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Abstract

We examine stability of fully developed isothermal unidirectional plane Poiseuille–
Couette flows of an incompressible fluid whose viscosity depends linearly on the
pressure as previously considered in [1,2]. Stability results for a piezo-viscous fluid
are compared with those for a Newtonian fluid with constant viscosity. We show
that piezo-viscous effects generally lead to stabilisation of a primary flow when
the applied pressure gradient is increased. We also show that the flow becomes
less stable as the pressure and therefore the fluid viscosity decrease downstream.
These features drastically distinguish flows of a piezo-viscous fluid from those of
its constant-viscosity counterpart. At the same time the increase in the boundary
velocity results in a flow stabilisation which is similar to that observed in Newtonian
fluids with constant viscosity.
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1 Introduction

Piezo-viscous fluids (PVF) form an interesting non-Newtonian class. Polymer
melts [3], lubricating oil in journal bearings [4,5] and magma in the Earth
core are just a few examples of such fluids. In their flows, the shear stress (and
effective viscosity) increases with the increasing normal stress. The properties
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of piezo-viscous fluids were studied by a number of authors over the past
two decades [6–8, e.g.]. The simplest rheological model which accounts for
such a behaviour assumes that the viscosity of a fluid is proportional to the
pressure. Perhaps the most comprehensive cycle of recent works studying this
model both mathematically and numerically is by Hron, Málek, Rajagopal and
collaborators [1,9–13]. The major goals of the analysis presented in this paper
are to expose the physical mechanism of flow instability in such fluids and
to shed more light onto the existence of simple parallel flows of piezo-viscous
fluids.

Simple steady plane parallel flows of piezo-viscous shear-independent and
shear-thinning fluids were first considered in [1]. In a later work [14] it was
shown that simple parallel piezo-viscous flows can only exist if the viscosity is
a linear function of pressure. Therefore this rheological model will be used in
the current work. Our previous study [2] of such a model showed that shear-
thinning effects do not lead to any qualitative changes in simple flow structure
in comparison with the solutions obtained for shear-independent fluids. Yet
piezo-viscous effects result in completely new flow features such as choking of
the pressure-driven flow and the existence of a limiting linear velocity profile
for high-speed Couette flow of piezo-viscous fluid. Therefore the current work
is fully focused on the conceptual investigation of piezo-viscous effects on the
stability of Poiseuille–Couette flow of a fluid with shear-independent viscosity.
This will enable us to compare our results directly with the well-known sta-
bility findings for Couette–Poiseuille flows of conventional Newtonian fluids
with pressure-independent viscosity (for brevity we will refer to such fluids as
NF in this paper) investigated previously [15–18]. We will report at least two
new features (flow stabilisation with increasing pressure gradient and a down-
stream flow destabilization) which are not observed in conventional NF flows.
We will also show that similarly to NF flows PVF Couette flow remains stable
with respect to infinitesimal disturbances so that the transition to instability
is detected only for mixed Poiseuille–Couette flows with a non-zero pressure
gradient applied along the channel.

To achieve the set goal in the most straightforward way two major simplifica-
tions are introduced. Firstly, note that in contrast to ordinary fluids, the vis-
cosity of PVF necessarily changes along the channel since the applied pressure
gradient driving the flow leads to pressure reduction in the downstream direc-
tion. We will assume in our analysis and then confirm numerically that such
a variation is sufficiently slow and occurs on a much longer length scale than
the characteristic disturbance wavelength. This enables us to apply a standard
normal mode expansion in which the actual location along the channel enters
as a parameter. Such an approach will be discussed in detail in Section 4.
Secondly, we consider only small two-dimensional disturbances. For NF flows
this is warranted by Squire’s theorem which states that two-dimensional per-
turbations are the most dangerous (see, for example, [19]). However Squire’s
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theorem cannot be proven for PVF flows in which fluid viscosity changes in
the streamwise direction. Yet if such a change occurs slowly, it can be shown
that Squire’s theorem holds locally. In order not to distract the reader from the
main focus of the article and to keep the manuscript reasonably short we leave
the detailed discussion of this aspect outside the scope of this paper. We also
note that full three-dimensional treatment of the problem does not change any
of the conclusions regarding the physical nature of instabilities drawn using a
simplified two-dimensional approach. Therefore two-dimensional treatment is
fully adequate for our goal of a conceptual analysis.

2 Problem definition and governing equations

Consider the flow of an incompressible fluid with pressure-dependent viscosity
between two parallel horizontal plates separated by the distance 2L from each
other. The top plate moves with velocity V ∗ from left to right, the bottom
plate is stationary. The pressure gradient ∇π is applied along the channel
which (depending on its direction) can either enhance or partially suppress
the fluid flow caused by the motion of the upper wall. The flow is described by
the equations first given in [1] which, in the case of shear-independent fluid,
become

ρ
du

dt
= −∇π + ∇ · (2µ(π)|D) , (1)

∇ · u = 0 , (2)

where we neglect the gravity and assume that the velocity field u is two-
dimensional with components (u, v) in the (x, y) directions, respectively. We
choose the coordinate system in such a way that the x and y axes have positive
right and upward directions, respectively, and the horizontal centre-plane of a
channel is located at y = 0. In equation (1),

D =
1

2







2∂u
∂x

∂u
∂y

+ ∂v
∂x

∂u
∂y

+ ∂v
∂x

2∂v
∂y





 . (3)

Governing equations (1)–(3) are complemented by the constitutive relations

ρ = const. , µ = aπ > 0 (4)

and the no-slip/no-penetration boundary conditions

(u, v) = (0, 0) at y = −L and (u, v) = (V ∗, 0) at y = L . (5)
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We non-dimensionalise the equations using L, pressure π∗ evaluated at (x, y) =
(0, 0), u∗ = (π∗/ρ)1/2 and t∗ = L(ρ/π∗)1/2 as the scales for length, pressure,
velocity and time, respectively, to obtain

∂u

∂t
+ (u · ∇)u = −∇π + α∇ · (2πD) , (6)

∇ · u = 0 , (7)

(u, v) = (0, 0) at y = −1 and (u, v) = (V, 0) at y = 1 , (8)

π = 1 at (x, y) = (0, 0) , (9)

where V = V ∗(ρ/π∗)1/2,

α = a

(

π∗

ρL2

)1/2

(10)

and all symbols now denote the corresponding non-dimensional quantities.

3 Basic flow

Equations (6)–(9) admit a steady parallel flow solution u = (U(y), 0), π =
Π(x, y) discussed in detail in [1,2]. As will be shown in Section 5 such a flow
becomes unstable when the applied pressure gradient is sufficiently strong
and the wall velocity is relatively small. We refer to such flows as Poiseuille-
type or Poiseuille–Couette flows. They are characterised by the existence of
an extremum point −1 ≤ Y ≤ 1 of the velocity profile such that U ′ ≷ 0 for
y ≶ Y . In this case the solution is given by (see [1,2])

U(y) =











∫ y
−1

1
α

eC0(s−Y )−1
eC0(s−Y )+1

ds , −1 ≤ y ≤ Y ,

V +
∫ 1
y

1
α

1−eC0(s−Y )

1+eC0(s−Y ) ds , Y ≤ y ≤ 1 ,
(11)

Π(x, y) =
1 + eC0(Y −y)

1 + eC0Y
eC0(x+y)/2 . (12)

The extremum point Y is determined using the velocity continuity condition
U(Y+0) = U(Y−0).

The integration of (11) leads to

U(y) =
1 − y + 2Y

α
+

2

αC0

ln
eC0(y−Y ) + 1

eC0(1+Y ) + 1
, Y =

1

C0

ln
eC0 − e

αV C0
2

eC0+
αV C0

2 − 1
. (13)

The stability investigation of this family of simple flow solutions is the major
goal of the current study. For pure Poiseuille flow (V = 0) equation (13)
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reduces to Y = 0 and

U(y) =
1 − y

α
+

2

αC0

ln
1 + eC0y

1 + eC0
≡

2

αC0

ln
cosh(C0y/2)

cosh C0/2
(14)

which was originally derived in [1]. In the limit (C0, V ) → (0, 0) expressions
(12) and (13) become

U(y)≈
1 + y

2
V +

C0

4α
(y2 − 1)

(

1 −
V 2α2

4

)

, (15)

Π(x, y)≈ 1 +
(

x +
V αy

2

)

C0

2
+
(

x2 + y2 + αV xy
) C2

0

8
, (16)

The exact expressions for NF Poiseuille–Couette flow are

U(y) =
1 + y

2
V +

C0

4α
(y2 − 1) , Π(x) = 1 +

C0

2
x . (17)

The comparison of expressions (15)–(17) shows that in the limit (C0, V ) →
(0, 0) the PVF and NF flows become identical and parameter C0 essentially
characterises the applied longitudinal pressure gradient. Without loss of gen-
erality we assume that it is negative so that the fluid is encouraged to flow
in the direction of increasing x. Also note that the quantity 4αV/|C0| is the
ratio of the wall velocity and the maximum velocity of the Poiseuille com-
ponent of the flow. This quantity will be conveniently used to characterise
the shape of the basic flow velocity profile in the subsequent discussion. If
αV/|C0| ≥ 1 then the velocity profile becomes monotonic. We refer to such a
flow as Couette–Poiseuille flows. However we will show that instability is pos-
sible only when αV/|C0| < 1. We call such flows Poiseuille–Couette flows. For
a more straightforward comparison with conventionally non-dimensionalised
NF solutions we also define Reynolds number Re∗ using (10):

Re∗ =
ρU |y=0u

∗L

µ∗
=

ρu∗L

µ∗

(

V

2
−

C0

4α

)

=
(

V

2
−

C0

4α

)

1

α
. (18)

We will use it instead of α in the subsequent discussion.

4 Linearised perturbation equations

Next we investigate linear stability of the basic states discussed in Section
3 with respect to small-amplitude velocity and pressure disturbances u1 =
(u1, v1) and π1, respectively. The linearisation about a parallel basic flow leads
to the following perturbation equations
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∂u1

∂t
+ U

∂u1

∂x
+ v1U

′ = −
∂π1

∂x
+ α

[

∂Π

∂y

(

∂u1

∂y
+

∂v1

∂x

)

+ 2
∂Π

∂x

∂u1

∂x
(19)

+Π

(

∂2u1

∂x2
+

∂2u1

∂y2

)

+ U ′∂π1

∂y
+ U ′′π1

]

,

∂v1

∂t
+ U

∂v1

∂x
= −

∂π1

∂y
+ α

[

∂Π

∂x

(

∂u1

∂y
+

∂v1

∂x

)

+ 2
∂Π

∂y

∂v1

∂y
(20)

+Π

(

∂2v1

∂x2
+

∂2v1

∂y2

)

+ U ′∂π1

∂x

]

,

∂u1

∂x
+

∂v1

∂y
= 0 . (21)

Note that unlike in NF Poiseuille–Couette flows, in the present problem the
basic flow pressure is a non-trivial function of both x and y coordinates which
is written as Π(x, y) = C2(y)eC0x/2, C2(0) = 1, see equations (9) and (12).
For small values of C0 the term eC0x/2 remains nearly constant for a relatively
large range of x in the vicinity of some reference point x0 so that we write
approximately

Π(x0, y) ≈ C2(y)E0 ,
∂Π

∂x
(x0, y) ≈ C2(y)

C0

2
E0 ,

∂Π

∂y
(x0, y) ≈ C ′

2(y)E0 ,

(22)
where E0 = eC0x0/2. For negative values of C0 and positive values of x which
are of interest in the current study the range of values 1 ≥ E0 ≥ 0 corresponds
to spatial locations ranging from the channel entrance to its exit which may
be asymptotically far away from the entrance. Such an approximation signifi-
cantly simplifies the subsequent analysis without sacrificing too much accuracy
for small |C0|.

Parametrisation (22) enables application of a standard normal mode expansion
procedure where we assume the perturbation quantities in the form

(u1(x, y, t), v1(x, y, t), π1(x, y, t)) = (u1(y), v1(y), π1(y))e(iβx+σt) . (23)

This representation remains locally valid as long as the perturbation wavenum-
ber

β ≫ |C0|/2 . (24)

We will show in Section 5 that this condition is safely satisfied for all considered
regimes. In transformation (23), σ = σR+iσI is the complex amplification rate
with σI being the frequency of oscillations. The basic flow is linearly stable if
σR < 0.

Upon transformation (23) the perturbation equations (19)–(21) parameterised
with E0 become
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σu1 =
{

−iβU + αE0

[

βC2(iC0 − β) + (C ′
2D + C2D

2)
]}

u1

−{U ′ − iβαE0C
′
2} v1 − {iβ − α [U ′′ + U ′D]} π1 , (25)

σv1 =
1

2
αC2C0E0u

′
1 + {iαβU ′ − D} π1

−
{

iβU − αE0

[

βC2

(

i

2
C0 − β

)

+ 2C ′
2D + C2D

2
]}

v1 , (26)

0 = iβu1 + v′
1 , (27)

where both ′ and D denote derivatives with respect to y.

5 Numerical results

We discretise the disturbance equations (25)–(27) using a pseudo-spectral
Chebyshev collocation method of [20] and [21]. The advantage of this method
is that it converges exponentially quickly: 100 collocation point was used to
guarantee the accuracy exceeding 1% for all reported results.

Upon discretisation equations (25)–(27) result in a generalised algebraic eigen-
value problem for the complex amplification rate σ

(A − σB)X = 0, (28)

where A = A(C0, V, E0, α, β) and B are matrix operators resulting from
the right- and left-hand sides of equations (25)–(27), respectively, and X is
the eigenvector consisting of disturbance velocity components and pressure
(u1, v1, π1)

T .

Eigenvalue problem (28) was solved using an IMSL [22] routine DGVLCG for
fixed values of C0, V , E0 and α (or, equivalently, Re∗) and over a range of
wavenumbers β to determine the maximum of the amplification rate σR

max =
σR(βmax), see Figure 1. While the value of βmax depends on the physical pa-
rameters of the problem the qualitative behaviour of the amplification rate
curves remains the same in all investigated regimes. In all cases the instabil-
ity (i.e. σR

max > 0) was detected for one mode with a single maximum σR
max

(refer to the top curves in Figure 1(a)–(d). The physical mechanism of this
instability will be discussed in Section 5.2. The critical value of α (or Re∗)
was subsequently determined by varying it iteratively for fixed values of other
governing parameters until the condition

∣

∣

∣σR
max

∣

∣

∣ ≤ 10−7 was satisfied.
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Fig. 1. Disturbance temporal amplification rates σR for four leading instability
modes as a function of wavenumber β at points A–D in Figure 4 for C0 = −10−2

and E0 = 1.

5.1 Critical parameters at the onset of instability

We discuss the case of small longitudinal pressure gradient |C0| → 0 first.
In this limit PVF and NF flows become identical. The critical values of
the Reynolds number and wavenumber obtained for both types of fluids for
C0 = −10−4 are essentially the same. This classical case was considered in
literature in the past [15–17]. It provides an accuracy check for our numeri-
cal algorithm. As seen from equation (15) in the limit V → 0 the PVF flow
reduces to NF Poiseuille flow. Thus we recover the well-known critical values
for such a flow: (Re∗, β) = (5772.22, 1.02) [23]. When V 6= 0, similarly to the
analysis reported in [15–17] for plane NF Poiseuille–Couette flow, we find that
as the wall velocity becomes larger, the value of the critical Reynolds number
increases reaching a local maximum, then slightly decreases before rapidly in-
creasing again without bound, see Figure 2(a). It is found that, like NF flows,
Couette-type PVF flows satisfying the condition U ′(y) > 0, −1 ≤ y ≤ 1 are
always stable. The value of the critical wavenumber rapidly decreases with
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Fig. 2. (a) The critical Reynolds number Re∗, (b) wavenumber β and (c) scaled
wavespeed 4αc/|C0| as functions of the scaled boundary velocity 4αV/|C0| for
E0 = 1 and C0 = −10−4 (dash-dotted lines) and C0 = −10−2 (NF—solid lines,
PVF—dashed lines). The flow is unstable for Re > Re∗.

the wall velocity, see Figure 2(b) which is an intuitively clear result: a moving
wall effectively stretches the instability structures which will be discussed in
more detail in Section 5.2.

Figure 2(c) presents the ratio of the wavespeed c = −σI/β of the most am-
plified disturbance mode and the maximum velocity of the Poiseuille flow
component |C0|/(4α) as a function of the scaled wall velocity 4αV/|C0|. The
behaviour of the critical wavespeed is non-monotonic. For small increasing wall
velocities it also increases (the instability structures are slightly accelerated by
the moving wall), but then the wavespeed starts decreasing relative to the wall
velocity. As will be discussed in Section 5.2 this is due to the relocation of the
critical layer where the condition c = U is satisfied and the major disturbance
production occurs [19] towards the stationary wall. For sufficiently large wall
velocities the scaled disturbance wave speed starts increasing until it reaches
its asymptotic value just below 0.32. It remains smaller than the wall velocity
so that the critical layer only exists near the stationary wall when the ratio of
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the wall velocity and the maximum Poiseuille component exceeds the value of
about 0.245.

For larger pressure gradients the qualitative behaviour of the critical parame-
ters remains the same, but a quantitative difference between the NF and PVF
critical values of Reynolds number and wavespeed appears, compare the solid
and dashed lines in Figure 2(a and c). PVF flows become more stable and
the corresponding disturbance waves propagate slower than their NF counter-
parts. This is an anticipated result. Indeed the comparison of expressions (15)
and (17) for PVF and NF velocities piezo-viscous effects lead to the reduc-
tion of the maximum flow velocity and, subsequently, the velocity gradients
which are responsible for instability. At the same time the critical values of the
wavenumber remain very close (lines in Figure 2(b) almost overlap). Overall,
for both NF and PVF flows strengthening the Poiseuille component plays a
destabilising role and leads to the increase of the disturbance wavenumber,
while increasing the Couette component has the directly opposite effect. Our
numerical results show that for both NF and PVF flows an instability does
not occur if the ratio of the wall and Poiseuille velocities exceeds the value of
4αV/|C0| ≈ 0.704 which is in excellent agreement with the conclusion made
in [15].

Despite this similarity between NF and PVF flows discussed above Figures 3
and 4 reveal two features which distinguish them drastically. Firstly, and some-
what counter-intuitively, increasing the pressure gradient parameter |C0| along
the channel leads to significant flow stabilisation which is demonstrated for
pure Poiseuille PVF flow in Figure 3(a) (see also [24]). This stabilisation is ac-
companied by a slight elongation of the instability structures as seen from the
wavenumber data presented in Figure 3(b) and by the wavespeed decrease seen
in Figure 3(c). Comparison of the solid and dash-dotted lines in Figure 4(a)
also shows the stabilisation of Poiseuille–Couette flows for larger |C0|. One
reason for such a stabilisation is that as |C0| increases the PVF basic flow
velocity profile discussed in detail in [2] straightens near the channel walls.
In other words when the pressure gradient is increased the flow profile near
the walls approaches that of Couette flow which is found to be stable. The
second reason for stabilisation of PVF flows becomes evident from Figure 3(c):
the critical wavespeed decreases when |C0| increases and therefore the critical
disturbance production layer c = U mentioned previously moves closer to the
walls at which the disturbances are suppressed by the no-slip/no-penetration
boundary conditions. It is also seen from Figure 3 that these piezo-viscous
effects become noticeable for |C0| & 10−2. For smaller pressure gradients PVF
flows behave very similarly to ordinary fluid flows with constant viscosity.

Although the fluid considered here is assumed to have a shear-independent rhe-
ology the stabilisation of PVF Poiseuille-type flows in comparison with their
NF counterparts is somewhat similar to that observed in shear-thickening flu-
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Fig. 3. (a) The critical Reynolds number Re∗, (b) wavenumber β and (c) scaled
wavespeed 4αc/|C0| for plane Poiseuille flow (V = 0) as functions of the pressure
gradient parameter C0 for E0 = 1 (solid lines) and E0 = 0.5 (dashed lines). The
flow is unstable for Re > Re∗. Solid and dashed lines overlap in plot (c).

ids. As follows from equation (12) the pressure distribution across the channel
is such that it increases towards the walls (see also Figures 7–9(a) in Sec-
tion 5.2). According to (4) this leads to the viscosity increase in the near-wall
high-shear regions where instability is produced. The associated increase in
viscous dissipation suppresses arising disturbances similarly to what happens
in shear-thickening fluids even though such an effect is due to a larger viscosity
and not due to a stronger shear.

The second feature which distinguishes NF and PVF flows is that the latter
destabilise along the channel as the downstream coordinate x increases (or,
equivalently, parameter E0 decreases), compare the solid and dashed lines in
Figures 3(a) and 4(a) for C0 = −10−4 and the dash-dotted and dotted lines
lines for C0 = −10−2 in Figure 4(a). The reason for such a behaviour is traced
back to the fact that the fluid viscosity is a linear function of pressure. Since
according to equation (12) the pressure decreases along the channel, so does
the fluid viscosity. The respective reduction in viscous dissipation encourages
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Fig. 4. (a) The critical Reynolds number Re∗, (b) wavenumber β and (c) scaled
wavespeed 4αc/|C0| as functions of the scaled boundary velocity 4αV/|C0| for
C0 = −10−4 (solid and dashed lines), C0 = −10−2 (dash-dotted and dotted lines)
and E0 = 1 (solid and dash-dotted lines) and E0 = 0.5 (dashed and dotted lines).
The flow is unstable for Re > Re∗. The dotted and dash-dotted lines overlap in
plots (b) and (c).

the development of instability at the downstream locations at lower values of
Reynolds number. Figure 5 confirms this. It shows that the decrease of the
critical Reynolds number associated with the reduction of viscosity along the
channel is essentially linear in E0 (i.e. exponential in x) for pure Poiseuille
flow (V = 0) for both C0 = −10−4 and C0 = −10−2, see the solid lines in
Figure 5(a) and (b). In the limit of an infinitely long channel (i.e. for E0 → 0)
PVF Poiseuille flow is inherently unstable because the critical Re∗ → 0. This
means that no matter how small the actual flow Reynolds number is, PVF
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Fig. 5. (a) and (b) Critical Reynolds number Re∗, (c) and (d) wavenumber β and
(e) and (f) wavespeed c as functions of E0 defined in equation (22) for C0 = −10−4

((a), (c), (e)) and C0 = −10−2 ((b), (d), (f)) and V = 0 (solid lines), V = 0.01
(dashed lines), V = 0.05 (dash-dotted lines), V = 0.1 (dotted lines).

Poiseuille flow will become unstable and will eventually break down far enough
from the entrance to the channel. This is a remarkable distinction from NF
Poiseuille flow which remains stable regardless of the length of the channel
provided the flow is sufficiently slow at the channel entrance. However in
drawing such a conclusion care should be taken since if the pressure along
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Table 1
Critical values of the Reynolds number in the limit of very long channel (E0 = 10−4)
for C0 = −10−4 and C0 = −10−2.

C0 = −10−4 C0 = −10−2

V 4α
|C0|

V 4α
|C0|

c Re∗ β 4α
|C0|

V 4α
|C0|

c Re∗ β

0 0 0.2638 0.6 1.020 0 0.2613 0.6 1.015

0.01 0.695 0.3182 11.2 0.084 0.148 0.2286 2.0 0.703

0.05 0.703 0.3176 273.1 3.5 × 10−3 0.613 0.3122 3.5 0.247

0.1 0.704 0.3174 1091.6 8.9 × 10−4 0.693 0.3175 11.2 0.084

the channel becomes too small the rheological model (4) is unlikely to remain
valid [25].

As seen from Figure 5(a and b) parallel PVF Poiseille–Couette flow (V 6= 0)
becomes more stable with increasing V at any location along the channel
for the selected parameters. The critical value of the Reynolds number still
decreases along the channel, but this decrease is not linear any more. More
importantly, for V 6= 0 the limiting value of Re∗ as E0 → 0 is not zero,
see the dotted line for V = 0.1 in Figure 5(a) as well as data computed for
E0 = 10−4 which is presented in Table 1. It increases with V . This means
that for PVF Poiseuille–Couette flows there may exist a range of Reynolds
numbers for which parallel basic flow remains stable even in very long channels.
However this range is significantly narrower than that for conventional fluids
with pressure-independent viscosity and it is further reduced as the applied
pressure gradient increases, see Figure 5(b) and Table 1. This is consistent
with our computational observations that PVF Couette-type flows with large
wall velocity V remain stable. Note that in the limit E0 → 0 the wavenumber
corresponding to the most dangerous disturbances tends to 0, see Figure 5(c)
and (d), meaning that disturbance structures elongate down the channel to
such a degree that they become effectively non-periodic and modify the mean
flow. The data in Table 1 shows that despite the significant reduction of the
critical wavenumber β the condition (24) is safely satisfied even for very small
values of E0 confirming the validity of parametrisation (22).

Figure 5(c–f) also shows that the elongation of the PVF flow disturbance
structures in the downstream direction is accompanied by the decrease of
their critical wavespeed for any fixed wall velocity. This is yet another feature
distinguishing PVF flow from its NF counterpart for which the disturbance
wavespeed remains constant along the channel. The wavespeed reduction is
more pronounced for larger values of the pressure gradient parameter |C0|.
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5.2 Instability mechanism

To identify the physical mechanism of instability we consider the disturbance
energy balance. We multiply the momentum equation (25) and (26) by the
complex conjugate velocity components ū1 and v̄1, respectively, add them
together, integrate by parts across the layer and use the continuity condition
(27) and boundary conditions (u1, v1) = (ū1, v̄1) = (0, 0) to obtain

σRΣk = Σα1 + Σα2 + Σuv , (29)

where

Σk ≡
∫ 1

−1
Ek dy =

∫ 1

−1

(

|u1|
2 + |v1|

2
)

dy ,

Σα1 ≡
∫ 1

−1
Eα1 dy = −α

∫ 1

−1
Π
[

(|u′
1|

2 + |v′
1|

2) + β2
(

|u1|
2 + |v1|

2
)]

dy

+α
∫ 1

−1

[

∂Π

∂y
ℜ (v1v̄

′
1 + v′

1v̄1) −
∂Π

∂y∂x
ℜ(u1v̄1)

]

dy ,

Σα2 ≡
∫ 1

−1
Eα2 dy = α

∫ 1

−1
[U ′ℜ (π′

1ū1 + iβπ1v̄1) + U ′′ℜ(π1ū1)] dy ,

Σuv ≡
∫ 1

−1
Euv dy = −

∫ 1

−1
U ′ℜ(v1ū1) dy

and ℜ(·) denotes the real part of the term in parentheses. The above terms
have a straightforward physical meaning. Namely:

Σk represents the disturbance kinetic energy. Σk is positively defined. Therefore
the sign of σR and therefore whether the flow is stable or unstable is deter-
mined by the sign of the sum of the three terms in the right-hand side of
equation (29). Subsequently, the positive (negative) terms in the right-hand
side play destabilising (stabilising) role.

Σα1 represents the viscous dissipation. The first integral in its definition is similar
to that in pressure-independent Newtonian fluids and is negatively defined.
The second integral takes into account the variation of a basic flow viscosity
with pressure. The numerical contribution of the second integral is found
to be small (it is proportional to C0 and C2

0 , respectively) so that Σα1

remains negative signifying the stabilising role of the basic flow viscosity.
Since within a linearised analysis framework the eigenfunctions (u1, v1, π1)
are defined up to a multiplicative constant we scale them in such a way that
Σα1 = −1 for all computed regimes.

Σα2 also represents the contribution to viscous dissipation however it is caused
by the perturbation of viscosity due to the pressure disturbances. This term
has no analogue in pressure-independent fluids and therefore it is instructive
to consider it separately.
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Table 2
Critical parameters and disturbance energy integrals for selected points in Figure 4
for C0 = −10−2 and E0 = 1.

V 4αV/|C0| α × 104 Re∗ β 4αc/|C0| Eα2 Euv

A 0.1 0.0249 6.2170 6548 0.9952 0.2650 -0.1752 1.1752

B 1.3 0.1898 3.6500 20546 0.6554 0.2328 -0.2028 1.2028

C 2.1 0.3209 3.8208 19872 0.5416 0.2595 -0.1347 1.1347

D 3.0 0.4528 3.7732 21535 0.4231 0.2861 -0.0896 1.0896

Σuv represents the energy exchange between the basic and disturbance velocity
fields.

Numerical results for selected marginal stability regimes for C0 = −10−2 and
E0 = 1 are presented in Table 2. They show that flow destabilization is always
caused by the interaction between the disturbance and basic flow velocity
fields. Namely, the velocity perturbations draw the energy from the basic flow
so that Euv > 0. At the same time term Eα2 remains negative. This means
that piezo-viscous effects enhance viscous dissipation. In turn this leads to the
increase of the critical Reynolds number for PVF observed in Figures 2(a) and
4(a). Note that the relative role of piezo-viscous dissipation is quite significant
even for small values of C0: it reaches 20% of the corresponding NF value for
C0 = −10−2. The results for different values of C0 and E0 are found to be
qualitatively similar and thus they are not discussed here.

In order to gain insight into the spatial structure of instability, in Figure 6 we
present the distribution of disturbance energy integrands across the channel.
The results show that for small wall velocities the disturbance energy produc-
tion occurs in the narrow regions near the channel walls, see the dotted line
in Figure 6(a). These correspond to a pair of classical Tollmien–Schlichting
waves similar to those observed in pure Poiseuille NF flow, see, for example,
[19]. They occur in the critical layers where the condition c = U is satisfied.
This is clearly seen from Figure 6(a and b): the horizontal solid lines show the
locations of two critical layers near the walls which coincide exactly with the
maximum of the disturbance energy production integrand Euv. When the top
wall velocity increases so that it exceeds the value of the critical wavespeed,
see entries for points C and D in Table 2, only one Tollmien–Schlichting wave
near the stationary wall survives while the disturbance energy production near
the moving wall becomes negative. This means that the disturbance energy
is fed back to the basic flow near the moving wall. As expected, the viscous
dissipation integrand of Σα1 corresponding to the basic flow viscosity remains
negative throughout the complete flow domain (see the solid lines in Fig-
ure 6). The strongest dissipation effects are observed very close to the channel
walls which suppress velocity perturbations. This behaviour is typical for NF
Poiseuille-type flows. However the distribution of the Σα2 integrand (see the
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Fig. 6. Disturbance energy integrands for points A–D in Figure 4. The solid, dashed
and dotted lines correspond to the integrands of Eα1, Eα2 and Euv, respectively.
The horizontal solid lines indicate the location of the critical layer.
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dashed lines in Figure 6) which represents piezo-viscous effects shows that it is
only negative near the stationary wall, but becomes positive near the moving
wall when its velocity is increased. Thus in contrast to their NF counterparts,
in PVF flows piezo-viscous effects tend to make a flow near the moving wall
less stable and a flow near the stationary wall more stable even though the
overall effect of viscosity remains stabilising. The Σα2 data in Table 2 suggests
that the overall piezo-viscous effects tend to become less stabilising as the wall
velocity increases. This is indeed seen in Figure 4(a): as V becomes larger the
curves for C0 = −10−2 approach those for C0 = −10−4 i.e. the NF limit.

In concluding this paper, in Figures 7–10 we present the basic flow velocity
and pressure profiles and the most dangerous disturbance fields for selected
points marked in Figure 4. For small wall velocities and C0 = −10−2 the ba-
sic flow velocity profile is close to parabolic and the basic flow pressure (and
so the viscosity) is almost constant across the channel, see Figure 7(a). The
instability pattern takes the form of two periodic sets of instability rolls lo-
cated near the upper and lower walls shifted by a half of a wavelength with
respect to each other, see Figure 7(b). As the upper wall velocity progres-
sively increases two effects are observed as demonstrated in Figures 8–10(b).
Firstly, the flow stabilises near the moving wall so that the top row of in-
stability rolls seen in Figure 7(b) disappears in Figures 8–10. Secondly, the
system of instability rolls near the bottom stationary wall survives, but the
distance between the neighbouring rolls increases. Figures 8–10(b) also reveal
a noteworthy correlation between the disturbance velocity and pressure fields
for Poiseuille–Couette flows: the disturbance pressure achieves its maxima in-
side the vortices rotating counter-clockwise and minima inside the clockwise
rotating vortices. Therefore the pressure is higher if disturbance vorticity has
the sign opposite to that of the basic flow. The piezo-viscous fluid inside such
vortices is slightly more viscous than inside the vortices rotating clockwise.

6 Conclusions

The stability of plane Poiseuille–Couette flows of a fluid whose viscosity in-
creases linearly with pressure has been investigated. It was shown that in the
limit of small longitudinal pressure gradients PVF flow solutions reduce to
those for common NF fluids with constant viscosity. However for larger val-
ues of the pressure gradient PVF flows generally become more stable than
their NF counterparts. Another significant distinction of PVF flows is that
they tend to destabilise in the downstream direction even if they are stable
in the vicinity of the channel entrance. The physical mechanism of instability
is identified as Tollmien–Schlichting waves which appear in the critical lay-
ers near both channel walls when the upper wall velocity is small. When
the wall velocity increases only one disturbance wave near the stationary
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Fig. 7. (a) Basic flow velocity and pressure profiles and (b) disturbance velocity
and pressure fields for point A in Figure 4. Lighter shading corresponds to higher
pressure.

plate survives. It was also shown that the instability waves draw their en-
ergy from the basic velocity field and that the piezo-viscous effects play an
overall stabilising role. Only stability of simple flows of shear-independent flu-
ids has been considered in the current work. Analysis of shear-thinning or
shear-thickening piezo-viscous fluids would proceed in a similar way and is
planned to be presented elsewhere. However our preliminary results do not in-
dicate that shear-thinning/thickening effects can lead to results qualitatively
different from those presented here for shear-independent fluids.
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