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Abstract. In this paper we study the following problems:
I. Let (M,d) be a complete metric space and f, g : M → M be
two operators. We suppose that:

(a) f is a Picard operator with its unique fixed point x∗f ;
(b) there exists η > 0 such that d(f(x), g(x)) ≤ η, for every

x ∈M .
The problem consists in estimating d(gn(x), x∗f ), for x ∈ M and
n ∈ N∗.
II. Let B be a Banach space and f, g : B → B be two operators.
We suppose that f is a Picard operator. The problem is to find
sufficient conditions which guarantee that f + g is a Picard oper-
ator.
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1 Introduction

There exist various aspects of the stability problem for the solutions of dif-
ferential and integral equations (see [1], [5], [18], [21], [26], [31], [37], ...), of
operatorial equations ([7], [2], [4], [6], [8], [12], [17], [18], [23], [25], [27], [28],
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[29], [30], [33], [34], [36], ...) and of functional-operatorial equations ([3], [10],
[11], [14], [15], [16], [20], [22], [24], [32], [33], ...).

In this paper, we will study the following two abstract problems:

Problem I. (see Problem 1.4.2 in [30]) Let (M,d) be a complete metric
space and f, g : M →M be two operators. We suppose that:

(a) f is a Picard operator with its unique fixed point x∗f ;
(b) there exists η > 0 such that d(f(x), g(x)) ≤ η, for every x ∈M .

The problem consists in estimating d(gn(x), x∗f ), for x ∈M and n ∈ N∗.

Problem II. (see Problem 55 in [34]) Let B be a Banach space and f, g :
B → B be two operators. We suppose that f is a Picard operator. The
problem is to find sufficient conditions which guarantee that f+g is a Picard
operator.

We will present first some basic notions and results which are essential for
the main part of this paper.
Let X be a nonempty set and f : X → X be an operator. We consider the
fixed point equation

x = f(x), x ∈ X. (1.1)

We denote by Ff the fixed point set of f , i.e., Ff := {x ∈ X | f(x) = x}.
If (M,d) is a metric space, then, by definition, f is a Picard operator if
Ff = {x∗} and

fn(x)→ x∗ as n→∞, for all x ∈M.

A Picard operator f for which there exists a function ψ : R+ → R+ increas-
ing, continuous in 0 and satisfying ψ(0) = 0, such that

d(x, x∗) ≤ ψ(d(x, f(x)), for all x ∈ X,

is called a ψ-Picard operator. In particular, if ψ has a linear form (i.e.,
ψ(t) = ct, t ∈ R+, for some c > 0), then f is called a c-Picard operator.

Definition 1.1.
Let (M,d) be a metric space and f : M → M be an operator. Then, f is

called:
(i) an α-contraction if α ∈]0, 1[ and

d(f(x), f(y)) ≤ αd(x, y), for every x, y ∈M.

(ii) a Kannan operator if there exists β ∈]0, 1
2
[ such that

d(f(x), f(y)) ≤ β (d(x, f(x)) + d(y, f(y))) , for every x, y ∈M.
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(iii) a ϕ-contraction if ϕ : R+ → R+ is a comparison function (i.e., ϕ is
increasing and ϕn(t)→ 0 as n→∞, for every t ∈ R+) and

d(f(x), f(y)) ≤ ϕ(d(x, y)), for every x, y ∈M.

(iv) a Hardy-Rogers operator if there are α, β, γ ∈ R+ with α+2β+2γ < 1,
such that, for every x, y ∈M , we have

d(f(x), f(y)) ≤αd(x, y) + β (d(x, f(x)) + d(y, f(y)))

+ γ (d(x, f(y)) + d(y, f(x))) .

Example 1.1.
1) If (M,d) is a complete metric space and f : M →M is an α-contraction,

then f is a 1
1−α -Picard operator.

2) If (M,d) is a complete metric space and f : M → M is Kannan operator
with constant β, then f is a 1−β

1−2β -Picard operator.

3) If (M,d) is a complete metric space and f : M → M is Hardy-Rogers
operator with constants α, β, γ, then f is a 1−β−γ

1−α−2β−2γ -Picard operator.

4) If (M,d) is a complete metric space and f : M → M is ϕ-contraction,
such that ϕ is a strict comparison function (i.e., ϕ is a comparison function
and t − ϕ(t) → ∞ as t → ∞, then the operator f is a ψϕ-Picard operator,
with ψϕ(t) := sup{s ∈ R+ : s− ϕ(s) ≤ t}.

Other examples of Picard operator involving function spaces are given now.

Example 1.2.
Let (B, | · |) be a Banach space and g ∈ C([a, b]×B,B) be an operator. We

suppose that there exists lg ∈]0, 1[ such that

|g(t, u)− g(t, v) ≤ lg|u− v|, ∀t ∈ [a, b], ∀u, v ∈ B.

Consider T : C([a, b], B)→ C([a, b], B) defined by

Tx(t) := g(t, x(t)), t ∈ [a, b].

If we consider the Banach space B := (C([a, b], B), ‖ ·‖)∞), then the operator
T : B→ B is an lg-contraction and, hence, a Picard operator.

Example 1.3.
Let (B, | · |) be a Banach space and K ∈ C([a, b] × [a, b] × B,B) be an

operator. We suppose that there exists lK ∈]0, 1[ such that

|K(t, s, u)−K(t, s, v) ≤ lK |u− v|,∀t, s ∈ [a, b], ∀u, v ∈ B.
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Consider S : C([a, b], B)→ C([a, b], B) defined by

Sx(t) :=

∫ t

a

K(t, s, x(s))ds, t ∈ [a, b].

If we consider the Banach space B := (C([a, b], B), ‖·‖)τ ) (where ‖·‖τ is a Bi-
elecki type norm with τ > lK), then the operator S : B→ B is lK

τ
-contraction

and, hence, a Picard operator. Moreover, S is a strong contraction in the
sense of Goebel. Recall that if (B, ‖ · ‖) is a Banach space, then an operator
f : B → B is called a strong contraction if for every ε > 0 there exists a
norm ‖ · ‖ε on B, equivalent with ‖ · ‖, such that

‖f(x)− f(y)‖ε ≤ ε‖x− y‖ε, for every x, y ∈ B.

For details see [13] and [34].

2 Results concerning Problem I.

For a better understanding of the problem, we present several examples.

Example 2.1.
If (M,d) is a complete metric space and f : M → M is an α-contraction,

then, for Problem I, we have the following result.

Theorem 2.1. Let (M,d) is a complete metric space, f : M → M be an
α-contraction and g : M → M be an operator for which there exists η > 0
such that d(f(x), g(x)) ≤ η, for every x ∈M . Denote by x∗f the unique fixed
point of f . Then

d(gn(x), x∗f ) ≤
η

1− α
+

αn

1− α
d(x, f(x)),∀x ∈M,∀n ∈ N∗.

Proof. For x ∈M , we have that

d(gn(x), x∗f ) ≤ d(fn(x), x∗f ) + d(fn(x), gn(x)) ≤

αn

1− α
d(x, f(x)) + d(fn(x), gn(x)).

On the other hand

d(fn(x), gn(x)) ≤ d(f(gn−1(x)), g(gn−1(x))) + d(f(gn−1(x)), f(fn−1(x))) ≤

η + αd(fn−1(x), gn−1(x)) ≤ η + αη + α2d(fn−2(x), gn−2(x)) ≤ · · · ≤ η

1− α
.

Thus, the conclusion follows by the above two relations.
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Example 2.2.
Let (M,d) be a complete metric space and f : M →M be a ϕ-contraction.

Suppose that, in addition, ϕ satisfies the following assumptions:
(a) t− ϕ(t)→∞, as t→∞ (i.e., ϕ is a strict comparison function);
(b) ϕ(t1 + t2) ≤ ϕ(t1) + ϕ(t2),∀t1, t2 ∈ R+.

Then, for Problem I, we have the following result.

Theorem 2.2. Let (M,d) be a complete metric space and f : M → M be a
strong ϕ-contraction satisfying (a)-(b) from above. Denote by x∗f the unique
fixed point of f . If g : M → M is an operator for which there exists η > 0
such that d(f(x), g(x)) ≤ η for every x ∈M , then we have that

d(gn(x), x∗f ) ≤ θ(η) + ϕn(ψϕ(d(x, f(x)))),∀x ∈M,∀n ∈ N∗,

where θ(t) :=
∞∑
n=0

ϕn(t) and ψϕ(t) = sup{s ∈ R+ : s− ϕ(s) ≤ t}, for t ∈ R+.

Proof. If ϕ is a strict comparison function, then the function ψϕ : R+ → R+

defined by ψϕ(t) = sup{s ∈ R+ : s − ϕ(s) ≤ t} is increasing and has the
property that ψϕ(t)→ 0+ as t→ 0+. Then, for each x ∈M , we have

d(gn(x), x∗f ) ≤ d(fn(x), x∗f ) + d(fn(x), gn(x)).

On one hand
d(fn(x), x∗f ) ≤ ϕn(d(x, x∗f ))

with
d(x, x∗f ) ≤ ψϕ(d(x, f(x))).

On the other hand

d(fn(x), gn(x)) ≤ d(f(gn−1(x)), g(gn−1(x))) + d(f(gn−1(x)), f(fn−1(x))) ≤

η + ϕ(d(fn−1(x), gn−1(x))) ≤ η + ϕ(η + ϕ(d(fn−2(x), gn−2(x)))) ≤

η + ϕ(η) + ϕ2(d(fn−2(x), gn−2(x))) ≤ · · · ≤
∞∑
n=0

ϕn(η) = θ(η).

Thus, the conclusion follows by the above two relations.

We formulate now two open problems.

Problem A. For which generalized contractions (Kannan operators, Hardy-
Rogers operators, ...) in complete metric spaces we have similar results to
the above ones ?
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Problem B. A second open question is to study the above problem in the
case of generalized metric spaces.

Concerning the last problem, we have the following result in complete Rm
+ -

metric spaces.

Example 2.3.
If (M,d) is a complete Rm

+ -metric space and f : M →M is an A-contraction
(i.e., A ∈Mm,m is a matrix convergent to zero and d(f(x), f(y)) ≤ Ad(x, y),
∀x, y ∈M), then we have the following result.

Theorem 2.3. Let (M,d) is a complete Rm
+ -metric space, f : M → M be

an A-contraction and g : M → M be an operator for which there exists
η = (η1, · · · , ηm) ∈ Rm

+ with ηi > 0 for every i ∈ {1, · · · ,m}, such that
d(f(x), g(x)) ≤ η, for every x ∈ M . Denote by x∗f the unique fixed point of
f . Then, we have that

d(gn(x), x∗f ) ≤ (Im − A)−1η + An(Im − A)−1d(x, f(x)),∀x ∈M,∀n ∈ N∗.

Remark 2.1.
Consider Problem I with f : M → M be a ψ-Picard operator. In this case,

we have

d(gn(x), x∗f ) ≤ ψ(d(gn(x), f(gn(x))),∀x ∈M, ∀n ∈ N∗.

By this relation, we obtain that, if g is continuous and the sequence (gn(x))n∈N
is f -asymptotically regular (i.e., d(gn(x), f(gn(x))) → 0 as n → ∞ for all
x ∈M), then g is a Picard operator with x∗g = x∗f .

3 Results concerning Problem II.

We start this section by the following result of Browder-Petryshyn (see [7]),
given in terms of Picard operators.

Theorem 3.1. Let B be a Banach space and f : B → B be a bounded linear
operator. Suppose that f is Picard. Let g : B → B be a constant operator,
i.e., there exists y ∈ B such that g(x) = y, for every x ∈ B. Then, for each
y ∈ (1B − f)(B) the operator f + g is Picard.

The main result of this section is the following.
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Theorem 3.2. Let B be a Banach space and f, g : B → B be two operators.
We suppose:
(1) f is a strong contraction with respect to equivalent norms ‖ · ‖ε, where
0 < ε < 1;
(2) g is an lg-contraction with respect to each ‖ · ‖ε, for 0 < ε < 1.
Then, the operator f + g is Picard.

Proof. Let ε > 0 such that lg + ε < 1. Then, the operator f + g is a (lg + ε)-
contraction with respect to ‖ · ‖ε.

Example 3.1.
Let (B, | · |) be a Banach space and T be given by Example 1.2. Since there

exists lg ∈]0, 1[ such that

|g(t, u)− g(t, v) ≤ lg|u− v|,∀t ∈ [a, b], ∀u, v ∈ B,

we get that the operator T is an lg-contraction with respect to a Bielecki
norm ‖ · ‖τ on C([a, b], B), for every τ > 0. Let S be the operator given
in Example 1.3. Then, T + S is a Picard operator on (C([a, b], B), ‖ · ‖∞).
Indeed, T + S is a (lg + lK

τ
)-contraction with respect to ‖ · ‖τ , where τ > 0

is such that lg + lK
τ
< 1. Since the norms ‖ · ‖∞ and ‖ · ‖τ are Lipschitz

equivalent, the conclusion follows.

For other examples of this type see [32]. These examples suggest the following
result.

Theorem 3.3. Let (B, |·|) be a Banach space and B := (C([a, b], B), ‖·‖τ ) be
the Banach space of continuous abstract functions on [a, b] with values in B
endowed with a Bielecki norm ‖·‖τ corresponding to τ > 0. Let T, S : B→ B
be two operators. We suppose that:
(1) there exists lT ∈]0, 1[ such that

|Tx(t)− Ty(t)| ≤ lT |x(t)− y(t)|,∀t ∈ [a, b],∀x, y ∈ B;

(2) there exists c > 0 such that

|Sx(t)− Sy(t)| ≤ c

τ
‖x− y‖τeτ(t−a),∀t ∈ [a, b],∀x, y ∈ B and τ > 0.

Then, the operators T, S and T + S are Picard in ((C([a, b], B), ‖ · ‖∞)

Proof. We will prove that T+S is a Picard operator. Indeed, for all t ∈ [a, b],
x, y ∈ B and τ > 0, we have

|(T + S)x(t)− (T + S)y(t)| ≤ lT |x(t)− y(t)|+ c

τ
‖x− y‖τeτ(t−a).
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Then

‖(T + S)x− (T + S)y‖τ ≤ (lT +
c

τ
)‖x− y‖τ .

Since lT < 1, there exists τ > 0 such that lT + c
τ
< 1. This shows that T +S

is a contraction and hence a Picard operator.

Example 3.2.
Let f, g : R→ R be two mappings defined by f(x) = 1

3
x and g(x) = −x. In

this case, f is a Picard operator, g is not a Picard operator, but f+g : R→ R
is a Picard operator.

By the above considerations, the following open question also arises.
Problem C. Let B be a Banach space and f : B → B be an operator. In
which conditions the operator 1B − f is Picard ? Some basic references for
this problem are [8], [9], [25], ...
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[9] A. Buică, I.A. Rus, M.-A. Şerban, Zero point principle of ball-near
identity operators and applications to implicit operator problem, Fixed
Point Theory 21 (2020), no. 1 (to appear).

[10] T.A. Burton, Stability by fixed point methods for highly nonlinear
delay equations, Filomat 5 (1) (2004), 3-20.

[11] T.A. Burton, Stability of Fixed Point Theory for Functional Differen-
tial Equations, Dover Publ., 2006.

[12] A. Granas, J. Dugundji, Fixed Point Theory, Springer, 2003.

[13] K. Goebel, On the spaces of strong contractions, Bull. Acad. Polon.
Sci. 15 (5) (1967), 313-316.

[14] A. Halanay, Quelque questions de la théorie de la stabilité pour les
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