a series in powers of r/. If we apply a Fourier t ransforma-  
tion to the  variables x and y, 

t ~ e_i(kr)dr, t I T (r) e-i(kr)dr, ~1 (k) = ~ d rt (r) ~g (k) = - ~  

we obtain  the series in a more  convenient  form. 
Omit t ing  the  details ,  we i m m e d i a t e l y  g ive  the result of the ex- 

pansion (up to second-order  terms):  
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Here 6 denotes  the  del ta  funct ion.  
If we l inear ize  (1.2) and (1.5) and consider onIy the  first t e rm in 

(1.8), we obta in  the  theory of smal l  oscil lat ions for the surface of a 
fluid, which describes the propagat ion of waves with dispersion law 

(o ( k ) =  K g  Ik I + a l k p .  

We now comple t e  the  t ransformat ion to the  complex  var iable  a(k) 
via the equations 

1 I k I '/' 
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i ~ ~o 'I~ (k) 
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Then  

1 Ik]  5' 
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Transformat ion  (1.9) can be considered a canonica l  t ransformat ion 
(with complex  coeff ic ients)  to the  variables ia*(k) and a(k); Hami l ton ' s  
equat ion  (1.8) becomes  the single equat ion  

Oa (k) 5E 
Ot __--  i Sa, (k) . 

Using (1.4), (1.8), and (1.10), we can express the energy in the  
form of a series in powers of a(k) and a*(k): 
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There are other fourth-order terms in a, proportional to products of 
the  form a*aaa and aaaa and terms con juga te  to them.  These are ig- 
nored, since,  as will be shown in sect ion 3, their conu ibu t ion  is smal l .  

We note that  the functions V and W obey the follovdng equations: 

V(k, kl, k s ) =  V(k, k~, k 0 = V (ks, kl, k), 

V (-- k, - - k l ,  - -  k2) = V(k, kl, k_o), 

W(k ,  kl, k~, ks)~---W (kl, k, k2, k 3 ) =  
(z.14) 

= W (k, kl, ks, k 2 ) =  W (k2, ks, k, k O, 

W ( - -  k, - -  kl ,  - -  k2, ks) = W (k, kl, k2, ks) .  

The equat ion for a(k) has the form 
Oa (k) 

- -  Ot @ in) (k) a (k) = 

= - - i ~ { V ( - - k ,  kl, k : ) a ( k l ) h ( k ~ ) 6 ( k - - k ~ - - k ~ ) +  
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+ 2V (-- k~, k, k2) a* (k~.) a (k~) 6 (k - -  k @ k~) + 

+ V (k, kl, k.~) a* (k~) a* (k~) • 

X 6 (k @ k l "  k~)} dkldk2 --  

- -  i t W ( k ,  kl,  ke, ka) 5 ( k @ k l - - k 2 - - k a ) X  

X a* (k~) a (k~) a (ka) dk~ dk~ dka �9 (3..25) 

We seal from (L1.5) that  the var iables  a(k) are  the normal  var iables  

in the problem of smal l  osci l la t ions .  

2. S impl i f i ed  equat ions.  Equation (1..15) is an approximat ion  and 

is val id  for smal l  nonl inear i t i es ,  roughly speaking,  for a / X  << 1, where 

a is the charac te r i s t i c  a m p l i t u d e  of the wave and X is a charac te r i s t i c  
wavelength .  In this approx imat ion ,  we can m a k e  a considerable  s im-  

p l i f i ca t i on  in Eq. (1..12). To do this we write a(k) as 

a (k) - :  [A (k, t) 4- t (k, t)] exp [--  io (k) t] .  (2.1) 

We assume that  A(k, t) changes slowly in comparison with f, 

where a e << A. We subst i tute  a(k), in the form of (2.1), into the equa-  

t ion for f and the one for A. In the equat ion  for a c we re ta in  only terms 

which are quadra t ic  in k.  Assuming A constant as a c varies ,  we in te-  

gra te  this equat ion  wi th  respect  to t ime .  This yields  

,)~ l'[V ( - -  k, kx, k~) exp i t  [o (k) - -  re (kl) - -  (0 (kQ] / x 
a (k) -- ~o (kz) -- ~o (k~) 

• 6 ( k - - k  I - k 2 )  A(k~)A(ke )@ 

+ 2 V ( - - k : t ,  k, k2) e x p i t [ ~  4 - ~ 1 7 6  X 
co (k) 4- m (kl) - -  t0 (k2) -- 

X 6 ( k  [ - k l - - k ~ ) A * ( k ~ ) A ( k ~ ) +  

+ V (k, k~, k )  _exp it  [o (k) 4- o (kl) 4- o (k~)l • 
co (k) + ~ (M) 4- ~o (k )  

X 6 (k 4- k l  4- k~) A* (kl) A* (kQ} dkldk~.  (2 02) 

In the equat ion  for k we r e t a in  only those terms proport ional  to 

A f which conta in  the most slowly varying exponents.  Obviously,  a l l  

the slowly varying exponents  are contained in those terms proport ional  

to A*AA. Gathering a l l  these terms together ,  we obta in  

OA i t )  f Ot - - - - i  7 ' (k ,  k~, ke, ka) (3 (k 4- k~ - -  k~- -  k )  • 

X exp it  [o (k) 4- to (kl) -- (o (k2) - -  

-- o (ka)] A *  (k~) A (k2) A (ka) dki dk~ dka. (2.3) 

Here 

T (k, kl,  k2, ka)=  

+ k z )  V ( - - k - - k ,  k, kl) V ( - - k ~ - - k a ,  k2, k~) 
__ 4 a (k2 ~o 2 (k~ 4 -  ka) - -  [ o  (ke) + o (ka)l  ~" 

o (ka --  ka) V (-- k, k~, k - -  k~) V (--  k~, kr, ka - -  kr) 
- -  4 ~ (ka - -  kx) - -  [ o  (ks)  - -  o (k , ) l"  " 

_ _ 4 o  ( k l - - k ~ ) V ( - - k ,  ka, k - -  ka) V(--.k~, k~, k ~ - - k l )  
(0 ~ (k~ - -  k l )  - -  [m (k:t) - -  o (k~)] ~ -}- 

+ W (k, kl ,  ke, ks) . (2.4) 

Obviously, the terms omi t t ed  from the Hami l ton ian  (1.11.) cannot  

contr ibute  to (2.4). 
In using (2.3), we have  to assume that  f << A. For this condi t ion  

to be sat isf ied,  i t  is necessary tha t  the  denominators  in (2.2) and(2.4)  

do not vanish.  There is a zero denominator  i f  

o (k) = co (kx) -1- o (kz), k = k 1 + k2 (2.5) 

have  a solution. 
If this  system has no solutions, Eq. (2.4) can be used for suff ic ient ly  

sma l l  a /X,  but i f  i t  has a solut ion we have  to assume addi t iona l  res t r ic-  

t ions.  

1 9 2  

If w(k) is a monotonic  function, we note  that  a sufficient  condit ion 

for the ex is tence  of a solution to (2.5) is 

(k) > m (kz) + E0 (k -- kl) ,  (2.6) 

where k and k I are in the d i rec t ion  of the same straight  l ine.  Indeed, 

if (2.6) holds, by adding to k t components  perpendicular  to k, we 

can increase the r ight -hand side o f ( 2 . 6 ) a n d  convert  (2.6) into 
an equat ion.  On the other hand, if the inequal i ty  _converse to (2.6) 

holds, this is a suff icient  condi t ion for the absence of solutions to (2.5). 

For g rav i t a t iona l  waves, with the dispersion law 

c o ( k ) = V g l k l  , 

an inequal i ty  converse to (2.6) holds. Accordingly,  (2.5) cannot have  

any solutions and for smal l  a/,X (2.3) appl ies .  For capi l la ry  waves 
[k >> (g/a)1/2] ,  with dispersion law ~o(k) = a ~ ,  (2.6) holds, so that  

(2.3), in general ,  cannot  be used; if i t  is assumed that  the w a v e p a c k e t  

is suff icient ly narrow, i .e . ,  if  a(k) is nonzero for t k - ko i << k0, Eq. 

(2.5) cannot  be sat isf ied for any co(k), t tence,  assuming the w a v e p a c k e t  

is narrow, Eq. (2.6) is app l i cab le  for any dispersion laws, in par t icular ,  

for capi l la ry  waves. 
Assuming the wave packe t  is narrow, we can m a k e  a further s im-  

p l i f i ca t ion  in Eq. (2.3). We Introduce the var iab le  z = k -- k0 and 

expand co(k) in powers of ~ to terms of second order: 

(o (k)  = ~0 (k0) + ~ C  i- J/2 (~, li ~ 2  4 -  ~ 1 ~  i"-), 

&o I 8~co c Oeo 
c . . . . . . . .  ), :-: -0~TU. . . . . .  , s  = Da~ = oa i.'.=,.o' t: g '  " ~ ,.=," 

Here ~x  and ~v  are the project ions of the vector  w- both pa ra l l e l  

and perpendicular  to the vector  k0; e is the group ve loc i ty  of thewaves ;  
ka_ is an e igenvector  of the tensor DaB. Next we rep lace  the approxi-  

ma t ion  T(k, kz, kz, k3) by w = T(ko, k0, k0, k0) and introduce the va r iab le  

b (k) = :1 (k) exp i [ z c  -k i/., ()~ ',i • ~" -'- Lixve)] t , 

Ob 
=OZ 4- i (zxc 4- '%L !1 • ~ + ~/~)'• b = 

= - -  iw i b* (k)  b (k._.) b (k:l) 6 (k -I- lq - -  k~ --  ka) dkl [k~dka . (2.7) 

We note that  X• is a lways posi t ive,  while  xll vanishes for k0 = k~: 

�9 = I 2 V-~/. % g % 

For k0 < k'~, X Jl is nega t ive ,  and for k0 > k~, X~ is posi t ive.  We apply the 

inverse Fourier t ransformation with respect  to ?4: 

b (x, y, t) = ~ I b (• ':v, l) <,xp [ - -  i (~z~ 4- yXv) ] d •  v �9 

Here b(x, y, t) is the envelope  of the wave packet .  We obtain 

i (  O~b O~b ) 
Ob Ob - - Y  . ~  4- s - - - _ i w [ b  7 (2.8) o~- 4- c -o7  ~" II ~ �9 

To s impl i fy  the equat ion further we introduce the var iab le  g = x - 

-- ct (which corresponds to transformation to a system of coordinates 

moving  wi th  a ve loc i ty  equal  to the group ve loc i ty  of the wave);  

we a s sumetha t  the solution depends only on t and z = g c o s a  + y s i n a ;  

we obtain 

O~g iL 0 ~  
Ot 2 Oz~ - -  - -  iw [ ~ l ~ W,  

L = LII e ~  + s  s in2 a .  ( 2 . 9 )  

Equation (2.3) has the exac t  solut ion 

A (k) = b o 5 (k - -  ko) exp [--  i t Q  (k)], ~ (k) = w [bop. (2.10) 

Here b0 is an arbitrary constant.  In terms of the  var iab les  7? and % 

solut ion (2.10) has the form 

I 1 = a cos ( k z  - -  o)t), ~F = a sin ( kx  - -  o)t), 

k'/, 
a :  [bol ,  r  + a (#)  . 



Calcu la t i on  yie lds  

~q (k) = [ bol~I 4V (--  2k, k, k)~ ] 
�9 4(o ~ ( k ) - o ) " ( 2 k )  - - I V ( k ,  k , k , k )  = 

4o) ~" (k) ~ ~o 2 (2k) 4 -- t6o) (k) j 

In the  l imi t ,  for smal l  k this takes the form 9~(k) = l/~(ka)~w(k),  

which coincides  with the expression obta ined by Stokes in 1847. Thus, 

solut ion (2.9) approximates  a per iodic  wave of f in i te  ampl i tude .  

When 

:* = \ 2 g )  ' 

the frequency d i sp l acemen t  becomes  inf in i te ;  for l a r g e k ,  i t  is nega t ive .  

In the  l imi t ,  as k ~ ~o we have  

t 
(k) = - -  - iV (/~ay- ~ ( /0.  

3. S tab i l i ty  of s teady waves of f in i te  ampl i tude .  We consider the 
deve Iopmen t  of sinai1 perturbat ions agains t  the background of a s teady 

per iodic  wave.  We seek a(k) in the form 

a ( k ) = b o S ( k - - k o ) e - i ~  + at(k, t) e - i~ t  , o = o ( k o ) - ~ O ( k 0 ) . ( 3 . 1 )  

We assume c~(k) to be smal l  in the sense that  

! ] a ( k )  l d k ~ l b o [ .  

Now we m a k e  (1.15) l inear  in a(k) .  To do this, we consider only 

terms on the  r igh t -hand  s ide  which vary slowly with t ime .  We obtain 

0a(k)  - - 2 i b o e i Y t V ( - - k o ,  k0, k0 - -  k) et* (ko--  k); 
[Ot - -  

'r : ~0 (k) ~- o (k - -  ko) - -  m (k0) - -  Q (k0). (3.2) 

E l imina t ing  cd~(k0 -- k) from (3.2) , we obta in  

0 t i-t 0ct(k) , 

8=0 (k0) 
= ~ e-~'rta~-g ( - -  ko, k, ko - -  k) ~ (k) . (3.3) 

Equation (3.3) has a solution of the form 

ct (k) = ce vt , 

q = * / ~ i ' r ~ - y l b o [ e U ~ - ( - - k o ,  k ,  k o - - k ) - - * / G  ~ . (3.4) 

Ins tabi l i ty  wi l l  occur  i f  the expression under the square-root  sign 

is posi t ive .  In order that  there  should be ins tab i l i ty  for a rb i t ra r i ly  sinai1 

b0, the equa t ion  ~ = 0 should have  a solution. If we neg lec t  the sma l l  

te rm a(k0) in this equat ion,  we arr ive  at  the system of equations (2.5). 
As was es tabl ished in sec t ion  2, this system can be solved for cap i l l a ry  

waves; thus, ins tabi l i ty  of this type occurs for cap i l l a ry  waves. Un- 

s table  wave vectors are concent ra ted  near the surface co(k) = w(k 0 + 

+ co(k -- k,) in a layer  of thickness proport ional  to the  ampl i tude .  The 
m a x i m u m  increment  in the ins tab i l i ty  is of order Req ~ (ka) co(k). 

This type of ins tab i l i ty  is imposs ib le  for g rav i t a t iona l  waves. How- 
ever,  for these waves slower ins tab i l i t i es  are possible.  We use Eq. (2.3) 
and substi tute into i t  A(R) in  the form 

A (k) = bo6 (k -- ko) e -ia(k~ ~- ct (k~ t) �9 

If we l i n e a r i z e  in c~(k, t), we obta in  

o~ (k) 
Ot - -  2 T  (k, k0, k0, k) [ be [-'a (k) + 

-~ e -~if~(k~lt T(k ,  2ko -- k, ko, ko) bo~ * (2ko -- k) �9 

This equat ion can be reduced to an equat ion of form (3.2); i t  has 
a solut ion proport ional  to e qt, where,  for q, we have  

q = ~ / ,2i6 +_ V' ibo  ["T ~" (k, 2ko - -  k, ko, ko)'-' - -  t / ~':~, 

6 = o (k) + o (2ko - -  k) - -  20 (ko) -l- 2 [ b o p~ [T (k, ko, ko, k) -~- 

+ T (2k o - - k ,  ko, ko, 2ko- -  k) - -  T (ko, ko, ko, ko) . (3.5) 

Consider first the case 

d0~ o b [ k - - k o l T ~ - > ~ >  ] p .  (3.6) 

Then terms proport ional  to b -~ can be dropped from (3.5). The con- 

d i t ion for the ex i s tence  of ins tab i l i ty  for arbi t rar i ly  smal l  ampl i tudes  

is 5 = 0, which is equ iva len t  to the ex i s tence  of solutions for the equa-  

tions 

2o (k) = m (kl) + m (k2), 2k = k l  @ k2 . (3.7) 

Obviously, these equations have solutions if 

r ~  >~176  (3.8) 

(a suff icient  condi t ion) ,where  the vectors k~ and k2 are pa ra l l e l  to the 
same straight l ine.  Inequal i ty  (3.8) is the requ i rement  that  co(k) be 

convex upwards. For g rav i t a t iona l  waves, 

and the inequa l i ty  necessar i ly  holds. 

Conversely,  for cap i l l a ry  waves, the inverse inequa l i ty  holds, in- 

d i ca t ing  that  ins tabi l i ty  of this type  is impossible .  

Equation (3.7) defines a surface in k-space .  Unstable vectors l i e  

near this surface in a layer  of thickness proport ional  to b 2. The max i -  

mum inc remen t  in the ins tab i l i ty  for g rav i t a t iona l  waves is of order 

7~(k~V co (k).  

There are higher-order ins tab i l i t i es  corresponding to conservat ion 

laws for m: 

no (k) = o (kl) q- (0 (k~), nk -- k 1 i -  k~. 

The order of the inc rement  for such ins tabi l i t ies  is y(k) ~ (ka)nw(k). 

All these ins tab i l i t i es  can  be ca l l ed  dest ruct ive .  

We turn now to ins tab i l i t i es  for which ! kl  - kol << k0. To study 

these we use Eq. (3.3) d i rec t ly .  The solution 

b = b 0 exp (--  iwlboi~t) 

corresponds to a c o m p l e t e l y  f in i te  ampl i tude .  

We now seek the solut ion in the form 

~F - -  exp (--  iw[ be [~'t) {be + ~e -i~,* ~~ =- u*ei"'l-i~~ 

Then for co we have 

~ o = !  g~o tb0 t~ ,<0~+ l i ,> ,~<~  . (3.9) 

We see from (3.9) that  ins tabi l i ty  is possible if w,k < 0, ins tab i l i t i es  
only being exc i ted  for suff ic ient ly  sinai1 wave vectors 

~w 
~~ < ~ - -  l b0 [3 . 

We consider the ease of different  wave numbers for the surface 
waves.  

1. In the region of wave numbers 

I~o < 1 / g ~ 7 ~  - t (g l ~) ' I~ , 

where w > 0, X 1 > 0, and ,kit < 0, the domain  of ins tabi l i ty  in the 
p lane  •  Xy is bounded by the inequal i t ies  0 < I kl] ~r -- X. • < 
< 41 btaw; i , e . ,  i t  l ies  be tween  the hyperbola  .a. y 

4lbleto = s jtxac ~ - -  ~._~ x~az 

and its asymptotes .  
2. In the domain  

] /  V G -  I (g / ~)',' <1~o < I / / : 2  (g / ~)',,, 

where ,k_k > 0, kl] > 0, and w > 0, im tab i l i t y ,  in genera l ,  is impossible.  
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3. In the domain of capillary waves 

k o > l /  ] / "2 (g /a )  %, NA > O ,  2. ll > O , w < O ,  

the region of instability is the interior of the ellipse 

~" II :~x~" + ~'A_• " = 41b I ~ w .  

In (2.9) we make the change of variables 

x F = ] / ' n e x p [ @ S v d z  I �9 

Equation (2.9) becomes 

On 3 
0-7- § -2i- (n~) = O, 

Ov Ov On k ~" 0 t 02 ]/ 'E. (3.10) 
~ / - + v - O T = - w ~ - z  + 2 o~ V~- Oz2 

These equations are similar to the equations of gasdynamics with 
an adiabatic relationship between the pressure and the density, 

W]%/Z 2 
P = - - T -  ' 

and differ from them by an additional term containing the third de- 
rivative with respect to z. If we consider a sufficiently large-scale 
motion with characteristic scale L, then for 

this term may be neglected. For positive pressure wk> 0, Eq. (3,10) 
describes sound waves of velocity w~'~00. For negative pressure, the 
speed of sound becomes imaginary, which means that the initial per- 

turbations increase exponentiatIy as 

v ~ exp (t VI w~, [ no ) .  

Hence we have the case of a negative-pressure type of instability. 
We note that (3.9) can be obtained for the increment in the nega- 

tive pressure instability if we let k -'~ k 0 in (3.6). Thus, negative-pres- 
sure instability is the limiting case of slow destructive instability of 
gravitational waves. 

The author wishes to thank L. V. Ovsyannikov and R. Z. Sagdeev 
for fruitful discussions. 
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