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Abstract

This four-part dissertation is essentially concerned with some theoretical as-

pects of the stability studies of power systems with large penetration levels

of distributed generation. In particular, in Parts I and II the main emphasis

is placed upon the transient rotor angle and voltage stability. The remaining

two parts are devoted to some system-theoretic and practical aspects of iden-

tification and modeling of aggregate power system loads, design of auxiliary

robust control, and a general qualitative discussion on the impact that distrib-

uted generation has on the power systems.

One of the central themes of this dissertation is the development of analytical

tools for studying the dynamic properties of power systems with asynchro-

nous generators. It appears that the use of traditional tools for nonlinear

system analysis is problematic, which diverted the focus of this thesis to new

analytical tools such as, for example, the Extended Invariance Principle. In

the framework of the Extended Invariance Principle, new extended Lyapunov

functions are developed for the investigation of transient stability of power

systems with both synchronous and asynchronous generators.

In most voltage stability studies, one of the most common hypotheses is the

deterministic nature of the power systems, which might be inadequate in

power systems with large fractions of intrinsically intermittent generation,

such as, for instance, wind farms. To explicitly account for the presence of

intermittent (uncertain) generation and/or stochastic consumption, this thesis

presents a new method for voltage stability analysis which makes an exten-

sive use of interval arithmetics.

It is a commonly recognized fact that power system load modeling has a

major impact on the dynamic behavior of the power system. To properly rep-

resent the loads in system analysis and simulations, adequate load models are

needed. In many cases, one of the most reliable ways to obtain such models

is to apply a system identification method. This dissertation presents new

load identification methodologies which are based on the minimization of a

certain prediction error.

In some cases, DG can provide ancillary services by operating in a load fol-

lowing mode. In such a case, it is important to ensure that the distributed

generator is able to accurately follow the load variations in the presence of

disturbances. To enhance the load following capabilities of a solid oxide fuel

plant, this thesis suggests the use of robust control.

This dissertation is concluded by a general discussion on the possible impacts

that large amounts of DG might have on the operation, control, and stability

of electric power systems.





Acknowledgments

This doctoral dissertation finalizes the work which I have carried out in the De-

partment of Electrical Engineering, Royal Institute of Technology (KTH) since

February 1999.

First, I would like to express my sincere gratitude to my supervisor Prof. Lennart
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Chapter 1

Introduction

“The idea is to try to give all the information to help others

to judge the value of your contribution; not just the

information that leads to judgment in one particular

direction or another .”

— Richard P. Feynman

1.1 Background and Motivation of the ProjectThe rapid development of distributed generation (DG) technology is grad-

ually reshaping the conventional power systems in a number of countries

in the Western Europe and North America. Wind power, microturbines,

and small hydropower plants are among the most actively developing distributed

generation. For instance, only for the period from January to June 2003, in the EU

countries approximately 1500 MW of wind power were installed to reach the land-

mark of 24626 MW installed capacity [1]. Moreover, it is projected that approxi-

mately 20% of all newly installed capacity will belong to DG [24]. It is important

to observe that the overwhelming majority of the aforementioned DG technologies

utilize asynchronous generators for electric power generation. As for the “inertia-

less” generators, fuel cells are apparently the most attractive long-term alternative.

Very high efficiency and reliability, modularity, environmental friendliness, noise-

less operation, and high controllability make fuel cell-driven power plants a sound

competitor on the future power market.

Presently, the impact of DG on the electric utility is normally assessed in plan-

ning studies by running traditional power flow computations, which seemingly is a

reasonable action, since the penetration ratios of the DG are still relatively small.

However, as the installed capacity of DG increases, its impact on the power system

behavior will become more expressed and will eventually require full-scale de-

tailed dynamic analysis and simulations to ensure a proper and reliable operation

of the power system with large amounts of DG. To address the need for dynamic

1



2 CHAPTER 1. INTRODUCTION

simulations, a number of models of the distributed generators were created in the

recent years [14,15,98]. However, to the best knowledge of the author, no system-

atic analytic investigations of the dynamic properties of the power systems with

large amounts of DG have been reported in the literature. That is, the immense

amount of case studies that can be found in the literature on DG focus mainly on

numerical experiments with either existing or artificial networks. While the nu-

merical experiments are of paramount importance to a better understanding of the

mechanisms which cause interaction between the DG and the utility, the develop-

ment of appropriate analytical tools for stability studies will open new perspectives

for dynamic security assessment of the power system and design of new control

systems, e.g., L fV controllers.

One of the main objectives of this dissertation is to partially fill this gap by

presenting a systematic method for analyzing the transient stability of a large-scale,

asynchronous generator-driven distributed generation.

Another important theme of this thesis is the voltage collapse analysis of power

systems with large fractions of intermittent power generators. It is known that the

majority of available tools for voltage collapse analysis make use of the implicit

assumption that the power system parameters are deterministic. While this is a

valid engineering approximation for conventional power systems with negligibly

small uncertainties, it might become an oversimplification in power systems with

large penetration ratios of DG. To account for the uncertainty due to the fluctuating

power output of the DG and possibly some other uncertainties in the system (such

as load variations, transformer tap-changer position, certain impedances, etc.) this

thesis proposes the use of interval arithmetics which is well suited for such oper-

ations. In simple terms, we suggested to restate the voltage collapse problem in

terms of an interval-valued optimization problem and then to solve it by applying

the Generalized Newton method. In this method, it is explicitly assumed that the

variables are uncertain, but are bounded.

It is a well-known fact that power system loads have a significant impact on the

dynamic behavior of the system. It appears that both power system damping and

voltage stability are dependent on the load properties. Therefore, the reliable deter-

mination of load characteristics becomes an important engineering task. In some

cases, it is more practical to aggregate several loads to an equivalent aggregate load

model. Several aggregate load models parameterized by 3 parameters have been

in use for a long time; however, no systematic effort has been made to develop an

algorithm for determining those parameters. Such an algorithm is developed and

presented in this thesis.
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1.2 Outline of the Thesis

Conceptually, the thesis consists of 4 parts describing the results of the research in

the fields of

1. Transient stability of power systems with large penetration ratios of DG

2. Voltage collapse of power systems with significant amounts intermittent dis-

tributed generation

3. Identification and modeling of aggregate power system loads

4. Design of robust controllers enhancing the performance of distributed gen-

erators and a general discussion on the impact that DG has on the operation,

control, and stability of the electric utility.

Part I briefly presents the definition of power system stability and the system-

theoretic foundations of the Lyapunov direct method as well as the concept of

Extended Invariance Principle (EIP). The framework of EIP is used for the con-

struction of new extended Lyapunov functions for a small-scale power system con-

sisting of synchronous and asynchronous machines. It is also demonstrated in this

part of the thesis that several well-known methods cannot yield a valid Lyapunov

(energy) function for the power system consisting of a single asynchronous gener-

ator.

Part II addresses some issues related to the voltage collapse analysis of uncer-

tain power systems. Here, the emphasis is placed upon finding the critical system

loading in the presence of uncertain generation and/or consumption. The uncertain

quantities are assumed to be bounded, which allows us to explicitly deal with them

by using interval analysis.

Part III presents a new method for identifying the parameters of aggregate non-

linear dynamic power system loads modeled by the Wiener-Hammerstein structure.

The properties of this new identification method [belonging to the family output

error methods] are studied both analytically and by using artificial data as well as

field measurements.

Part IV demonstrates the use of robust controllers for the enhancement of the

performance of a solid oxide fuel cell-driven DG power plant, which substantially

improves the load following capability of the power plant in the presence of system

uncertainties and bounded (structured) disturbances. Part IV also contains a dis-

cussion on the impact that large amounts of DG have on the operation, protection

system, and control of the power system.
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1.3 Main Contributions

The main results of this research project contain contributions to several fields of

electric power engineering, namely, the transient rotor angle and voltage stability

of electric power systems, as well as the applied identification of aggregate load

parameters. Other key contributions are related to the design of auxiliary robust

controllers enhancing the performance of DG and the general assessment of the

impact that large amounts of DG might have on the utility. More specifically, the

key contributions can be briefly summarized as follows.

1. An overview of DG technologies relevant to this project was made.

2. The DG technologies were qualitatively analyzed and their impact on the

power system was discussed. Here, such questions as the impact on the volt-

age control, inertia constants, power quality, fault current levels, protection

system, reliability, and stability were studied.

3. Models of asynchronous generators applicable to transient stability analysis

of the power system are discussed in detail.

4. The applicability of direct Lyapunov method to stability analysis of a power

system consisting of both synchronous and asynchronous generators was

studied theoretically.

5. It was shown that the Energy Metric Algorithm, First Integral of Motion, and

the Krasovskii method are incapable of synthesizing a valid Lyapunov/energy

function for a single asynchronous generator.

6. Extended Invariance Principle was reviewed and its application to the power

system with asynchronous generators was discussed.

7. New Extended Lyapunov functions were developed for the second and third

order models of the asynchronous generator.

8. To simplify the use of Extended Invariance Principle, the use of interval

arithmetics for certain set operations was proposed.

9. It was shown analytically that there exists an Extended Lyapunov function

for a mixed three-machine power system.

10. Several basic numerical experiments were conducted to further explore the

properties of the new Extended Lyapunov functions.
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11. The use of interval analysis is proposed for the voltage collapse analysis

of power systems with large fractions of intermittent power generation and

uncertain loading.

12. Two new methods were proposed for the identification of linear and nonlin-

ear models of aggregate power system loads.

13. The properties of the proposed methods were studied analytically and by

means of numerical experiments. The identification methods were success-

fully applied to identification of load models of a real-world paper mill.

14. The load following capabilities of a solid oxide fuel cell-driven power plant

were explored by means of a numerical experiment.

15. To enhance these load following capabilities, a two-degree-of-freedom H∞
controller was designed and verified.

1.4 List of Publications

The work on this doctoral project resulted in a number of publications, some of

which are listed below.

1. V. Knyazkin1, M. Ghandhari, and C. Cañizares, “Application of Extended

Invariance Principle to Transient Stability Analysis of Asynchronous Gen-

erators”, Proceedings of “Bulk Power System Dynamics and Control VI,

August 22-27, 2004, Italy.

2. V. Knyazkin, M. Ghandhari, and C. Cañizares, “On the Transient Stability

of Large Wind Farms”, Proceedings of “The 11th International Power Elec-

tronics and Motion Control Conference”, September 2–4, Latvia, 2004.

3. V. Knyazkin, L. Söder, and C. Cañizares, “Control Challenges of Fuel Cell-

driven Distributed Generation”, Proceedings of IEEE Power Tech Confer-

ence Bologna, 2003, Volume: 2, June 23–26, 2003 Pages:564–569.

4. V. Knyazkin and T. Ackermann, “Interaction Between the Distributed Gen-

eration and the Distribution Network: Operation, Control, and Stability As-

pects”. In CIRED 17th International Conference on Electricity Distribution,

Barcelona, 12–15 May 2003.

1This is an anglicized version of the name that according to the Latvian Regulations No. 295

“On Spelling and Identification of Surnames” must be spelled as Valerijs Knazkins.
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5. V. Knyazkin, C. Cañizares, and L. Söder, “On the Parameter Estimation and

Modeling of Aggregate Power System Loads”. IEEE Transactions on Power

Systems, Volume: 19, Issue: 2, May 2004 Pages:1023–1031.

6. V. Knyazkin, L. Söder, and C. Cañizares, “On the Parameter Estimation

of Linear Models of Aggregate Power System Loads”. The Proceedings

of IEEE PES General Meeting, 2003, Volume: 4, 13–17 July 2003 Pages:

2392–2397 Vol. 4.

7. T. Ackermann and V. Knyazkin, “Interaction Between Distributed Genera-

tion And The Distribution Network: Operation Aspects”, The Proceedings

IEEE PES Transmission and Distribution Conference and Exhibition 2002:

Asia Pacific, 6–10 October 2002, Yokohama, Japan.

8. V. Knyazkin, “On the Use of Coordinated Control of Power System Com-

ponents for Power Quality Improvement”, Technical Licentiate. Royal In-

stitute of Technology, Stockholm, TRITA-ETS-2001-06, ISSN 1650-675X,

Dec. 2001.

9. L. Jones, G. Andersson, and V. Knyazkin, “On Modal Resonance and Inter-

area Oscillations in Power Systems”, The Proceedings of The IREP Sym-

posium “Bulk Power System Dynamics and Control V” in August, 2001,

Onomichi, Japan.

10. V. Knyazkin and L. Söder, “Mitigation of Voltage Sags Caused by Motor

Starts by Using Coordinated Control and a Fast Switch”, The Proceedings
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Chapter 2

Background

“ Analysis of stability, . . . , is greatly facilitated by classification

of stability into appropriate categories. Classification,

therefore, is essential for meaningful practical

analysis and resolution of power system

stability problems.”

— A quotation from [75]

This chapter briefly presents the key definitions and concepts used throughout the

thesis.

2.1 Definition Of Distributed GenerationIn the literature, a large number of terms and definitions are used to des-

ignate generation that is not centralized. For instance, in Anglo-Saxon

countries the term “embedded generation” is often used, in North Ameri-

can countries the term “dispersed generation”, and in Europe and parts of Asia, the

term “decentralised generation” are used to denote the same type of generation.

This thesis will follow the general definition proposed in [13]:

Definition 1 Distributed generation is an electric power source connected directly

to the distribution network or on the customer side of the meter.

The distinction between distribution and transmission networks is based on the

legal definition. In most competitive markets, the legal definition for transmission

networks is usually part of the electricity market regulation. Anything that is not

defined as transmission network in the legislation can be regarded as distribution

network. It should be noted that Definition 1 does not specify the rating of the gen-

eration source, as the maximum rating depends on the local distribution network

conditions, e.g. voltage level. Furthermore, Definition 1 does neither define the

area of the power delivery, the penetration, the ownership nor the treatment within

the network operation as some other definitions do.

9
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Table 2.1: Relative size of distributed generation

Micro distributed generation ∼ 1 Watt < 5kW

Small distributed generation 5 kW < 5 MW

Medium distributed generation 5 MW < 50 MW

Large distributed generation 50 MW <∼ 300 MW

To further clarify the concept of distributed generation, it is also necessary to

define the relative size of the DG unit. The classification of distributed generators

according to their relative sizes is briefly summarized in Table 2.1. The penetration

level1 (PL) can be defined in two ways as is shown below.

PL =
PDG

PLoad

·100 [%] (2.1)

PL =
PDG

PLoad +PDG

·100 [%], (2.2)

where PDG stands for the total active power of all distributed generators installed in

a given area and PLoad is the total active power of the load in the same area. In this

thesis the first definition is assumed.

2.2 Dynamic Phenomena in Power Systems

The importance of power system stability has been recognized at the early stage

of the power system development [91, 121]. The dimension and complexity of

power systems have been gradually increasing over the years, making the power

system stability phenomenon a more important and challenging problem. For in-

stance, modern interconnected power systems are large, integrated, and complex

dynamic structures which are subject to constantly acting various (possibly over-

lapping) physical phenomena ranging from very fast ones such as transients due

to lightening strokes to quite slow ones, such as, for instance, the dynamics of a

boiler.

A first step towards a better understanding of the power system stability phe-

nomenon is to adequately define and categorize the various phenomena occurring

in the power system. Normally, all power system phenomena are studied in the

framework of three general structures, i.e., administrative, physical, and time-scale

1In this thesis ‘penetration level’ and ‘penetration ratio’ are used synonymously.
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Figure 2.1: Simplified chart of dynamic phenomena in power systems [18]. Zones

A, B, C, and D denote fast transients, generator dynamics, quasi steady state, and

steady state, respectively.

structures [107]. The administrative structure regulates the political organization

of the power grid, i.e., it establishes the hierarchical structure of various layers

of the power grid. The physical structure describes the main components of the

power system, relations between them, control equipment, as well as the energy

conversion principles. Finally, the time-scale structure categorizes the dynamic

phenomena that occur in the power system according to the time scale of the un-

derlying physical processes. The latter structure is arguably the most appropriate

for studying the dynamics of the power system and hereby is adopted in this thesis.

Figure 2.1 shows an approximate time-scale structure of power system phenomena

of interest, which will be used in this thesis. In general, all the phenomena can be

divided in two large groups corresponding to fast and slow dynamics, depending

on the time scale of the underlying physical processes triggering the mechanisms

of power system instability. In the remainder of this chapter various definitions of

power system stability are presented and discussed.

2.3 Formal Definition of Power System Stability

The concept of stability is one of the most fundamental concepts in most engi-

neering disciplines. Due to the devastating impact that instabilities might cause in

dynamical systems, numerous definitions of stability have been formulated, em-

phasizing its various aspects that reflect the manifestation of the system’s stable

state. It is known that over 28 definitions of stability were introduced for technical
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and physical reasons in the systems theory. Some of the definitions might be quite

useful in one situation, but inadequate in many others. To avoid possible ambi-

guities and establish rigorous foundations of the subsequent discussion, the main

emphasis in this thesis is placed upon the so-called stability in the sense of A. M.

Lyapunov [103].

Technical assumptions

A1: The power system can in general be satisfactorily described by a set of first-

order ordinary differential-algebraic equations (DAE) of the form:

[
ẋ

0

]

=

[
f (t,x,y, p)
g(t,x,y, p)

]

= F(t,x,y, p), (2.3)

where variable t ∈ I ⊆ R represents time, the derivative with respect to time is

denoted as ẋ = dx/dt, x ∈U ⊆ R
n designates the vector of state variables, y ∈ R

m

is the vector of algebraic variables, p ∈R
l is the vector of controllable parameters,

f : I ×R
n×R

m×R
l→R

n stands for a certain nonlinear function, and g :×R
n×

R
m×R

l → R
m denotes a nonlinear vector-valued function.

A2: We assume that the Jacobian matrix

Dyg(x,y, p) =
∂g

∂y
(2.4)

is nonsingular along all the trajectories of (2.3), thus ensuring that the set of DAE

can be reduced to a set of ODE’s by virtue of the Implicit Function Theorem [54,

104].

A3: It is also assumed that the function F is sufficiently smooth to ensure ex-

istence, uniqueness, and continuous dependence of the solutions of (2.3) on the

initial conditions over the domain of F .

A4: Without loss of generality, it will be assumed that the origin is a critical point

of (2.3).

Finally, let Br denote an open ball of radius r, i.e., Br = {x ∈U : ‖x‖< r}, where

‖ ‖ is any norm and σ stands for the right maximal interval where x(·, t0,x0, p) is

defined.

Definition 2 Let assumptions A1–A4 hold. Then, the solution x = 0 is called stable

if ∀ε > 0 and ∀t0 ∈ I there exists a positive number δ such that ∀x0 ∈Bδ and

∀t0 ∈ σ , the following inequality holds: ‖x(t, t0,x0, p)‖< ε .
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This definition can be loosely restated in other terms: for every given positive ε
and t0 ∈I , there exists a positive δ, which in general is a function of ε , such that

for all initial values of x that belong to an open ball of radius δ, the solution x(t)
remains in an open ball of radius ε for all time.

Definition 3 The system is termed unstable if it is not stable.

Definition 4 The solution x = 0 of system (2.3) is referred to as uniformly stable if

∀ε > 0 there exists a δ(ε) > 0 : ∀x0 ∈Bδ and ∀t0 ∈I such that ‖x(t, t0,x0, p)‖< ε .

Remark: Stated differently, uniform stability of (2.3) is obtained by relaxing the

dependence of δ on t0.

Definition 5 The solution x = 0 of system (2.3) is called attractive if for each t0 ∈
I there is a positive number η = η (t0), and for each positive ε and ‖x(x0, p)‖< η
there is a positive ω = ω(t0,ε,x0, p) such that t0 +ω ∈ σ and ‖x(t, t0,x0, p)‖ < ε
for all t ≥ t0 +ω.

Definition 6 The solution x = 0 is asymptotically stable if it is both stable and

attractive.

Note: In the definition above it is necessary to require that the system is both stable

and attractive, since attractivity does not—in general—imply stability. In other

words, it is possible to construct an example in which the origin is attractive, i.e.,

every solution tends to it as t→ ∞, but yet the origin is unstable [129].

Definition 7 Let x∗ be a hyperbolic equilibrium point. Its stable and unstable

manifolds, W s(x∗) and W u(x∗), are defined as follows:

W s(x∗) = {x ∈ R
n : Φ(t,x)→ x∗ as t→ ∞}

W u(x∗) = {x ∈ R
n : Φ(t,x)→ x∗ as t→−∞},

where Φ(t,x) is the solution of (2.3). Then the stability region (or region/domain

of attraction) of a stable equilibrium x∗ is defined as

A(x∗) = {x ∈ R
n : lim

t→∞
Φ(t,x) = x∗}.
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Definition 8 If there exists an energy function for system (2.3), then the stability

boundary ∂A(x∗) is contained in the union of the stable manifolds of the unstable

equilibria on ∂A(x∗). That is,

∂A(x∗)⊆
⋃

xi∈∂A(x∗)

W s(xi),

where xi are the hyperbolic equilibria of (2.3).

Definition 9 The system (2.3) falls into the category of linear systems if F is a

linear function.

Most of physical dynamic systems, including power systems, are essentially non-

linear; however, it has become a common practice to study the local behavior of the

original nonlinear system by linearizing it around an equilibrium point of interest.

Then some of the dynamic properties of the nonlinear system can be inferred by

analyzing the corresponding linear model. These properties, however, hold true

only in some sufficiently small neighborhood of the equilibrium point. To obtain

results that are valid globally, the nonlinear model has to be analyzed.

Definition 10 The system (2.3) is referred to as autonomous if F is not an explicit

function of time; otherwise it is termed non-autonomous.

Remark: Often studying the dynamic properties of power systems, it is assumed

that the system at hand is autonomous. This assumption allows the use of much

more simple analytical tools; however, in general, strictly speaking, power systems

are non-autonomous [47].

Some of the presented concepts are further clarified by the following two ex-

amples.

Example: Consider the system of 2 nonlinear autonomous differential equations

[
ẋ1

ẋ2

]

=

[
x2− x1x2

−0.9x1− (x2
1−0.7)x2

]

. (2.5)

Clearly, the origin is a critical point of (2.5), but no system trajectory converges

to it. However, as the simulations indicate, all the trajectories are bounded for

all sufficiently small ‖x0‖. Thus, the origin of the system is unstable. Figure 2.2

shows the phase portrait of (2.5) for some initial conditions. It can be seen in the

figure that the system trajectory does not converge to a single point in the plane
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Figure 2.3: Stable system. Time do-

main

but approaches a limit cycle. The qualitative behavior of the system trajectory is

clearer when the state variables are plotted versus time, see Fig. 2.3.

Example: Consider the following system of autonomous linear ODE

[
ẋ1

ẋ2

]

=

[
−x2

x1−0.5x2

]

. (2.6)

Again, the origin is an equilibrium point of (2.6), but the behavior of this sys-

tem differs drastically from that of (2.5), as numerical simulations confirm, see

Fig. 2.4–2.5. Now, all the trajectories of (2.6) converge the unique asymptotically2

stable equilibrium point—the origin—as time progresses. This is an intrinsic prop-

erty of all autonomous linear systems: the stability property is invariant in the

whole state space. That is, if a linear system is stable it is stable globally, and

conversely: an unstable linear system is unstable for any initial condition.

2.4 Rotor Angle Stability

To better understand the mechanisms of the instability phenomenon in power sys-

tems and devise tools suitable for preventing system instabilities, the general con-

cept of stability is categorized into three different but—in general—not disjoint

concepts of rotor angle, voltage, and frequency stability. Historically, the power

system researchers and practitioners investigating system’s stability placed empha-

sis on the rotor angle stability; only in the relatively recent years the importance of

2In fact, in this case the origin is an exponentially stable equilibrium.
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Figure 2.5: Asymptotically stable sys-

tem. Time domain

voltage stability was recognized. We therefore commence by quoting the classical

definition of power system stability due to E. Kimbark [69]:

Definition 11 Power system stability is a term applied to alternating-current elec-

tric power systems, denoting a condition in which the various synchronous ma-

chines of the system remain in synchronism, or “in step,” with each other.

While this definition is valid and satisfactorily conforms to the system-theoretic

definitions presented above, a more elaborated definition of power system stability

was proposed in [75]:

Definition 12 Power system stability is the ability of an electric power system, for

a given initial operating condition, to regain a state of operating equilibrium after

being subjected to a physical disturbance, with most system variables bounded so

that practically the entire system remains intact.

This new definition allows a more subtle distinction between various instability

scenarios based on the characteristics of the physical disturbance.

It is known that power systems are subject to continuously acting disturbances.

The vast majority of them are relatively small, compared to the power system ca-

pacity; however, more severe disturbances also occur. Therefore, it is natural to

subdivide the general concept of angle stability to the so-called small-disturbance

and transient stability. Thus, a power system is termed stable in the sense of small-

disturbance stability if the system’s generators are able to remain in step with each



2.5. VOLTAGE STABILITY 17

other after being subjected to a small disturbance. Similarly, a power system is said

to be transiently stable if it remains intact when subjected to a large disturbance.

Normally, a disturbance is considered small if it does not cause significant devia-

tions of the state variables from the pre-fault steady state equilibrium. Otherwise,

the disturbance is said to be large. Switching of a capacitor or a load are typical

examples of small disturbances; while a short circuit on a major power line is an

example of a large disturbance. Unlike the transient stability, the small-disturbance

stability is usually studied by analyzing the linearized equations of a given power

system.

2.5 Voltage Stability

In large-scale integrated power systems, the mechanisms that might lead to voltage

instability are to a certain extent interlinked with the rotor angle stability properties

of the system, making the analysis of the instability phenomenon quite compli-

cated [122]. Nevertheless, in the literature it is customary to distinguish between

voltage and rotor angle stability phenomena. To facilitate the understanding of the

various aspects of voltage instability mechanisms, the general and broad concept

of ‘voltage stability’ is subdivided into two subcategories, namely Small and Large

Disturbance Voltage Stability. These two concepts are defined as follows [75,122].

Definition 13 A power system is said to be small-disturbance voltage stable if it is

able to maintain voltages identical or close to the steady values when subjected to

small perturbations.

Definition 14 A power system is said to be large-disturbance voltage stable if it is

able to maintain voltages identical or close to the steady values when subjected to

large perturbations.

Thus, a voltage stable power system is capable of maintaining the post-fault volt-

ages near the pre-fault values. If a power system is unable to maintain the voltage

within acceptable limits, the system undergoes voltage collapse.

2.6 Frequency Stability

Loosely defined, the term ‘frequency stability’ refers to the ability of the power

system to maintain steady acceptable frequency following a severe system event
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resulting in a large generation-load imbalance. Technically, the frequency stabil-

ity is a system-wide phenomenon which primarily depends on the overall system

response to the event and the availability of substantial power reserves.

It is not very likely that distributed generation will have significant impact on the

frequency stability phenomenon in the near future; due to this fact, the frequency

stability phenomenon is not studied in this thesis.

2.7 Summary

It can be noted that the definitions of voltage stability follow closely those of the

rotor angle. Analogously, the analytical tools for studying the voltage stability

phenomena are the same. That is, the small-disturbance stability can be effec-

tively studied with the help of linearized models of the power system. Inspection

of the eigenvalues of the state matrix provides sufficient information regarding the

small-disturbance voltage stability of the power system in some neighborhood of a

given operating point. On the other hand, the investigation of the large-disturbance

voltage stability properties of the power grid, requires the use of nonlinear system

analysis. This observation concludes the presentation of the various stability def-

initions relevant to the work presented in this thesis. The next section will briefly

present modeling issues of such power system components as the synchronous and

asynchronous generators, and solid oxide fuels cells.



Chapter 3

Power System Modeling

“All these constructions and the laws connecting them

can be arrived at by the principle of looking

for the mathematically simplest concepts

and the link between them.”

— A. Einstein.

“Obtaining maximum benefits from installed assets on an interconnected power

system is becoming increasingly dependent on the coordinated use of automatic

control systems. The ability to optimize the configuration of such control devices

and their settings is dependent on having an accurate power system model, as well

as controllers themselves” [5].

This compendious but neat quotation form a CIGRE report is cited here to signify

the importance of having an accurate model of the system studied. Indeed, the

development of an adequate model of the process is an essential part of engineering

work. This chapter is therefore devoted to describing the basic models of some

relevant power system components.

3.1 Main Components of Power SystemsThe modern power systems are characterized by growing complexity and

size. For example, the energy consumption in India doubles every 10

years, which also applies to some other countries [87]. As the dimen-

sions of the power systems increase, the dynamical processes are becoming more

complicated for analysis and understanding the underlying physical phenomena.

In addition to the complexity and size, power systems do exhibit nonlinear and

time-varying behavior.

In an electrical system the power cannot be stored1, at each time instant there

should be a balance between the total produced and consumed power. Mathe-

1There are some exceptions e.g., a pump storage; however in those energy rather than power is

stored.

19
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matically this balance is expressed by differential and algebraic equations. The

presence of algebraic equations significantly complicates both analytical and com-

putational aspects of work when tackling with power systems.

To obtain a meaningful model of the power system, each component of the

power system should be described by appropriate equations be it algebraic equa-

tions, differential equations, or both. For example, there are different models of

an electrical generator; depending on the application a model of suitable exactness

and complexity should be chosen to represent the generator in the study. On the one

hand, very simple models of a generator are rarely used in power system studies

when accuracy of the results is a great concern. On the other hand, if a system con-

sists of 300 generators, each modeled by a set of three differential equations, the

system analyst would have to process at least 900 differential equations describing

the system as well as quite a few algebraic equations, the number of which de-

pends on the topology of the network. The presence of other equipment, e.g., high

voltage direct current (HVDC) systems, further contributes to the aforementioned

number of equations. Clearly, it is barely possible to carry out any analytical study

on such systems.

To overcome the problem of high dimension, the order of the system has to be

reduced. This can be done in several ways:

• Based on the physical insights, several generators are aggregated in a group

of coherent generators [88].

• Having set up the system equations, one applies a model reduction technique

and eliminates the states that have little effect on the system dynamics [88].

• Using field measurements, one applies a system identification technique to

obtain an equivalent model of the system [79].

Depending on the case study, any of the methods or a combination of them can be

used to obtain ‘best’ dynamical models.

Linear and Nonlinear Systems

As was already mentioned, the nature of power systems is essentially nonlinear.

Mathematically speaking, nonlinear systems are known to be very hard to manage.

To work around this problem, when studying the behavior of a power system in a

neighborhood of an equilibrium point, it is a common assumption that the power

system is a linear, time-invariant system [101]. That is, the initial nonlinear sys-

tem is approximated by a linear one. In many cases of practical importance, this



3.1. MAIN COMPONENTS OF POWER SYSTEMS 21

assumption works quite well yielding numerous advantages. However, when tran-

sient stability of the system is investigated, the use of a linear model may not be

justified. There are several reasons for questioning the validity of the linear model;

the main reason is the dependence of the qualitative behavior of a nonlinear model

on the level of disturbance. This statement is further illustrated by the following

Example: Consider the following two systems described by second order homoge-

nous differential equations (DE)

ẍ1(t)+0.01ẋ1(t)+ x1(t) = 0, (3.1)

ẍ2(t)+0.01ẋ2(t)+ sinx2(t) = 0. (3.2)

Equation (3.1) is a linear DE, while (3.2) is a nonlinear differential equation. We

now determine the qualitative behavior of the solutions of (3.1) and (3.2).

Since the first equation is a linear equation with the eigenvalues having negative

real part (ℜ (λ1,2) = −1/200), the domain of attraction is the whole plane. This

means, for any choice of initial state of the system, the system state variables will

always converge to the origin. This is confirmed by the explicit solution of (3.1)

x1(t) = exp(−t/200)C sin(ω1t +φ) ,

where ω1 is the imaginary part of the eigenvalue, the constants C and φ are deter-

mined by initial conditions. Clearly, lim
t→∞

x1(t) = 0,∀C,φ.

Now equation (3.2) is examined. Despite its apparent simplicity, there exists

no closed-form solution to this equation. The difficulty in finding closed-form

solutions to nonlinear differential equations2 has stimulated the search for other

methods which allow the analyst to obtain a qualitative characteristics of a solution

without actually having to solve the equation.

For the moment, this approach will not be pursued, instead the domain of at-

traction of this system will be found. This is done by integrating the equation

backwards in time [128]. The domain of attraction3 is the region which includes

the origin, see Fig. 3.1. If the initial state of the system was chosen inside the re-

gion, the system states will eventually converge to the origin, otherwise the origin

will never be reached. �
It is evident that for small deviations from the origin, equations (3.1) and (3.2) are

equivalent (sinx≈ x); as the deviations grow in magnitude, the difference in the be-

havior becomes more expressed. This example concludes the notes on qualitative

difference between linear and nonlinear models.

2Only in some exceptional cases there exist closed-form solutions to nonlinear systems [127].
3The Bendixson theorem indicates that this domain is open.
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Figure 3.1: Domain of attraction of system (3.2)

Appreciating the importance of proper modeling of power system components,

we first present the nonlinear and then linearized equations describing the basic

components of power systems.

Modeling of Synchronous Machines

Synchronous machines are one of the most important power system components.

They are also among the oldest pieces of electrical equipment in use. We com-

mence by considering the equations describing a synchronous machine.

Depending on the nature of a study, several models of a synchronous generator,

having different levels of complexity, can be utilized [74], [88]. In the simplest

case, a synchronous generator is represented by a second-order differential equa-

tion, while studying fast transients in the generator’s windings would require the

use of a more detailed model, e.g., 7th order model.

In this project, fast dynamics of synchronous generators and the network are

neglected and the generators are modeled by the two-axis model [107], i.e., it is

assumed that the dynamical characteristics of a generator can be accurately repre-

sented by four differential equations, see (3.3)–(3.6).

dδi

dt
= ωi−ωs (3.3)

Mi

dωi

dt
= TM, i−

(
E ′q,i−X ′d,iId,i

)
Iq,i

−
(
E ′d,i +X ′q,iIq,i

)
Id,i−Di (ωi−ωs) (3.4)

T ′do,i

dE ′q,i

dt
= −E ′q,i−

(
Xd,i−X ′d,i

)
Id,i +E f d,i (3.5)
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T ′do,i

dE ′d,i

dt
= −E ′d,i−

(
Xq,i−X ′q,i

)
Iq,i (3.6)

In the equations above, the following symbols are used to denote:

• δi: The rotor shaft angle of the ith generator. Normally this angle is expressed

in radians or degrees.

• ωi,ωs: The rotor angular velocity of the ith generator. This velocity is com-

monly expressed in radians per second or per unit. ωs is the synchronous

speed of the system which usually takes two values ωs = 100π,(120π) radi-

ans per second.

• Mi: The shaft inertia constant of the ith generator which has the units of

seconds squared.

• TM,i: The mechanical torque applied to the shaft of the ith generator.

• E ′q,i,E
′
d,i: These symbols denominate the transient EMF’s of the machine in

the q and d axes, respectively.

• Iq,i, Id,i: Are the equivalent currents of the synchronous machine in the q and

d axes, respectively.

• Di: The damping coefficient of the ith generator.

• T ′do,i,T
′

qo,i: Are transient time constants of the open circuit and a damper

winding in the q-axis. These time constants are commonly expressed in

seconds.

• Xq,i,Xd,i,X
′
q,i,X

′
d,i: These four symbols stand for the synchronous reactance

and transient synchronous reactance of the ith machine.

Sometimes equation (3.6) is eliminated yielding the third-order model of the syn-

chronous generator. In the equations above, the index i runs from 1 to n, where n is

the number of synchronous generators in the system. In our case studies, the num-

ber of synchronous machines does not exceed 2; yet in many studies this number

may exceed several hundred.
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Modeling the excitation system

Control of the excitation system of a synchronous machine has a very strong in-

fluence on its performance, voltage regulation, and stability [34]. Not only is the

operation of a single machine affected by its excitation, but also the behavior of

the whole system is dependent on the excitation system of separate generators. For

example, inter-area oscillations are directly connected to the excitation of separate

generators [71]. These are only a few arguments justifying the necessity for accu-

rate and precise modeling of the excitation system of a synchronous machine. This

subsection therefore presents the modeling principles of the excitation system. A

detailed treatment of all aspects of the modeling is far beyond the scope of the

thesis; we only synoptically present a literature survey on the subject.

There are different types of excitation systems commercially available in power

industry. However, one of the most commonly encountered models is the so-called

“IEEE Type DC1” excitation system. The main equations describing this model

are listed below.

TE,i
dE f d,i

dt
= −

(
KE,i +SE,i

(
E f d,i

))
E f d,i +VR,i (3.7)

TA,i
dVR,i

dt
= −VR,i +KA,iR f ,i−

KA,iKF,i

TF,i
E f d,i

+KA,i (Vre f ,i−Vi) (3.8)

TF,i
dR f ,i

dt
= −R f ,i +

KF,i

TF,i
E f d,i (3.9)

In these equations, the parameters and variables used are:

• TE,i,KE,i,E f d,i,SE,i,: Time constant, gain, field voltage, and saturation func-

tion of the excitor.

• VR,i,TA,i,KA,i: Exciter input voltage, time constant and gain of the voltage

regulator (amplifier), respectively.

• Vre f ,i,Vi: The reference and actual voltage of the ith node.

• R f ,i,KF,i,TF,i: Transient gain reduction circuit parameters—state, gain, and

time constant.

A block diagram of the exciter given by equations (3.7)–(3.9) is shown in Fig. 3.2.

As is evident from (3.7)–(3.9), each excitor of the type DC1 adds three state vari-

ables to the state matrix.
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Figure 3.2: IEEE Type DC1 exciter system with saturation neglected

Modeling the turbine and governor

The number of poles of a synchronous generator and the speed of the prime mover

determine the frequency of the ac current produced by the generator. In order

to control the primer mover, turbine with associated controls are used in power

systems. There exist two types of turbines—hydro and steam turbines. Only steam

turbines will be presented here.

There are several models of the steam turbines in operation in power systems.

We confine ourselves to exhibiting the simplest first-order models of the turbine

and speed governor. The equations which model the dynamics of these devices are

shown below [107].

TCH,i
dTM,i

dt
= −TM,i +PSV,i (3.10)

TSV,i
dPSV,i

dt
= −PSV,i +PC,i−

1

Ri

(
ωi

ωS

)

. (3.11)

The model (3.10)–(3.11), corresponds to a steam turbine with no reheater. The

variables and parameters of equations (3.10)–(3.11) are given in [107]. While be-

ing important pieces of power system equipment, the dynamics of the turbine and

governor are normally much slower4 than that of the exciter. This fact is often used

as an argument for neglecting the dynamics of these devices.

4In [107] the following figures are given: TSV = 2 sec. and TCH = 4 sec. On the other hand, TA

is approximately 10 to 100 times smaller.
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Asynchronous Generators

It is known that the essential dynamical properties of an asynchronous generator

can be accurately described by the following model [73]

1

ωs

dψds

dt
= −

rsxrr

D
ψds−ψqs +

rsxm

D
ψdr + vds

1

ωs

dψqs

dt
= ψds−

rsxrr

D
ψqs +

rsxm

D
ψqr + vqs

1

ωs

dψdr

dt
= −

rrxss

D
ψdr +

rrxm

D
ψds−

ωs−ωr

ωs

ψqr + ṽdr

1

ωs

dψqr

dt
= −

rrxss

D
ψqr +

rrxm

D
ψqs +

ωs−ωr

ωs

ψdr + ṽqr

dωr

dt
=

ωs

2H
(Tm−Te) , (3.12)

where xss = xs + xm, xrr = xr + xm, D = xssxrr− x2
m, Te = xm(ψqsψdr−ψdsψqr)/D.

xr and xs stand for the rotor and stator leakage reactances, respectively. xm and

ωr signify the magnetizing reactance and the mechanical rotor angular frequency.

The state variables ψds,ψqs,ψdr, and ψqr are the d and q components of the stator

and rotor flux linkages per second. [Note that the explicit dependence of the state

variables on time is suppressed for notational ease.] rs and rr are the stator and rotor

resistances, respectively. ωs = 2π f0, where f0 is the steady-state grid frequency

(50 or 60 Hz.) Finally, vds (ṽdr) and vqs (ṽqr) denote the d and q components of the

stator (rotor) voltage. Unless otherwise specified, all the quantities are given in per

unit. For more details on the model (3.12), the reader can refer to [73].

Neglecting the asynchronous generator’s stator dynamics, i.e., assuming that

ω−1
s dψds/dt = 0,ω−1

s dψqs/dt = 0 and that the stator resistance is negligibly small,

the following model of the asynchronous generator is obtained [23]:

dψdr

dt
= ωs

[

−
rrxss

D
ψdr +

rrxm

D
vqs +

ωs−ωr

ωs

ψqr + ṽdr

]

dψqr

dt
= ωs

[

−
rrxss

D
ψqr−

rrxm

D
vdsωs−

ωs−ωr

ωs

ψdr + ṽqr

]

(3.13)

dωr

dt
=

ωs

2H
(Tm−Te) .

Introducing the constants vdr = ωsṽdr,vqr = ωsṽqr, a1 = rrxmωs/D,a2 = rrxssωs/D

and denoting the state variables x1 = ψdr,x2 = ψqr,x3 = ω = ωr−ωs, we arrive at
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the reduced-order model of the asynchronous generator:

dx1

dt
= −a2x1 + x2x3 +a1vqs− vdr

dx2

dt
= −a2x2− x1x3−a1vds− vqr (3.14)

dx3

dt
= c1 + c2(vdsx1 + vqsx2)

where c1 = ωsTm/(2H) and c2 =−a1/(2Hrr).

The steady state of the asynchronous generator is characterized by the equilib-

rium point x∗= [x∗1,x
∗
2,x
∗
3]
′ which renders the right-hand side of (3.14) zero5. There

are 2 such points:

x∗1 =
1

2a2c2v2
s

[vqs [c2 p3± p4]−2a2c1vds]

x∗2 =
−1

2a2c2v2
s

[c2 p3± p4 +2a2c1] (3.15)

x∗3 =
1

2c1
[c2 p3± p4] ,

where the constants p1, . . . , p4 are defined as follows: p1 = vdsvqr− vqsvdr, p2 =

vdsvdr + vqsvqr, p3 = a1v2
s + p1, and p4 =

√

c2
2 p2

3 +4a2c1c2 p2−4a2
2c2

1. One of the

points is asymptotically stable, while the second is unstable. For convenience of

the analytical explorations presented in this section, the stable equilibrium point of

the model (3.14) is translated to the origin by means of the change of coordinates

ξ1 := x1− x∗1,ξ2 := x2− x∗2,ξ3 := x3− x∗3. This operation yields the model:

ξ̇1 = −a2ξ1 + x∗3ξ2 + x∗2ξ3 + ξ2ξ3

ξ̇2 = −a2ξ2− x∗3ξ1− x∗1ξ3− ξ1ξ3 (3.16)

ξ̇3 = c2vdsξ1 + c2vqsξ2.

Note that the model (3.16) can be decomposed into two parts: linear and nonlinear.

That is,

ξ̇ =





−a2 x∗3 x∗2
−x∗3 −a2 −x∗1
c2vds c2vqs 0



ξ +





ξ2ξ3

−ξ1ξ3

0



 , (3.17)

5In this thesis the prime denotes the transposition operator, unless explicitly stated otherwise.
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Figure 3.3: Simplified schematic diagram of a fuel cell

where ξ denotes the vector [ξ1,ξ2,ξ3]
′. The system (3.17) can be put in a more

compact form

ξ̇ = Aξ +g(ξ ). (3.18)

For simplicity, sometimes the vector field (Aξ +g) will also be denoted by f (ξ ) in

this thesis.

3.2 Modeling of Solid Oxide Fuel Cells

A fuel cell is an electrochemical device that oxidizes fuel without combustion to

directly convert the chemical energy of the fuel cell into electrical energy [9]. In

simple terms, the fuel cell produces electric power by feeding a hydrogen-reach

gaseous fuel to porous anode as an oxidant (air) is supplied to the cathode. The

electrochemical reactions taking place at the electrodes result in electric current

injected to the external circuit. Figure 3.3 schematically shows a simplified dia-

gram of a fuel cell. The operational principle of fuel cells was discovered by the

British amateur physicist W. Grove already in 1839. However, the commercial

potential of the fuel cell technology was only recognized in the 1960’s when fuel

cells were successfully applied in the space industry. For example, the alkaline

fuel cells belonging to the first generation of fuel cells were used in the Apollo

space vehicles. Solid oxide fuel cells belong to the second generation of fuel cells.

They are characterized by high operating temperatures (600−1000◦C), use of ce-

ramic electrolyte, the absence of external reformer, and the use of relatively cheap
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catalysts. The high operating temperatures of SOFC result in a high temperature

exhaust which can be utilized to increase the overall efficiency of the process. In

recent years, the combined use of SOFC and a small-scale gas turbine (GT) or “mi-

croturbine” has been actively discussed. Analysis and experiments show that very

high efficiencies (over 80%) can be achieved if the hot exhaust from the fuel cell

is used to power a gas turbine [9]. It is argued in [9] and [126] that the capacity of

the microturbine should be at most one third of the capacity of the SOFT/GT sys-

tem. The technical and economical advantages of SOFC/GT systems make them

attractive energy sources for distributed generation.

In addition to generating electric power at high efficiency, the SOFC/GT based

distribution generation can also provide ancillary services such as load follow-

ing and regulation. The technical feasibility of load following functionality of

SOFT/GT systems is investigated in [135]. The numerical experiment results pro-

vided in [135] indicate that the fuel cell response times are significantly greater

than those of the GT used in that study. This result implies that the GT rather than

the fuel cells should be deployed in load following. The active power set-point of

the fuel cell should only be adjusted when it is needed to substantially alter the

net output of the SOFC/GT system. In this chapter, the main emphasis is placed

upon the control challenges of the fuel cell rather than the dynamic properties of

the microturbine; therefore, no dynamic model of the microturbine are developed.

The presence of the microturbine will be indirectly accounted for by modeling the

voltage deviations caused by the operation of the microturbine in the analyses pre-

sented here.

Fuel cell systems have to be interfaced with the distribution grid by means of a

power converter, since the fuel cells produce dc power which has to be converted

to ac. Normally, a forced-commutated voltage source inverter (VSI) is utilized

for interfacing a fuel cell system. It is known that a VSI can provide fast and

precise control of the voltage magnitude and reactive power output of the SOFT/GT

system [85]. We, therefore, assume that the fuel cell power plant is equipped with a

VSI, whose internal voltage control loops ensure an accurate control of ac voltage

magnitude; it is also assumed that the converter losses can be neglected and that the

time constants of the control are small enough to not be taken into account here.

Figure 3.4 depicts a one-line diagram of the fuel cell power plant along with

its power conditioning unit (VSI). In this figure, Vf c∠θ f c denotes the ac voltage of

the VSI. Although not mentioned explicitly, we assume that the fuel cell plant is

connected to the distribution grid via a transformer which is represented in Fig. 3.4

by its leakage reactance Xt ; thus, Vs∠θs is the voltage of secondary winding of the

transformer representing the bus voltage of the fuel cell. In this case, the active
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Figure 3.4: One-line diagram of a fuel cell-driven power plant.

power generated by the fuel cell is given by the following expression:

Pf c =
kmVdcVs

Xt

sin(θ f c−θs)

=
Vf cVs

Xt

sin(θ f c−θs), (3.19)

where k is a constant defined by the configuration of the VSI, Vdc is the dc volt-

age of the fuel cell, and m stands for the amplitude modulation index of the VSI.

The voltage source inverter is operated in such a mode that the voltage Vs is kept

constant for all times. That is, when an external disturbance is encountered which

might cause a variation of Vs, the VSI controls the modulation index m to keep Vs

constant, based on the typical control strategy of ac/dc converters. Equation (3.19)

suggests that the output power of the fuel cell will change when m and/or angle θs

vary. For instance, faults on the distribution grid might cause voltage magnitude

variations as well as jumps in the phase angle θs. Thus, variations of Vf c and ∠θs

can be seen as unwanted disturbances which should be attenuated by the control of

the fuel cell in order to provide a constant active power output. Thus, it would be

of interest to design an auxiliary controller which ensures a smooth output power

regulation that is insensitive to small variations of m and angle of the distribution

grid voltage.

We commence the design of such a controller by a closer examination of the

controlled object, i.e., the fuel cell power plant.

Linearized model of SOFC

Making the following assuming that: (i) the fuel cell gases are ideal;(ii) it is suffi-

cient to define only one single pressure value in the interior of the electrodes; (iii)
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the fuel cell temperature is stable at all times; and (iv) Nernst’s equation is applica-

ble, the main equations describing the slow dynamics of a solid oxide fuel cell can

be written as follows [135], [94]:

dIr
f c

dt
=

1

Te

[
−Ir

f c + Ire f

]
(3.20a)

dqin
H2

dt
=

1

Tf

[

−qin
H2

+
2Kr

Uopt

Ir
f c

]

(3.20b)

dpH2

dt
=

1

τH2

[

−pH2
+

1

KH2

[
qin

H2
−2KrI

r
f c

]
]

(3.20c)

dpH2O

dt
=

1

τH2O

[

−pH2O +
2Kr

KH2O

Ir
f c

]

(3.20d)

dpO2

dt
=

1

τO2

[

−pO2
+

1

KO2

[
1

τHO

qin
H2
−2KrI

r
f c

]]

(3.20e)

Ire f =







qin
H2

Umax

2Kr
, if Ĩ > qin

H2

Umax

2Kr

qin
H2

Umin

2Kr
, if Ĩ < qin

H2

Umin

2Kr

Ĩ = Pre f /Vre f , otherwise,

(3.21)

where Ir
f c is the fuel cell current; qin

H2
stands for the hydrogen input flow; and

pH2
, pO2

, pH2O denote the partial pressures of hydrogen, oxygen, and water, respec-

tively. The time constants Te,Tf ,τH2
,τH2O,τO2

, designate the electrical response

time of the fuel cell, fuel processor response time, response times of hydrogen,

water, and oxygen flows, respectively. KH2
,KH2O, and KO2

, denote the valve molar

constants for hydrogen, water, and oxygen. The auxiliary constants Uopt,Umax, and

Umin stand for the optimal, maximum, and minimum fuel utilization, respectively.

Finally, Kr = N0/(4F). The numerical values of the aforementioned constants can

be found in [135] and [94].

The dc voltage across the stack of the fuel cells is governed by the Nernst equa-

tion, i.e.,

Vdc = N0

[

E0 +
RT

2F
log

(

pH2
p

1/2
O2

pH2O

)]

− r Ir
f c, (3.22)

where r,R,T,E0, and N0 are the ohmic loss of the fuel cell, universal gas constant,

absolute temperature, the ideal standard potential, and the number of fuel cells is

series in the stack. The active (dc) power produced by the fuel cell is then given by

the following relation:

Pf c = VdcIr
f c. (3.23)
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Figure 3.5: SOFC system block diagram

The dynamic equations (3.20) of the fuel cell are linear; the only nonlinearities in

these expressions are in the stack voltage and the active power equations. The block

diagram of the SOFC plant with its basic auxiliary controls is shown in Fig. 3.5.

To obtain the complete linear model, equations (3.19), (3.22), and (3.23) have

to be linearized about the equilibrium point. The resulting linear model contains 5

state variables and can be represented by

ẋ(t) = Ax(t)+Bu(t) (3.24)

y(t) = C x(t)+Du(t), (3.25)

where x = [∆Ir
f c,∆qin

H2
,∆pH2

,∆pH2O,∆pO2
]′ (here, a prime denotes transposition).

For convenience of notation, in the remainder of the chapter, the symbol ∆ is omit-

ted for simplicity, but small deviations from the equilibrium are assumed. Also, the

explicit dependence of the plant states, inputs, and outputs on time is suppressed

for simplicity of notation. The state matrix A ∈ R
5×5 can be easily extracted from

the dynamic equations (3.20); B ∈ R
5×3; C ∈ R

1×5; and D ∈ R
1×3 are the input,

output, and direct feedthrough matrix (their numerical values are given in the Ap-

pendix). The input vector and the output are denoted by u = [∆m,∆θs,∆Pre f ]
′ and

y = Pf c, respectively.
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3.3 Algebraic Constraints in Power Systems

As was briefly explained in Section 3.1 on page 20, the power systems are de-

scribed by a set of differential and algebraic equations. The origins of the differen-

tial equations have already been discussed, while those of the algebraic equations

are the main subject of this section.

The main equations relating the algebraic variables of the power system are

given below.

0 = Vie
jθi +(Rs,i + jX ′d,i)(Id,i + jIq,i)e

j(δi−
π
2 )−

− [E ′d,i +(X ′q,i−X ′d,i)Iq,i + jE ′q,i]e
j(δi−

π
2 ) (3.26)

0 = −Pi− jQi +Vie
jθi (Id,i− jIq,i)e− j(δi−

π
2 ) +

+PL,i(Vi)+ jQL,i(Vi) (3.27)

0 = −Pi− jQi +PL,i(Vi)+ jQL,i(Vi) (3.28)

0 = −Pi− jQi +
n

∑
k=1

ViVkYi,ke j(θi−θk−αi,k) (3.29)

In equations (3.26)–(3.29), the following notation is adopted:

• Vi,θi The magnitude and phase angle of the ith node.

• Pi,Qi The active and reactive power injection in the ith node.

• PL,i,QL,i The active and reactive power of the load connected to the ith node.

These quantities generally are nonlinear functions of the node voltage.

• Yi,ke jαi,k The complex admittance of the branch connecting the ith and kth

nodes.

• Rs,i The resistance of the stator of ith generator.

The rest of the variables and parameters have been introduced earlier in this chap-

ter. The number of the algebraic equations is dependent on the topology network,

though the structure of the equations is generic and always corresponds to that

shown in this section.
It is preferable to eliminate as many algebraic variables as possible and deal

with differential equations only, which is much simpler. In the special case of
constant impedance loads, which is always the case in this thesis, it is possible
to reduce the total number of algebraic variables to 2n equations. That is, the
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only remaining variables are the complex nodal voltages. To eliminate the stator
currents one has to solve equation (3.26) for Iq,i and Id,i. After some manipulation,
the following expressions are obtained:

Iq, i =−
X ′d, iVi sin(θi−δi)+ViRs, i cos(θi−δi)+X ′d, iE

′
d, i−E ′q, iRs, i

X ′d, iX
′
q, i +R2

s, i

(3.30)

Id, i =
ViRs, i sin(θi−δi)+E ′d, iRs, i−X ′q, iVi cos(θi−δi)+X ′q, iE

′
q, i

X ′d, iX
′
q, i +R2

s, i

(3.31)

Having done this, one can substitute equations (3.30) and (3.31) into (3.26)–(3.29).

Moreover, one could reduce the number of algebraic states by eliminating the active

P and reactive Q power from equations (3.26) – (3.29).



Chapter 4

Energy Function Analysis of

Mixed Power Systems

“. . . But in this respect hardly any other method of investigation

could be said to be completely satisfactory.”

— A. A. Lyapunov

On the generality of his method.

The Direct Lyapunov Method is one of the most powerful and well understood ana-

lytical tools for investigating the dynamic properties of electric power systems and

other nonlinear systems. Lyapunov’s method establishes a uniform framework for

the assessment of stability of the power system by analyzing an appropriate Lya-

punov or energy function. The main advantages of the Lyapunov method are the

possibility to perform parametric stability studies and the feasibility to conclude

stability without having to solve the nonlinear differential equations describing the

system. On the other hand, a practical application of the Lyapunov theory to tran-

sient stability analysis is often a nontrivial task, since finding a suitable Lyapunov

function is almost always a challenge. To overcome the difficulties inherent in the

classical Lyapunov theory, the so-called Extended Invariance Principle (EIP) can

be considered [25]. The Extended Invariance Principle is an important extension

of LaSalle’s invariance principle which is in turn an extension of Lyapunov’s direct

method. A function satisfying the conditions of the Extended Invariance Principle

is called an extended Lyapunov function. This chapter briefly presents the basic

concepts of Lyapunov’s direct method and the Extended Invariance Principle and

reports the main findings of this thesis related to the transient stability analysis of

power systems with asynchronous generators.

35
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4.1 Mathematical Preliminaries

The Direct Lyapunov MethodThe Lyapunov theory is essentially based on the existence of a scalar (en-

ergy or Lyapunov) function that establishes the sufficient conditions for

stability of the dynamic system in question. Furthermore, the properties of

the Lyapunov function and its Lie derivative provide auxiliary information about

the attraction region of a given equilibrium point. This subsection presents a rudi-

mentary introduction to the Direct Lyapunov Method1

Let the unforced system be described by the set of autonomous nonlinear dif-

ferential equations:

ẋ = f (x), (4.1)

where x(t) ∈ U ⊆ R
n is the vector of state variables and f stands for a continu-

ous map from R
n to R

n. Without loss of generality, assume that the origin is the

equilibrium point of (4.1). Then the origin of (4.1) is asymptotically stable if there

exists a C1 function V (x) such that [68]

1. V (0) = 0,

2. V (x) is positive definite ∀x\0,

3. L fV = ∂V/∂x′ · f (x) = dV/dt < 0, ∀x,

where L fV is the Lie derivative of V along the vector field f . Thus, the stability

properties of the system can be established by analyzing an appropriate Lyapunov

function. If a such a function is found, than the origin of (4.1) is asymptotically

stable; however, since the Lyapunov Direct Method establishes only a sufficient

condition for stability of the system of interest, the actual system can be classified

by the Lyapunov function as unstable, while in fact it could remain stable. On the

other hand, if a positive definite function is found such that its Lie derivative is also

positive definite, than the system can be immediately classified unstable.

Example: Consider the set of autonomous ordinary differential equations [108]

ẋ(t) =−x(t)+2y(t), ẏ(t) =−2x(t)− y3(t) (4.2)

and the following Lyapunov function candidate V (x) = ‖x‖2. The Lie derivative

of V is given by the expression

L fV (x) =−2y2(1+ y2)−2x2.

1The terms ‘Direct’ and ‘Second’ Lyapunov Method are used in this chapter synonymously.
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Clearly, both V and −L fV are positive definite in the whole state space, which

establishes global asymptotic stability of (4.2) ‘in-the-large’. �

Example: Consider the set of autonomous linear differential equations

ẋ = Ax, (4.3)

where A ∈ R
n×n has distinct eigenvalues {λi}

n
1. Changing the coordinates by the

similarity transformation z = T x, where T is the matrix of right eigenvalues of A,

the system (4.3) can be transformed to diagonal form

ż = Λz,

where Λ = diag(λ1,λ2, . . . ,λn). Let us now apply the direct Lyapunov method to

investigate the stability of (4.3). Consider the Lyapunov function candidate

V (z) =−z′(Λ +Λ∗)z,

where the symbol Λ∗ denotes the complex conjugate of Λ. The Lie derivative of

V (z) is

L fV (z) =−z′(Λ +Λ∗)2z.

Observe that L fV (z) at least negative semidefinite, thus the stability of (4.3) can be

determined by inspecting the Lyapunov function V (z) alone. Indeed, if all ℜ (λi) <
0, then (4.3) is globally exponentially stable. If any of ℜ (λi) > 0, then the system

(4.3) is unstable, since for any ε-neighborhood of the origin there is an escape

segment for the system trajectory. Therefore, it can be concluded that a linear

system is stable if all the eigenvalues of its state matrix have negative real parts;

and conversely: a linear system is unstable if any of the eigenvalues has positive

real part. �

Despite the fact that the Lyapunov Direct Method has proven a very useful

and practical analytical tool, it is commonly recognized that finding an appropriate

Lyapunov function for a problem at hand is often a complicated mathematical exer-

cise. As a matter of fact, there is no general systematic procedure for constructing

Lyapunov functions for nonlinear systems of orders greater than 2.

This and some other considerations have stimulated the research in the area of

ordinary differential equations and eventually resulted in the discovery of Extended

Invariance Principle [25], [100] which allows a wider class of functions to be used

for the assessment of the stability properties.
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4.2 Extended Invariance Principle

Consider again the set of n autonomous ordinary differential equations (4.1) de-

scribing the power system. A simplified (weak) version of the invariance principle

is given by the following

Theorem 1 Let V : R
n→R be a continuous function. Also, let a scalar L be a con-

stant such that ΩL = {x∈R
n |V (x) < L} is bounded. Let C := {x∈ΩL |L fV (x) >

0}, suppose that supx∈C V (x) = l < L. Define Ω̄l = {x ∈ R
n | V (x) 6 L} and

E := {x ∈ ΩL | L fV (x) = 0} ∪ Ω̄l . Let B be the largest invariant set of (4.1)

contained in E. Then, all solutions of (4.1) originating in ΩL converge to B, as

t→ ∞. �

A proof of the theorem can be found in [100]. Paraphrasing the theorem, it can be

said that it establishes sufficient conditions for stability of (4.1) in terms of the sets

ΩL,Ω̄l,E and the function V : if such sets and V exist, then the system (4.1) is stable

in the Lyapunov sense, provided the initial conditions are such that x(0) ∈ΩL. The

sets introduced in the theorem are schematically shown in Fig. 4.1. The major

difference between LaSalle’s invariance principle and the EIP is in the fact that the

EIP allows the Lie derivative L fV (x) to be greater than zero on some bounded

set of nonzero measure, which implies that a significantly larger class of positive

definite functions can be used as extended Lyapunov function candidates (ELFC).

A further exploration of Theorem 1 reveals that the direct application of EIP is

not straightforward, since the auxiliary requirements stated in the theorem have to

be fulfilled. That is, a suitable extended Lyapunov function V (x) has to be found,

then it has to be shown that there exist two bounded sets ΩL and C; in addition,

the constant l has to be computed, which in itself is a complicated numerical task.

Assuming that a suitable extended Lyapunov function candidate is found, verifi-

cation of the other conditions of the theorem can be simplified if the methods of

interval arithmetic are applied. The basic facts about interval arithmetics are gath-

ered in Appendix A.

A preliminary study performed within this project has indicated that the devel-

opment of a Lyapunov function for a power system with both synchronous and

asynchronous generators is a nontrivial task; therefore, it was decided to first ana-

lyze a simple power system consisting of a single generator connected to an infi-

nite bus and then extend the results to a larger number of generators. We therefore

commence by the construction of a Lyapunov function for a single asynchronous

machine-infinite bus (SAMIB) system.
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C

ΩL

Ω̄l E

x(t)

x(0)

x(∞)

Figure 4.1: Graphical illustration of the Extended Invariance Principle. All trajec-

tories x(t) with x(0) ∈ΩL converge to the largest invariant set contained in E.

4.3 Single Asynchronous Machine-Infinite Bus System

Often DG power plants [e.g., microturbines and wind mills in a wind farm] consist

of a large number of individual generators. For detailed simulations, each genera-

tor should be modeled separately; however, for the purposes pursued in this study,

an aggregation of the generators should be carried out. Although being an inter-

esting problem in its own right, the aggregation is not considered here; instead, it

is assumed that such an aggregation has already been done, using an aggregation

technique, e.g., that reported in [14]. That is, the DG power plant is represented

by a single aggregate, whose parameters can be readily determined from the para-

meters of the individual generators. Fig. 4.2 shows such an aggregated DG power

plant. As can be seen in the figure, this simplified system consists of an asynchro-

nous generator denoted as AG, a step-up transformer T, a local constant impedance

load LD, and two lines L1–L2 connecting the plant to the main grid. The short

circuit capacity of the main grid is assumed to be much greater that the installed

capacity of the farm. This assumption is not limiting, since the ‘stiffness’ of the

main grid can be reduced by adjusting the impedance of the lines L1 and L2. The

power factor correcting capacitors are included in the load LD. Figure 4.3 shows

the one-line diagram of the system studied. In the figure, the impedances of the

lines and the transformer are lumped into a single impedance Z1, thus eliminating

the node 2. Let us introduce the following notation: v∞ denotes the voltage of

the main grid, vs is the terminal voltage of the asynchronous generator, Tm and Te

are mechanical and electrical torques of the generator, respectively. Applying the
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Figure 4.2: Single Asynchronous Machine Infinite Bus system✠✡ ☛☞ ☛✌✍✎✍✏

Figure 4.3: Impedance diagram of the SAMIB system

superposition principle, the relationship between vs and v∞ can be derived

vs =
Z2

Z1 +Z2
v∞, (4.4)

where Z2 is the load impedance including the phase compensation.

In order to construct a Lyapunov function for the SAMIB system, several well-

known methods are tried. The next section summarizes the results of these at-

tempts.

4.4 Transient Stability Analysis of the SAMIB System

Verification of the Energy Metric Algorithm

The Energy Metric Algorithm has been successfully used for the construction of

energy functions for various nonlinear dynamic systems, including detailed power

systems [47, 131]. It is therefore natural to attempt to construct a Lyapunov func-

tion for the system (3.17) using the Energy Metric Algorithm [131].
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The main steps of the algorithm for constructing a Lyapunov function for (3.17)

are outlined in Algorithm 1.

Algorithm 1:

1. Eliminate the time variable from the differential equations describing the

system

dξ1

dξ2
=
−a2ξ1 + x∗3ξ2 + x∗2ξ3 + ξ2ξ3

−a2ξ2− x∗3ξ1− x∗1ξ3− ξ1ξ3
(4.5)

dξ2

dξ3
=
−a2ξ2− x∗3ξ1− x∗1ξ3− ξ1ξ3

c2vdsξ1 + c2vqsξ2
(4.6)

dξ3

dξ1
=

c2vdsξ1 + c2vqsξ2

−a2ξ1 + x∗3ξ2 + x∗2ξ3 + ξ2ξ3
(4.7)

2. Convert the differential equations to 3 one-forms ωi by multiplying and

clearing the denominator terms.

3. Reduce the one-forms to a single one-form ω(ξ ) by addition and substitution

of the 3 one-forms.

4. Perform line integration of ω(ξ ) along some path, which for simplicity can

be chosen along the ‘elbow’ path. �

It appears however that no Lyapunov function can be constructed for the sys-

tem (3.17) using the Energy Metric Algorithm. This result is summarized in the

following

Proposition 1 The model (3.17) admits no energy function constructed by Algo-

rithm 1. �

Proof Consider the line integral generated by Algorithm 1.

V =
∫

Γ

{
a2c2vqsξ2 +a2c2vds(ξ1 + ξ2)+ c2vds(ξ1 + x∗1)ξ3

+ c2vdsξ1x∗3} dξ1 +{c2vds(ξ1 + ξ2 + x∗2)ξ3

+ c2vds(ξ1 + ξ2)x
∗
3 + c2vqsξ2(ξ3 + x∗3)

+ a2c2vqsξ2

}
dξ2 +

{
a2

2(ξ1 + ξ2)+a2ξ1x∗3

+ a2(ξ1 + x∗1− x∗2)ξ3 +(ξ1 + x∗1)ξ3(ξ3 + x∗3)

+ ξ1x∗3(ξ3 + x∗3)}dξ3, (4.8)
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where Γ stands for the elbow path. The Lyapunov function candidate can be rewrit-

ten in a more compact form:

V (ξ ) =
∫

Γ

3

∑
i=1

Ξi(ξ )dξi, (4.9)

where the variables entering the equation can be readily identified from (4.8).

In order to constitute a valid energy function—which is a necessary condition—

the functions Ξi(ξ ) in (4.9) must fulfil the following condition2: ∂Ξi(ξ )/∂ξk =
∂Ξk(ξ )/∂ξi,∀i,k ∈ {1,2,3}, which would guarantee the path independence of the

integral (4.8). Direct inspection of the matrix ∂Ξk(ξ )/∂ξi shows that the symmetry

requirements are not fulfilled3:

∂Ξk(ξ )/∂ξi =





h11 0 0

c2vdsx
∗
3 h22 0

h31 0 h33



 ,h31 > 0,∀ξ . (4.10)

This observation completes the proof. �
Now a few auxiliary observations are due, which are formulated in the form of

corollary and conjecture.

Corollary 1 The [empirical] existence of a stable equilibrium of the SAMIB sys-

tem, for instance the equilibrium given by (3.15), and the converse Lyapunov the-

orems imply that there must exist a valid Lyapunov function for the model (3.18).

However, the structure of the Lyapunov function will necessarily differ from that

generated by Algorithm 1. �

Conjecture 1 The non-existence of a Lyapunov function in the form (4.8) for a

single generator suggests that no Lyapunov function of this type can be found for

a multimachine power system. On the other hand, it is possible to use a quadratic

Lyapunov functions for the estimation of the attraction region of a multimachine

power system; however, it can also be problematic due to the possible conservatism

of the estimates. �

It should however be stated that the quadratic Lyapunov functions can be quite

useful if other applications are considered, such as the design of Control Lyapunov

functions.

2For details, the reader is referred to Appendix B.
3In the equation above the elements hii are not shown as they are irrelevant.
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Verification of the First Integral of Motion Algorithm

The first integral of motion has been successfully used in power system applica-

tions for generating Lyapunov functions [95]. To facilitate the presentation, the

essential steps of the construction of a Lyapunov function using this technique are

highlighted in the following

Algorithm 2:

1. Define the quantity dt as is shown below

dt =
dξ1

−a2ξ1 + x∗3ξ2 + x∗2ξ3 + ξ2ξ3
(4.11)

=
dξ2

−a2ξ2− x∗3ξ1− x∗1ξ3− ξ1ξ3
(4.12)

=
dξ3

c2vdsξ1 + c2vqsξ2
(4.13)

2. Perform line integration of the separate pairs (4.11)–(4.13) along the sys-

tem’s post-fault trajectory.

3. Identify the energy function as the function obtained in the previous step. �

Let us now show that Algorithm 2 cannot be applied to generate a Lyapunov func-

tion for (3.17).

Proposition 2 The model (3.17) admits no Lyapunov function constructed by Al-

gorithm 2. �

Proof The necessary and sufficient condition for the existence of a Lyapunov

function generated by Algorithm 2 is the following equality

Trace ∇ (Aξ +g) = 0, (4.14)

where ∇ denotes the gradient of the vector field Aξ +g. As can be easily verified,

in the present case the equality (4.14) does not hold. �

Verification of Krasovskii’s method for the SAMIB system

Another well-known method for the construction of Lyapunov functions is due

to Krasovskii [68]. The mathematical machinery of Krasovskii’s method is fairly

simple and is summarized in the following theorem [19]:
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Theorem 2 Let f (ξ ) be differentiable w.r.t. ξ and let f (0) = 0; then the origin

is: (a) stable if the matrix H = ∂ f ′/∂ξ +∂ f /∂ξ ′ is negative semidefinite in some

neighborhood N of the origin, (b) asymptotically stable if H is negative definite

in N , or (c) asymptotically stable in the large if H is negative definite for all ξ
and f ′ f is radially unbounded. �

Let us now show that Krasovskii’s method fails to yield a Lyapunov function for

the SAMIB system. This statement is formulated in the following

Proposition 3 The model (3.17) admits no Lyapunov function constructed by the

method of Krasovskii. �

Proof Clearly, the conditions of Theorem 2 are fulfilled for the system (3.17),

i.e., (Aξ +g(ξ ))(0) = 0 and (Aξ +g(ξ )) is continuously differentiable in the entire

state space. Moreover, the function ‖(Aξ +g(ξ ))‖2
2 = (Aξ +g(ξ ))′(Aξ +g(ξ )) is

radially unbounded, i.e., lim‖ξ ‖→∞ ‖(Aξ +g(ξ ))‖2
2 = ∞.

Let us now determine the sign definiteness of the matrix H. Omitting the alge-

bra, this matrix can be written in the following form

H =





−2a2 0 c2vds + ξ2 + x∗2
0 −2a2 c2vqs− ξ1− x∗1

c2vds + ξ2 + x∗2 c2vqs− ξ1− x∗1 0





The application of Sylvester’s criterion indicates that H in this particular case is

negative definite if and only if its determinant is negative. However, the determi-

nant is nonnegative for all ξ ∈ R
3, as (4.15) shows.

|H|= 2a2((c2vds + ξ2 + x∗2)
2 +(c2vqs− ξ1− x∗1)

2) (4.15)

Therefore, H is sign indefinite, which implies that f ′ f does not qualify as a valid

Lyapunov function. This concludes the proof. �

The Existence of a Quadratic Lyapunov Function

As was already stated in Corollary 1, for any dynamic system [with differentiable

vector field] possessing a stable equilibrium there exists an appropriate Lyapunov

function in some neighborhood of the equilibrium.

A naı̈ve reasoning of this statement applied to the present system (3.17) may

include the following line of argumentation. Since the vector field (Aξ +g) in our



4.5. ALTERNATIVE FORMULATION OF THE SYSTEM MODEL 45

case can be directly decomposed into a linear and nonlinear part, and the 2-norm

of the nonlinear part vanishes as ‖ξ ‖2 approaches the origin, i.e.,

lim
‖ξ ‖2→0

‖g(ξ )‖2/‖ξ ‖2 = 0,

in some neighborhood N of the equilibrium the dynamics of the linear part will

dominate those of the nonlinear part4. Therefore, the stability of the equilibrium

will be solely determined by the eigenvalues of the matrix A,∀ξ ∈N . Therefore, if

all the eigenvalues have strictly negative real parts, there should exist an appropri-

ate quadratic Lyapunov function which can be found by solving the corresponding

matrix Lyapunov equation or determined as in the example on page 36. It is how-

ever known, that in practical applications such quadratic Lyapunov functions yield

overly conservative estimates of the associated attraction domain; therefore, the

application of quadratic Lyapunov functions will not be pursued in this thesis. In-

stead, the system model will be reformulated in order to facilitate the construction

of an appropriate Extended Lyapunov function.

4.5 Alternative Formulation of the System Model

Let us reformulate the model (3.13) in order to obtain an alternative representation

of the asynchronous generator in the polar coordinates (E,δ):

E =
xm

xrr

√

ψ2
dr +ψ2

qr

δ = tan−1(−ψqr/ψdr). (4.16)

Then assuming for simplicity that the rotor voltages are zero and defining T0 =
xrr/(ωsrr), X ′ = xss− x2

m/xrr the model (3.13) transforms to the following system

of equations

dδ
dt

= ωr−ωs−
Xs−X ′

X ′T0E
vs sin(δ +φ) (4.17)

dωr

dt
= −

E

X ′M
vs sin(δ +φ)+

Tm

M
(4.18)

dE

dt
= −

Xs

X ′T0
E +

Xs−X ′

X ′T0
vs cos(δ +φ). (4.19)

4In most practical cases (i.e., f ∈C1) this decomposition can also be done as follows: f (x) :=
(∂ f ′/∂x)x+{ f (x)− (∂ f ′/∂x)x}= Ax+g(x).
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Figure 4.4: Equivalent circuit of the model (4.20)–(4.22)

In equations (4.17)–(4.19) it was assumed that vqs = vs cosφ and vds = vs sinφ,

where vs and φ are the magnitude and phase angle of the stator voltage v̄s. To

simplify the notation, let us denote ω = ωr−ωs and introduce the following con-

stants: η1 = Xs/(X ′T0),η2 = vs(Xs − X ′)/(X ′T0),θ = δ + φ, η3 = Tm/M, and

η4 = vs/(X ′M). To make the model more realistic, a damping term D = Tf /M

proportional to the friction torque Tf is added to (4.18), resulting in the following

model

dθ
dt

= ω−
η2

E
sinθ (4.20)

dω
dt

= η3−η4E sinθ−Dω (4.21)

dE

dt
= −η1E +η2 cosθ. (4.22)

It can be noticed that the model given by the equations (4.20)–(4.22) to a certain

degree resembles the equations describing a single machine system with flux decay

model; however, the physical meaning of the state variables of these two models is

quite different [95]. Figure 4.4 shows the equivalent circuit of the model.

Construction of the Lyapunov function for the simplified SAMIB

system

Construction of a suitable Lyapunov function or Extended Lyapunov function for

the system (4.20)–(4.22) has proven a very challenging mathematical task, which

confirmed the main conclusions from Section 4.4. Therefore, it was decided to

further reduce the order of the model. To do so, we postulate that

η−1
1 Ė→ 0, (4.23)
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which renders E an algebraic variable. This approximation can be justified by the

following argument.

Consider again the differential equation describing the time evolution of E, i.e.,

(4.22). Let us now solve the equation, assuming that θ is an unknown function of

time. The solution is given by the expression

E(t) = E0 exp(−η1t)+ exp(−η1t)η2

∫ t

0
exp(η1τ )cosθ (τ )dτ . (4.24)

Taking the absolute value of both sides of (4.24) and noting that exp(η1τ )cosθ (τ )
is dominated by exp(η1τ ), the following inequality can be obtained

|E(t)|6 E0 exp(−η1t)+ exp(−η1t)η2

∣
∣
∣
∣

∫ t

0
exp(η1τ )dτ

∣
∣
∣
∣
. (4.25)

Evaluating the integral in (4.25), the estimate of E(t) reduces to

|E(t)|6 E0 exp(−η1t)+
η2

η1
(1− exp(−η1t)) . (4.26)

Clearly, for large values of η1, the internal voltage E(t) is mainly determined by

the quotient η2/η1. According to [106], for the typical parameter values of wind

turbines in the range 500 kW to 1 MW, the values of η1 are in the range [11.1,28.9].
Recalling that η2 is linearly proportional to the terminal voltage of the asynchro-

nous generator, we conclude that variations E(t) follow closely the variations in

the terminal voltage.

Thus, assuming

E =
η2

η1
cosθ,

we arrive at the following second-order model:

θ̇ = ω−η1 tanθ (4.27)

ω̇ = η3−
η2η4

2η1
sin(2θ)−Dω. (4.28)

Consider the following new energy function candidate obtained by numerous

trial-and-error experiments

V (θ,ω) =
ω2

2
−η3θ−

η2η4

4η1
cos(2θ)+V0, (4.29)
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where V0 is an arbitrary constant. In some neighborhood of (θ0,ω0), the function

V is locally positive definite. The Lie derivative of V along the planar vector field

(4.27)–(4.28) is given by the expression

L fV (θ,ω) = η1η3 tanθ−η2η4 sin2 θ−Dω2. (4.30)

The function L fV suggests that there are sets in the δ−ω plane where the Lie

derivative is positive; the boundedness of these sets needs to be checked, in order

to verify that (4.29) fulfills the conditions of Theorem 1, i.e., that it is an Extended

Lyapunov function. We will use interval arithmetics to numerically perform the

verification.

Construction of the Lyapunov function for the full SAMIB system

Let us now relax the assumption (4.23) and derive a new energy function for the full

model (4.20)–(4.22) and consider the following new Lyapunov function candidate

V (θ,ω,E) =
η2

2η4
ω2−

η2η3

η4
θ−η2E cosθ +

η1

2
E2 +V0. (4.31)

The Lie derivative of (4.31) is given by

L fV (θ,ω,E) =−
η2D

η4
ω2−η 2

2 sin2 θ +
η 2

2 η3

η4E
sinθ− Ė2. (4.32)

Direct inspection of (4.32) reveals that large deviations of E from the equilibrium

point can result in positive L fV . This observation would severely affect the use

of conventional energy function methods; however, it is less restrictive for the Ex-

tended Invariance Principle. Technically, it is only necessary to assure that the set

{(θ,ω,E) ∈ R
3 : L fV > 0} is bounded. Apparently, L fV is finite in the whole

state space, except for the manifold (θ,ω,0)5. For obvious reasons, it is also de-

sirable to ensure that the set on which L fV > 0 is as small as possible. As before,

the properties of L fV should be checked numerically.

Construction of the Lyapunov function for the three-bus power system

The construction of the energy function for the three-machine power system pre-

sented in this subsection is based on the so-called “State Function Method” [108].

5On the manifold E = 0, the function (4.31) is not analytic; however, the model of asynchronous

generator itself is invalid on this manifold. Therefore, the state space U of the generator should be

restricted such that E = 0 is excluded from it.
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Figure 4.5: Simple three-machine power system.

The development of the energy function is mainly due to [60]; however, the analy-

sis and interpretation of the energy function are made by the author and are novel.

The simple multimachine power system consists of two synchronous machines

(a generator and a motor) and one asynchronous generator, which are schematically

shown in Fig. 4.5. The electrical machines are interconnected in the passive net-

work whose transfer conductances are assumed to be negligibly small. The model

of the asynchronous generator is slightly changed in order to conform to the model

of a synchronous generator. That is, equation (4.20) is differentiated w.r.t time

and equation (4.21) is substituted into it, which is followed by shifting the stable

equilibrium of the three-machine system to the origin. More details can be found

in [60]. Thus, the power system is modeled by the following set of equations:

M1ẍ1 = −D1ẋ1−E1B12[(E
o
2 + x4)sin(x12 +δo

12)−Eo
2 sinδo

12]

+ E1E3B13[sin(x13 +δo
13)− sinδo

13] (4.33)

M2ẍ2 = −K1(x)ẋ1− (D2 +K1(x)+K3(x))ẋ2−K3(x)ẋ3−K4(x)ẋ4

− E1B12[(E
o
2 + x4)sin(x12 +δo

12)−Eo
2 sinδo

12]

+ E3B23[(E
o
2 + x4)sin(x23 +δo

23)−Eo
2 sinδo

23] (4.34)

M3ẍ3 = −D3ẋ3−E1E3B13[sin(x13 +δo
13)− sinδo

13]

− E3B23[(E
o
2 + x4)sin(x23 +δo

23)−Eo
2 sinδo

23] (4.35)

ẋ4 = T−1
2 (1− xmB22)x4 +KaM−1

2 [cosδo
12− cos(x12 +δo

12)]

+ KbM−1
2 [cosδo

23− cos(x23 +δo
23)], (4.36)
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where the states xik are defined as xi− xk. Mi and Di are the inertia constant and

the damping of machine i, respectively. Ek and T2 denote the transient EMF of

machine k and the ‘open circuit time constant’ of the asynchronous generator; Bik

is the (i,k)’s element of the reduced network matrix of the power system. The

functions Ka, Kb, and K1, . . . ,K4 are defined as follows.

Ka =
xm

T2
B12E1M2

Kb =
xm

T2
B23E3M2

K1(x) = Ka

cos(x12 +δ0
12)

x4 +E0
2

(4.37)

K3(x) = Kb

cos(x23 +δ0
23)

x4 +E0
2

(4.38)

K4(x) = −Ka

sin(x12 +δ0
12)

(x4 +E0
2 )2

+Kb

sin(x23 +δ0
23)

(x4 +E0
2 )2

. (4.39)

In the equations above, the state variables with superscript ‘0’ denote the steady

state values of the corresponding state.

Defining the new constant matrices M,Ms,C,Cs,Dc, the variable matrix Dv, the

new variables σ , and the vector-valued function f (σ) as follows,

Ms = diag(M1,M2,M3), M = diag(Ms,1), Dc = diag(D1,D2,D3,1)

Cs =





1 −1 0

1 0 −1

0 1 −1



 , C =

[
Cs 0

0 1

]

, A =

[
I3 0

0 0

]

, σ = Cx,

Dv =







0 0 0 0

−K1(x) K1(x)+K3(x) −K3(x) −K4(x)
0 0 0 0

0 0 0 0







f (σ) =







E1B12[(E
0
2 + x4)sin(σ1 +δ0

12)−E0
2 sinδ0

12]
E1E3B13[sin(σ2 +δ0

13)− sinδ0
13]

E3B23[(E
0
2 + x4)sin(σ3 +δ0

23)−E0
2 sinδ0

23]
f5(σ)







f5(σ) = T−1
2 (1− xmB22)σ4 +KaM−1

2 [cosδ0
12− cos(σ1 +δ0

12)]

+ KbM−1
2 [cosδ0

23− cos(σ3 +δ0
23)],
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equations (4.33)–(4.36) can be put in matrix form:

Aẍ+M−1(Dc +Dv)ẋ+M−1C′ f (σ) = 0. (4.40)

The energy function is sought in the following form:

V (x, ẋ) =
∫ ẋ

0
QAẋdẋ+

∫ x

0
QM−1C′ f (Cx)dx. (4.41)

The unknown nonsingular matrix Q is the main design parameter which has to be

determined. The key idea is to find such a matrix Q that the function (4.41) satisfies

the associated curl equations and the Rayleigh dissipation function ẋ′(QM−1(Dc +
Dv))ẋ > 0, which will ensure that the line integrals in (4.41) are path independent

and the Lie derivative of V is non-positive definite.

It is shown in [60] that for some m > 0, l > −m/Trace(MS), the matrix Q

defined as

Q =

[
mMs + lMs1Ms 0

0 mT2/xm

]

satisfies the curl equations associated with V . Thus, the following energy function

is obtained

V (x, ẋ) =
1

2
ẋ′+ [mM1 + lM11M1] ẋ+

+ m [E1B12{(E
0
2 +σ4){cosδ0

12− cos(σ1 +δ0
12)}−σ1E0

2 sinδ0
12}

+ E1E3B13{cosδ0
13− cos(σ2 +δ0

13)−σ2 sinδ0
12}

+ E3B23{(E
0
2 +σ4){cosδ0

23− cos(σ3 +δ0
23)}−σ3E0

2 sinδ0
23}

+ (2xm)−1(1− xmB22)σ2
4 ], (4.42)

where x+ = [x1,x2,x3]
′. It can be shown that the Lie derivative of (4.42) is given

by the expression:

L fV (x, ẋ) = −
1

2
ẋ′+(QM−1(Dc +Dv)+(Dc +Dv)

′M−1Q)ẋ+

= −
1

2
ẋ′+(QM−1Dc +D′cM−1Q)ẋ+

−
1

2
ẋ+(QM−1Dv +D′vM−1Q)ẋ+

= −
1

2
x′+Rcx+−

1

2
x′+Rv(x)x+. (4.43)
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In order to apply (4.43) for stability studies, its properties should be clarified. In

particular, the sign definiteness of L fV should be determined, which can be done

by a closer examination of matrices Rc and Rv(x). Clearly, Rc < 0, which however

does not guarantee that L fV is non-positive. In [60], it was assumed that E2(t)
could be linearized around the post-fault equilibrium and conditions were derived

which would assure positive definiteness of Rc + Rv. However, it should be noted

that the assumption on small changes in E2(t) might be unrealistic, since E2(t)
heavily depends on the terminal voltage of the asynchronous generator; should the

terminal voltage change, E2(t) will also change in fractions of a second.

Let us denote the maximum and the minimum eigenvalue of Rc and Rv(x) by

λmax and λmin, respectively

λmax = max{λ (Rc)}= 2m max{(D1,D2,D3,T2x−1
m } (4.44)

λmin = min{λ (Rv(x))}= 2m (K1(x)+K3(x)). (4.45)

It is important to note that both λmin and λmax depend linearly on the arbitrary

constant m, implying that both equalities (4.44) and (4.45) hold for any choice of

m. Therefore, in general, the negative definiteness of L fV in (4.43) cannot be

ascertained by the choice of m.

Recalling the inequalities from Appendix B,

x′Rcx 6 λmax‖x‖
2

x′Rv(x)x > λmin‖x‖
2,

the best and the worst-case scenarios can be considered:

Best case The system dynamics evolve in the [nonempty] null space NRv
= kerRv

of the matrix Rv, or alternatively λmax + λmin > 0 ∀x. Then, the time deriv-

ative of V is at least nonpositive, which guarantees that (Rc + Rv) < 0, thus

rendering V a valid energy function.

Worst case If ∃ [τ1,τ2] : (Rc + Rv)(τ ) ≺ 0 for all τ ∈ [τ1,τ2] and τ1 6= τ2, then

L fV (τ ) > 0, which invalidates the energy function candidate V given by

expression (4.42).

Obviously, the realization of either the best or the worst case scenarios cannot be

asserted without running a time domain simulation, which makes the direct use of

V questionable. However, in the framework of the Extended Invariance Principle,

V can constitute a valid extended Lyapunov function if the conditions of Theorem 1
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are fulfilled. Thus, EIP lays a solid theoretical basis for the use of the function

(4.42) for transient stability analysis, which would be impossible in the framework

of the conventional invariance principle.

4.6 Use of Interval Arithmetics for Set Inversion

As was stated in the preceding section, in order to assess whether or not a given

function qualifies as a valid Extended Lyapunov function, the conditions of Theo-

rem 1 have to be checked, i.e., the set C has to be bounded and the constants l and

L have to be computed. As this verification involves operations on sets, the use of

interval arithmetics can be attempted, since it offers tools that are able to directly

manipulate sets of numbers.

In more precise terms, the verification procedure reduces to the inversion of the

Lie derivative of the Extended Lyapunov function candidate; in other words, we

will seek the set C = {x|L fV (x) ⊂ R+} = (L fV )−1(R+). If C is bounded and

l = supx∈C V < L, then V qualifies as an Extended Lyapunov function.

In the work reported in this chapter, the so-called SIVIA (Set Inversion Via

Interval Arithmetics) algorithm was adopted to perform the set inversion [61]. The

essential steps of SIVIA are summarized below.

1. Choose a [multidimensional] box [x] enclosing the state-space domain of

interest. That is, we choose the domain that might contain C. Usually, this is

some [small] neighborhood of the stable post-fault equilibrium.

2. Partition [x] into a set of non-overlapping boxes, i.e., [x] =
⋃

[x]i.

3. Perform the test ∀i, [L fV ]i([x]i)⊂ R+⇒ [x]i ⊂C

4. Perform the test ∃i : [L fV ]i([x]i)∩R+ = /0⇒ [x]i∩C = /0.

5. Form the union of all boxes in step (3), which yields the set C.

The major advantage of SIVIA is its ability to find all sets of interest in the given

domain of the state space.

4.7 Numerical Examples

In this section the theoretical foundations presented in the previous sections will be

further explored by means of numerical examples. The main aim of the examples
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Table 4.1: Parameters of the equivalent model of the wind farm. All values are

given in per unit on the base of the generator

H, [s] rr rs xs xr xm vs

4 0.0073 0 0.1248 0.0884 1.8365 0+ j1

is to illustrate the use of the proposed extended Lyapunov functions determining

the attraction region of simple power systems.

Example: Consider a wind farm consisting of 10 wind turbines. The total installed

capacity of the farm is 10 MW. It is also assumed that the turbines have been

aggregated in one equivalent turbine having the parameters shown in Table 4.1.

The damping term D is set to 0.05 p.u.

It has been shown in Section 4.4 that for any model having the structure (3.17),

certain commonly known Lyapunov functions cannot be constructed; therefore, the

wind turbine model will be reformulated in the polar coordinates and an Extended

Lyapunov function will be sought.

With these parameters, the model (4.20)–(4.22) can be written as follows

θ̇ = ω−9.9816E−1 sinθ
ω̇ = 365.21−1877.68E sinθ−19.635ω
Ė = −11.173E +9.9816cosθ

Numerically, the corresponding simplified second-order model (4.27)–(4.28) is

θ̇ = ω−11.173tanθ (4.46)

ω̇ = 365.21−838.729sin(2θ)−19.635ω. (4.47)

Using expression (4.29), the Extended Lyapunov function candidate and its Lie

derivative can be readily computed as

V =
1

2
ω2−365.21θ−419.36cos(2θ)+456.69 (4.48)

L fV = 4080.5tanθ−18742.3sin2 θ−19.635ω2. (4.49)

The boundedness of the set C for (4.49) is checked with the help of the SIVIA

algorithm. The results of set inversion are shown in Fig. 4.6. As can be seen in the

figure, C has multiple components, one of which is bounded. In practice, it suffices

for V to have a single bounded component of C to qualify as an Extended Lyapunov
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Figure 4.6: Set C found by the SIVIA algorithm. Only two components of C are

shown.

function. In the case of the second-order model it is relatively easy to find the set

C by direct inspection of the level curves of L fV ; however, in general the direct

inspection can be complicated, especially if C has multiple components. Fig. 4.7

shows the level curves of the Lyapunov function (4.48) and its Lie derivative. In

the figure, the interiors of the level curves labeled with ‘0’ show the set C, while

the sets bounded by the level curves with labels ‘35’ and ‘346’ designate the sets

Ω̄l and ΩL, respectively.

It should be noted that the performance of SIVIA was significantly improved

by reformulating the Lie derivative

L fV = η1η3 tanθ−η2η4 sin2 θ−Dω2

= tanθ(η1η3−
η2η4

2
sin(2θ))−Dω2,

which is easily explained by recalling the basic properties of interval arithmetics

(A.2)–(A.4). In this example interval arithmetics not only was used to determine

the boundedness of the set C, but also to estimate the constant l = supV on this set.

The constant l was found to be numerically equal to 35.

In the present case study, the constant L = 346 was computed by evaluating V at

the nearest unstable equilibrium point. It is interesting to note that L could also be
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Figure 4.8: Potential energy curve vs. time for the system (4.46)–(4.47). The poten-

tial energy was computed for a hypothetic fault on the transmission system, which

resulted in a 60% voltage drop at the terminals of the asynchronous generator.
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Table 4.2: System parameters for 3-machine power system. All values are given

in per unit, except δ0 and T2. With minor modifications, the parameters values are

similar the values in [60].

M D x′d E0 δ0[rad] xm T2 [s] slip(0)

G1 0.0132 0.0132 0.15 1.48 0.3 — — 0

G2 0.004 0 0.137 1 0.2 2.15 0.235 −0.0193

G3 0.065 0.0325 0.15 1.05 0 — — 0

determined be applying the argument of the PEBS method with the potential energy

defined as Vp =−η3θ−η2η4/(4η1)(cos(2θ +2θ0)− cos(2θ0)), see Fig. 4.8.

Since the conditions of Theorem 1 are fulfilled, it can be concluded that the

function (4.48) is an Extended Lyapunov function and all trajectories initiated in

ΩL will eventually converge to the largest invariant set contained in the union of

Ω̄l and {x ∈ΩL : L fV = 0}.

Example: Let us now consider the three-machine power system. The power system

consists of one synchronous generator G1, one asynchronous generator G2, and a

synchronous motor G3 which are interconnected by 3 power lines connected in a

star. The one-line diagram of the power system is shown in Fig. 4.9. The parame-

ters of the generators are shown in Table 4.2. The power lines have the following

reactances in per unit: Z1 = j0.2, Z2 = j0.1, and Z3 = j0.1. The synchronous fre-

quency was set to 120π. In this example a bolted6 three-phase fault is applied to

the terminals of G3 which is then cleared. The main purpose of this example is

to further explore and validate the extended Lyapunov function (4.42) and its Lie

derivative (4.43).

A series of nonlinear time-domain experiments were performed on the three-

machine power system in MATLAB. Some of the results from the experiments

will be presently discussed. It is instructive to begin inspection of the numerical

results by observing the state x4 = E2−E2,0 and the phase portraits of the electrical

machines, see Fig. 4.10–4.14.

The simulations in this example confirm that the state variable x4 does devi-

ate significantly from its steady state. For instance, in the present case under the

fault, E2 reduced to approximately 25% of its steady state value, see Fig. 4.10.

Physically, this is easily explained by the fact that the asynchronous generator does

not have an excitation winding to support E2 during the fault. Therefore, E2 can be

6To be exact, the fault reactance was j10−5 p.u.
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Figure 4.9: Three-machine power system
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generator as a function of time
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Figure 4.14: Phase portrait of G3

expected to fall rapidly as its terminal voltage decreases. This reduction in the mag-

nitude of E2 has an important implication – an increase of the absolute values of the

variables {Ki(x)}
4
1, see (4.37)–(4.39). As a consequence, λmin in (4.45) increases in

magnitude, which in turn results in positive L fV (x). Thus, strictly speaking, from

the view point of the classical invariance principle, the positive definite function

(4.42) is neither a Lyapunov nor an energy function, since the measure of the set

on which L fV > 0 is nonzero, as Fig. 4.11 shows. The conditions of Theorem 1

were in this example verified numerically, using both interval arithmetics and the

conventional real analysis.

A comparison of the critical clearing time computed by the step-by-step method

and the extended Lyapunov function, reveals that the estimates are not overly con-

servative. For instance, for this example the step-by-step methods yields tcc = 0.25

s, while the Direct method suggests tcc = 0.241 s. That is, the error in the estimate

in this case does not exceed 3.6% �
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4.8 Summary

This chapter reports preliminary results of a study concerned with the questions

related to the transient stability of power systems with asynchronous generators. In

this study the asynchronous generators represent a large-scale wind farm consisting

of fixed-speed wind turbines with fixed pitch. For a better understanding of the

dynamic properties of the asynchronous generators, it is assumed that the necessary

turbine aggregation has been carried out and the farm can be readily represented

by a single asynchronous machine connected to an infinite bus via a transmission

system.

The objective of the study was to develop a framework for studying the transient

stability of the asynchronous generators similar to that of synchronous generators.

That is, an attempt was made to apply a Lyapunov/energy function method to the

simple power system with an asynchronous generator.

Detailed analysis was performed in order to verify the existence of a proper

Lyapunov function for the system at hand. It was demonstrated analytically that

three commonly known method for construction Lyapunov functions cannot yield

a Lyapunov function for the SAMIB system. Even though it does not imply that an

appropriate Lyapunov function does not exist, it does indicate that the construction

of such a function might be a very difficult mathematical task. This fact suggests

that other analytical tools should be be used for the stability studies of the power

system with asynchronous generators.

The Extended Invariance Principle was found capable of constructing a func-

tion that could be used in the stability studies reported in this chapter. In particular,

an extended Lyapunov function was found for a simple power system. The use

of Extended Invariance Principle allows a larger class of functions to be applied

for stability studies of power systems; however, this comes at the expense of hav-

ing to perform certain operations on sets of reals. To overcome the difficulty of

manipulating the sets, the utility of interval arithmetics is proposed.

Numerical examples are used to illustrate the application of Extended Invari-

ance Principle and interval arithmetics for system stability analysis of a simplified

model of a wind farm consisting of fixed-speed wind turbines and a model of a

three-machine power system.
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Chapter 5

Assessment of Voltage Stability of

Uncertain Power Systems

“The actual science of logic is conversant at present only with things either

certain, impossible, or entirely doubtful, none of which (fortunately) we

have to reason on. Therefore the true logic for this world is the calculus

of Probabilities, which takes account of the magnitude of the probability

which is, or ought to be, in a reasonable man’s mind.”

— James Clerk Maxwell (1850)

This chapter presents an application of interval arithmetics to voltage collapse

analysis. The problem of calculating the power system critical loading conditions

and determining the maximal loadability of a power system in a nondeterministic

setting are treated. The methodology for assessment of voltage stability in de-

terministic power systems is well-established in the literature; however, voltage

stability analysis of nondeterministic power systems has not yet received much

attention. In this chapter, the uncertain power system parameters such as, for in-

stance, loads and partly controllable generation are treated as intervals and the

analysis is performed using the framework of interval arithmetics. The voltage sta-

bility problem is restated in terms of an interval-valued optimization problem and

is solved by applying the Generalized Newton method.

Numerical experiments are performed in order to demonstrate the technicalities

of the proposed methodology. For the examples presented, the numerical results are

found to be reliable and nonconservative.

5.1 IntroductionReliable assessment of voltage stability of an electric power system is es-

sential for its operation and control. To accommodate the need for accu-

rate analysis of voltage stability a number of analytical and computational

tools have been developed [28], [58]. Typically, two voltage stability problems are

analyzed:

1. Determination of the maximum loadability problem and

65
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2. Computation of the critical loading of the power system [67].

In the former case, a loading scenario is assumed and the maximum power

transfer to the load buses is computed. In the latter case, a minimum system loading

is sought that would render the power system voltage unstable, i.e., the loading

that would cause voltage collapse. Such a loading is referred to as critical system

loading. From the standpoint of the system operator, the power system should

be controlled is such a way that the critical loading is prevented. A recent paper

reported a new method for the assessment of voltage stability in power systems

with probabilistic nodal loading model [67].

It is shown in the literature that the voltage stability analysis problem can be

reduced to a constrained optimization problem, see [28] and references therein.

This consideration allows well-established techniques from optimization theory be

used in voltage stability analysis (VSA) studies. Typically, the direct optimization

of a certain objective function is performed, which yields the critical points which

are the solutions to either the maximum loadability or critical loading problem.

Alternatively, the continuation method is used to solve the optimization problem

[28], [67].

In all of the aforementioned publications, it is implicitly assumed that the power

system is deterministic, with possibly one exception–the system loading which, in

some cases, is assumed to be uncertain. While in some power systems this can-

not be considered a problem, there are power systems which contain significant

amounts of uncontrollable energy sources such as, for example, large wind farms

and for these power systems the uncertainty in power generation can be significant.

As the voltage stability is—to a certain extent—a local problem, the uncertainty in

the power system parameters need to be explicitly accounted for. This chapter

presents a methodology for addressing the issue of uncertainty in the power sys-

tem generation. The uncertain parameters of a power system are represented by

intervals, i.e., it is explicitly assumed that although uncertain, the parameters are

bounded. The VSA problem is reformulated in the form of an interval-valued op-

timization and then solved using the methods of interval arithmetics.

5.2 Voltage Stability Formulation

System Modeling

In power systems analysis it is customary to model the network components with

the help of differential-algebraic equations which—in the general case—have the
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following form [28]

[
ẋ

0

]

=

[
f (t,x,y,λ , p)
g(t,x,y,λ , p)

]

= F(z,λ , p). (5.1)

In equation (5.1), the vector x ∈ R
n typically represents the state variables of the

various power system devices and their respective controls; y ∈ R
m is the vector

of algebraic variables which normally represent nodal voltages and angles of the

load buses. Finally, the vectors λ ∈R
l and p ∈R

k stand for the set of slowly vary-

ing parameters e.g., system loading variations and the set of control parameters,

respectively. It is assumed that the system operator does not have director control

over the parameters λ , as opposed to the parameters p which can directly or indi-

rectly be altered by the operators. The vector-valued functions f and g are defined

as f : R×R
n×R

m×R
l ×R

k → R
n and g : R×R

n×R
m×R

l ×R
k → R

m. For

convenience, let us introduce the variable z = (x′,y′)′. Without significant loss of

generality, it is assumed in this chapter that the parameters p are kept constant and

equal numerically to some p = po.

It is commonly assumed that the variable z evolves on such a manifold M that

the mapping Dyg remains bijective for all time [54]. If this is the case, then the

system (5.1) can be shown to have a unique solution and the algebraic equations

can be eliminated by means of the Implicit Function Theorem [104]. In this chapter

it is assumed that Dyg ∈M along all system trajectories.

Depending on the nature of the VSA studies, either the conventional power-flow

equations or the complete set of differential-algebraic equations (5.1) are used in

the analysis and simulations. Nevertheless, as is reported in the literature, in many

practical cases the load-flow equations alone might be inappropriate for the needs

of rigorous voltage stability analysis [29], [30].

Voltage Collapse

The operational principles of power systems are such that at an given time in-

stant, the power system is subjected to the action of various perturbations. For

the convenience of analysis, the perturbations can be subdivided into two cate-

gories: slow and fast. All the systems considered in this chapter are assumed to be

perturbed by slow variations in the parameters λ . As the parameter vector λ al-

ters, the equilibrium point (z∗,λ∗) of (5.1) moves in some domain Ω⊂R
n+m×R

l .

Upon approaching a local maximum of loading, the system (5.1) undergoes a local

saddle-node bifurcation, which is characterized by a unique zero eigenvalue of the
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Jacobian matrix Dx f (z∗,λ∗) and the transversality conditions

Dx f · v = D′x f ·w′ = 0 (5.2)

w′Dλ f = 0 (5.3)

w′ ·D2
x f · v = 0. (5.4)

In equation (5.3), the variables v and w stand for the normalized right and left

eigenvectors corresponding to the zero eigenvalue of Dx f . Note that the Jacobians

Dx f ,Dλ and Hessian D2
x f in equations (5.2)–(5.4) are evaluated at the equilibrium

(z∗,λ∗).
In order to ensure a reliable and proper operation of power systems, the current

equilibrium should not approach the local bifurcation point. Moreover, a certain

voltage stability margin should be identified [possibly based on practical experi-

ence] and power system operated within this stability margin. On the other hand,

because of certain economical and environmental considerations, many power sys-

tems are presently operated in a proximity to their stability limits. Thus, it becomes

an important task to reliably determine the local loadability limit for a given power

system.

There exists a dual problem to the aforementioned one, namely, the determining

of the minimal load increase that causes a system bifurcation. This problem is

commonly referred to as ‘minimum distance to collapse.’

Both these problems can be reformulated as optimization problems in which the

loading λ is maximized and the distance ‖λ −λo‖ is minimized, respectively. That

is, the maximum loadability problem reduces to the optimization of the objective

function

min
λ ,z

J1(λ ,z) =−λ (5.5)

s.t. F(z,λ ) = 0

while, the critical system loading can be computed by optimizing the following

objective function

min
λ ,z,w

J2(λ ,z,w) = ‖λ −λo‖
2 (5.6)

s.t. (F(λ ,z)′,w′DzF(λ ,z))′ = 0.
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Analytical Tools for VSA

Normally the constrained optimization problems (5.5)–(5.6) are solved either di-

rectly by applying the Lagrange multipliers technique or using the so-called the

continuation method. The direct method is less expensive numerically and only

yields the set (λ∗,z∗,w∗). The latter technique is essentially based on repetitive

computation of the system equilibria as the parameter λ (usually a scalar) is varied

and thus is more expensive numerically, as compared to the direct method. The

direct method is applied for all optimization tasks treated in this chapter.

In the discussion above, all the variables and parameters have been assumed

known exactly, which in certain situations might not be entirely true. For instance,

in power systems with substantial penetration levels of distributed generation utiliz-

ing uncontrollable energy sources, for instance wind energy, the power produced

at a given time instant is not known in advance. On the other hand, the actual

loading of a small power system also is to some extent uncertain. In large power

systems, the various loads are normally aggregated, which reduces the impact of

the load uncertainty on the stability analysis. Nevertheless, the voltage instability

phenomenon is considered to be a local one making a general discussion on the

suitability of aggregation of large loads a nontrivial task. It is therefore of interest

to develop a VSA technique capable of accounting for uncertainties in the system

parameters. One of possible alternatives is to use intervals arithmetics to perform

the constrained optimization tasks (5.5)–(5.6).

5.3 Application of Interval Arithmetics to Voltage

Collapse Analysis

Let us reformulate the two constrained optimization problems (5.5)–(5.6) stated

in Section 5.2 placing emphasis on the fact that some of the parameters are now

treated as intervals. That is, now it is assumed that both λ and z are uncertain, but

bounded quantities. Then, the objective functions J1 and J2 in (5.5)–(5.6) become

min
[λ ],[z]

J1([λ ], [z]) =−[λ ] (5.7)

s.t. F([λ ], [z]) = 0

min
[λ ],[z],[w]

J2([λ ], [z], [w]) = ‖[λ ]−λo‖
2

(5.8)

s.t. (F([λ ], [z])′,w′DzF([λ ], [z]))′ = 0.
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To solve either of (5.5) or (5.6), the method of Lagrange multipliers can be applied.

A series of experiments was performed and it was observed that the so-called

naı̈ve Newton method was able to yield acceptable results for the problems in

which the interval parameters had relatively small uncertainties. To enhance the

numerical properties of the optimization, the Generalized Newton method (GN)

was implemented, in which the Newton iterate is given by the expression [48]:

[uk+1] = uk∩ [ǔk−DuF
−1(uk) ·F (ǔk)], (5.9)

where [uk] = [zk]× [λk]× [wk] and F is the Lagrangian defined as

F = ‖[λ ]−λo‖
2 + s′1F([u])+ s′2D′zF ·w, (5.10)

DuF stands for the gradient of the Lagrangian evaluated at [uk], and s1 and s2

are the respective Lagrange multipliers. The variables u are treated as unknown

intervals, the active power P1 and P2 are assumed to be known intervals. All the

computations are performed in MATLAB with the help of the package INTLAB

[105].

Numerical Experiments

To exemplify the ideas presented in the preceding sections and facilitate the dis-

cussion on the results obtained, a simple power system is chosen1. The power

system consists of a slack node, three transmission lines, and two PV nodes, see

Fig. 5.1. The relevant parameters of the system are shown in the figure. It is as-

sumed that the [aggregate] generators connected to nodes N1 and N2 maintain the

voltage magnitude of the respective nodes constant, while the voltage angles are

considered to be state variables. For simplicity the dynamics of the generators and

loads are neglected. The net active power injected into the nodes N1 and N2 are

the differential between the local generation and consumption. It is also assumed

that the net active powers are uncertain, i.e., Pi = [Pi,Pi], i = 1,2. In a real power

system this uncertainty can be attributed to either variable loads or generation, or

both. The power system is described by the following set of equations:

F =

[
λ1P1 +V1V2 sin(δ2−δ1)−V1 sin(δ1)
λ2P2 +V1V2 sin(δ1−δ2)−V2 sin(δ2)

]

(5.11)

Let us now solve the maximul loadability problem and also find the critical loading

of this simple power system.

1This power system was originally introduced and studied in [82].
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Figure 5.1: Three-bus power system
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Figure 5.3: Variation of the Saddle-node bifurcation point in δ1−δ2 plane

Due to the uncertain P1 and P2, the critical points of the system assume certain

values which can be computed by a repetitive use of either the direct method i.e.,

minimizing (5.5) [or (5.6)] for various combinations (p1, p2) : p1 ∈ [P1], p2 ∈ [P2]
or by using the continuation method. However, both these methods can be quite

expensive numerically. Alternatively, the objective function (5.7) [or (5.8)] can be

minimized only once yielding the desired result directly. That is, upon minimizing

the interval-valued objective functions, we can directly find such an enclosure [u∗]
that contains the set of all values which the critical points of interest assume for

the parameters [P1] and [P2].

In the first experiment the following numerical values are chosen [P1] = [0.5±5 ·
10−3] and [P2] = [−0.5±5 ·10−3] and a local minimum of (5.7) is sought. This op-

timization problem was solved and the following numerical values were obtained:

[λ1] = [3.4903,3.5504], [λ2] = [3.4903,3.5504]. Fig. 5.2 further illustrates the re-

sults of the optimization. In the figure, the large box encloses the subset of the

δ1 − δ2 plane that is guaranteed to contain all critical points corresponding the

maximal loadability of the system for all p1 ∈ [P1] and p2 ∈ [P2].
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To verify the interval computations and assess the conservatism of results, the

objective function (5.5) was minimized on the grid (p1, p2) : p1 ∈ [P1], p2 ∈ [P2]
and plotted in Fig. 5.2. As is seen in the figure, the enclosure is computed correctly

and indeed contains all the values that the critical point assumes on [P1]× [P2].
The second experiment is conducted on the same system, but in this case the

critical loading conditions are identified; that is, the objective function (5.8) is now

minimized. Assuming the same values of [P1] and [P2], the optimization is solved

and the results are depicted in Fig. 5.3. Again, the enclosure [u∗] is found that

contains all the values that the critical point assumes on [P1] and [P2]. In particular,

[λ1] = [−0.4408,−0.3807], [λ2] = [3.2610,3.3211]. That is, based on the results

obtained, it can be concluded that the power system under consideration will re-

main voltage stable if the load at node N1 is not greater than sup [λ1] · [P1] and the

load at node N2 does not exceed the value inf [λ2] · [P2]. The dotted line in Fig. 5.3

shows the enclosure [u∗] (large box) and the movement of the critical point (saddle

node) as the function of (p1, p2) : p1 ∈ [P1], p2 ∈ [P2]. Direct inspection of Fig. 5.3

indicates that the enclosure is not exceedingly conservative.

5.4 Summary

This chapter considers an application of interval arithmetics to voltage stability

analysis. In particular, the problem of calculating the power system critical loading

conditions and determining the maximal loadability of a power system in an un-

certain setting are treated. The application of the method presented in this chapter

allows the power system operator to assess the location of critical points of inter-

est directly without having to perform repeated optimization of the corresponding

objective function in order to account for the system uncertainties.

Numerical experiments are performed in order to demonstrate the technicalities

of the proposed methodology. The numerical results are found to be reliable and

nonconservative.
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Chapter 6

Identification and Modeling of

Aggregate Power System Loads

“A basic rule in estimation is not to estimate

what you already know.”

— A quotation from [113]

This chapter addresses some theoretical and practical issues relevant to the prob-

lem of modeling and identification of aggregate power system load. Two identifi-

cation techniques are developed in the theoretical framework of stochastic system

identification. The identification techniques presented in this chapter belong to

the family of output error models; both techniques are based on well-established

equations describing load recovery mechanisms having a commonly recognized

physical appeal. Numerical experiments with artificially created data were first

performed on the proposed techniques and the estimates obtained proved to be as-

ymptotically unbiased and achieved the corresponding Cramér-Rao lower bound.

The proposed techniques were then tested using actual field measurements taken at

a paper mill, and the corresponding results were used to validate a commonly used

aggregate load model.

The results reported in this chapter indicate that the existing load models sat-

isfactorily describe the actual behavior of the physical load and can be reliably

estimated using the identification techniques presented herein.

6.1 IntroductionAccurate models of power system loads are essential for analysis and sim-

ulation of the dynamic behavior of electric power systems [5]. Having

accurate models of the loads that are able to reliably reflect underlying

phenomena of the physical loads is important for the purposes of designing auto-

77
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matic control systems and optimization of their configuration. More importantly,

the dynamic properties of power system loads have a major impact on system sta-

bility [5, 66, 122]. In particular, previous work on the subject of voltage stability

reported in the literature indicates that the parameters of both static and dynamic

loads have significant impact on voltage stability of the power systems [53, 122].

On the other hand, the impact of power system load models on inter-area oscilla-

tions is discussed in [5], demonstrating the influence that load parameters have on

the dominant system eigenvalues. This dependence reveals the link between the

effectiveness of power system damping controllers (e.g., power system stabilizers

or PSS) and the correctness of the eigenstructure of the system, which is dependent

on the load model.

To be able to predict the behavior of a system, reliable models of system compo-

nents are needed that faithfully reflect the dynamical behavior of the actual physical

components of the system. Most of the power system components can be satisfac-

torily modeled by considering the physical laws which govern the respective com-

ponents. There are, however, some cases when power system modeling is quite a

complicated exercise. Modeling power system loads is one of them. It is known

that at high voltage levels, the power system loads have to be aggregated in order

to obtain manageable models suitable for analysis and simulations [5]. Depending

on the load type (e.g. lighting, motor load, heating, etc.), the parameters of the

aggregate load model may vary in a wide range. When the parameters of all load

components are well known, the parameters of the aggregate load models can be

readily determined. If the parameters of separate loads are not known or the load

structure is known, but the proportion of various load components is not, deriving

an aggregate load becomes more difficult.

It can be argued that in the absence of precise information about a power sys-

tem load, one of the most reliable ways to obtain an accurate model of the load is

to apply an identification technique. That is, if field measurements of load quan-

tities (e.g., the voltage and current/power) adequately describing its behavior are

available, then a dynamic and/or static equivalent of the load can be obtained by

analyzing functional relationships between these quantities.

The current chapter is concerned with theoretical and numerical aspects of iden-

tification of an aggregate model of power system loads. Identification of both lin-

ear and nonlinear models of a power system load is treated. Two identification

techniques are presented that belong to the so-called family of output error models.

First, the estimation of the load parameters using a linear model is presented, which

is followed by the presentation of a nonlinear identification technique. The statisti-

cal properties of the proposed identification methods are studied both numerically
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and analytically. Thus, artificially created data are analyzed numerically and the

variance of the obtained estimates is compared with the corresponding Cramér-

Rao lower bound. Then, in order to benchmark the identification techniques and

validate the analytical load models, field measurements taken at a paper mill were

used. The results obtained indicate that the load models describe the actual be-

havior of the load with high accuracy. Moreover, it is shown that the load model

parameters can be accurately identified using the proposed techniques.

6.2 Aggregate Models of Power System Loads

In general, obtaining detailed models of power system loads is a more complicated

task than modeling a particular power system component, such as, for instance, a

synchronous machine. The problem is two-fold:

(a) Loads are time variant and stochastic;

(b) In most cases, at high voltage levels the loads must be aggregated.

The latter is due to the large number and types of loads connected at the transmis-

sion system level, which makes the consideration of each separate load numerically

impractical and provides no insight into the system analysis. The time variance of

loads can be accounted for by the explicit modeling their dynamic behavior by

differential and/or difference equations.

Power system load aggregation can be performed in two ways:

(i) Analytically, by lumping similar loads and then using pre-determined values

for each parameter of the load (e.g. [3] and [4]) or

(ii) Selecting a load model and then performing parameter estimation using an

appropriate identification technique.

Static load models

Due to the importance of adequate load modeling, a large number of various static

models of power system loads have been developed. Despite this diversity, in prin-

ciple, they all serve one common goal: to reflect the voltage and possibly frequency

dependence of the active and reactive components of the loads. For example, in [4]
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the following standard load models used for dynamic studies in established stabil-

ity programs (e.g., EPRI’s LOADSYN and ETMSP packages) are suggested:

P = P0

[

Pa1

[
VL

V0

]Kpv1

[1+Kp f 1( f − f0)]+(1−Pa1)

[
VL

V0

]Kpv2

]

(6.1)

Q = P0

[

Qa1

[
VL

V0

]Kqv1

[1+Kq f 1( f − f0)]

+ [1+Kq f 2( f − f0)]

[
Q0

P0
−Qa1

][
VL

V0

]Kqv2

]

(6.2)

where VL and f are the load bus voltage and frequency, respectively. In equations

(6.1)–(6.2), Kpv1 and Kpv2 represent the voltage exponents for frequency dependent

and frequency independent active power load; Kqv1 and Kqv2 stand for the voltage

exponents for the uncompensated and compensated reactive power load; Kp f 1 and

Kq f 1 are the frequency sensitivity coefficients for active and uncompensated reac-

tive power load; Kq f 2 is the frequency sensitivity coefficient for reactive compen-

sation; and Pa1 and Qa1 represent the frequency dependent fraction of active load

and reactive load coefficient of uncompensated reactive load to active power load,

respectively. V0, P0, and Q0 denote the nominal values of the load voltage and ac-

tive and reactive power of the load. It is important to note that in the models above

some fraction of the load is explicitly modeled as a function of bus voltage, while

the other fraction is as an explicit function of frequency.

The usefulness of a load model is directly related to the correctness of the para-

meters of the model. The parameters can be obtained in two ways: pre-determined

values can be chosen based on the load type, or the parameters can be estimated

based on field measurements. The latter is more expensive but it is preferable, since

it can yield more accurate values of the load parameters.

The estimation of the parameters of a static load is relatively simple, as the load

model does not involve dynamical variables; in this case, the task of parameter

estimation is practically reduced to curve fitting. References [35] and [132] report

successful attempts to estimate static load parameters using a modified algorithm

of Broyden, Fletcher, Goldfarb, and Shanno (BFGS) and a least squares technique,

respectively. It should however be noted that the application of any gradient-based

optimization routine can potentially lead to hitting a local optimum of the associ-

ated objective function, and thus obtaining inaccurate parameter values.
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Dynamic load models

Nonlinear Dynamic Load Models

The impact that loads have on the dynamics of a power system has stimulated

significant research efforts directed towards proper modeling of certain character-

istics of power system loads. In many cases the use of static load models may be

inappropriate due to their failure to accurately reflect the influence of the load on

system stability [4], [81]; hence, since some loads do exhibit dynamical behavior

(e.g., motor loads), these are represented by means of dynamical models.

It has been shown in [5] and [53] that the following models of aggregate loads

can successfully capture the dominant nonlinear steady-state behavior of the load

as well as load recovery and overshoot:

ẋ(t) =−
x(t)

Tp

+P0

[
VL(t)

V0

]Nps

−P0

[
VL(t)

V0

]Npt

Pd(t) =
x(t)

Tp

+P0

[
VL(t)

V0

]Npt
(6.3)

ż(t) =−
z(t)

Tq

+Q0

[
VL(t)

V0

]Nqs

−Q0

[
VL(t)

V0

]Nqt

Qd(t) =
z(t)

Tq

+Q0

[
VL(t)

V0

]Nqt
(6.4)

In the equations above Pd(t) and Qd(t) are the active and reactive power demand

of the load, P0, Q0, and V0 stand for the nominal active, reactive power and voltage,

respectively; the parameters Tp and Tq denote the time constant of the load internal

state variables x(t) and z(t); and the exponents Nps, Nqs, Npt , and Nqt are the steady

state and transient voltage indices. Observe that neglecting the frequency depen-

dence in the static load model (6.1)–(6.2), the nonlinear load model (6.3)–(6.4) is

equivalent to this model in steady state, i.e., for ẋ(t) = 0.

In the remainder of the chapter, the following notation will be used y(t) := Pd(t)
and θ = [Nps,Npt ,T

−1
p ]′= [θ1,θ2,θ3]

′. In general, for a given load the exponents θ1

and θ2 are not known exactly; however, similarly to the case of static load models,

average values for many load types have been pre-determined. For example, [5]

gives the following lower and upper bounds for these indices:

0 6 θ1 6 3, 0.5 6 θ2 6 2.5. (6.5)
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For simplicity, henceforth, the voltage V0, active and reactive power P0,Q0 will

be assumed to be known values. Thus, the system voltage can be normalized and

denoted by: V (t) := VL(t)/V0. In the subsequent sections of this chapter only the

model of active power (6.3) will be considered. The reactive power model given

by (6.4) can be treated in exactly the same manner.

It should be noted that the load models (6.3)–(6.4) are linear in the states; the

nonlinearities enter the equations as inputs and outputs. Thus, strictly speaking,

the model in the identification procedure discussed here should be referred to as

a “Hammerstein-Wiener” model structure [42]. However, since these models are

actually used in stability analysis of power systems, where load voltage magnitudes

are treated as either algebraic or state variables, the model is typically referred to

as a nonlinear model in this context. For this reason, and for the simplicity of

the comparisons between the two different load models discussed here, the present

model is referred to as a “nonlinear model” in the remainder of the chapter.

Linear Dynamic Load Models

When studying the behavior of a system in a small proximity of a given operating

point, the original nonlinear model can be approximated by a linear counterpart.

That is, the nonlinear system can be linearized around the equilibrium point. Since

the functions V θ1(t) and V θ2(t) are smooth for a smooth V (t), the right-hand sides

of (6.3) can be expanded in a Taylor series, resulting in the linearized model of the

load [53]:

∆ẋ(t) = −θ3∆x(t)+P0 (θ1−θ2)∆V (t)

= −A(θ)∆x(t)+B(θ)∆V (t)

∆y(t) = θ3∆x(t)+P0θ2∆V (t)

= A(θ)∆x(t)+D(θ)∆V (t). (6.6)

In principle, to obtain a rough estimate of the system behavior, pre-determined

values of the steady state and transient voltage indices can be used in simulations.

However, as the transmission systems become more stressed, it becomes important

to have more accurate estimates of the indices, since they directly influence im-

portant system characteristics such as damping; that is, incorporation of inaccurate

load characteristics in power system simulation models can lead to overestimation

of system damping [81].
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As in the case of static load models, the load characteristics can be identified

based on field measurements. The use of identification techniques can yield accu-

rate estimates of load parameters, provided certain care has been exercised when

selecting input signals and setting up the measurement circuits. These and related

questions are treated in more detail in the next section.

6.3 System Identification

System identification can be defined as a collection of techniques which aim at ex-

tracting a mathematical model of a given process by analyzing relations between

the input and output quantities of the process. Modern system identification has de-

veloped into a mature engineering discipline which is intensively applied in many

branches of modern engineering. In this chapter, only identification techniques

that are relevant to the problem at hand will be reviewed; for a detailed treatment

of system identification theory and practice the reader is referred to [79, 80, 89].

AutoRegressive Moving Average with eXternal input (ARMAX)

method

In its simplest form, the procedure of process identification may be formulated as

follows:

Given two vectors u,y find three sets of parameters ai,bk,cl, i = 1,2, . . . ,n; k =
1,2, . . . ,m; l = 1,2, . . . , p of a transfer function such that the model output ŷ best

fits the measured data y, being subjected to the same excitation signal u.

The desired parameters can be found as shown below. Assume that the process

can be described by the model (6.7)

y(t)+a1y(t−1)+ · · ·+any(t−n)
︸ ︷︷ ︸

A(q)y(t)

= b1u(t−1)+ · · ·+bmu(t−m)
︸ ︷︷ ︸

B(q)u(t)

+e(t)+ c1e(t−1)+ · · ·+ cpe(t− p)
︸ ︷︷ ︸

C(q)e(t)

(6.7)

or introducing the backward shift operator q, equation (6.7) can be cast in the form

A(q)y(t) = B(q)u(t)+C(q)e(t), (6.8)

with the parameter vector

θ = [a1, . . . ,an,b1, . . . ,bm,c1, . . . ,cp]
′ .
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Equation (6.8) can be reshaped by introducing ŷ(t|θ)–an estimate of y(t):

C(q)ŷ(t|θ) = B(q)u(t)+ [C(q)−A(q)]y(t) (6.9)

and further rearrangement of (6.9) yields:

ŷ(t|θ) = B(q)u(t)+ [1−A(q)]y(t)+ [C(q)−1] [y(t)− ŷ(t|θ)]
︸ ︷︷ ︸

ε(t|θ)

(6.10)

= φ′(t|θ)θ. (6.11)

Minimization of the prediction error ε(t|θ) will yield the desired result–the pa-

rameter θ , i.e., the parameters ai,bk, and cl . Once an objective function has been

chosen, the minimization can be done in many ways. If the analyst has decided that

the objective function should be a quadratic function in θ , e.g., 1/2ε(t|θ)′ε(t|θ),
then the optimization results in the closed form solution:

θ̂ =

[

1

N

N

∑
t=1

φ(t)φ′(t)

]−1
1

N

N

∑
t=1

φ(t)y(t) (6.12)

State space identification methods

Now suppose that a model of the process is given by the state space model:

{
x(t +1) = Ax(t)+Bu(t)+ v(t)
y(t) = Cx(t)+Du(t)+w(t),

(6.13)

where v(t) and w(t) are the process and measurement noise [118]. The following

statistical characteristics are given:

E [v(t1)v
′(t2)] = R1(θ)δt1,t2

E [v(t1)w
′(t2)] = R12(θ)δt1,t2 (6.14)

E [w(t1)w
′(t2)] = R2(θ)δt1,t2 ,

where R are covariance matrices. The aim of the identification is to obtain the

matrices A,B, and C such that the response of model (6.13) best fits the measured

data.

The task is solved in several steps which involve solving a Riccati equation

associated with (6.13) and (6.14):

P = APA′+R1−
[
APC′+R12

][
CPC′+R2

]−1 [
CPA′+R′12

]
. (6.15)
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Note that in (6.15) the argument of matrices R(θ) is suppressed for conciseness.

Having found P, one should compute the Kalman gain as

K =
[
APC′+R12

][
CPC′+R2

]−1
(6.16)

Next, one-step ahead predictions are calculated which can be further used for the

unknown parameter determination:

x̂(t +1|t) = Ax̂(t|t−1)+Bu(t)+Kỹ(t)
y(t) = Cx̂(t|t−1)+ ỹ(t).

(6.17)

Subspace identification methods

Subspace identification methods are relatively new; however, they have already

proven to be a sound alternative to well-established identification algorithms.

The power of the subspace algorithms lies in the following facts:

• They provide a clear link to the “old” identification methods

• They are of intrinsic Multi-Input-Multi-Output (MIMO) nature

• They allow the engineer to robustly estimate a possible order of the plant

(done through inspection of singular values of the identified model)

• They allow for a lucid geometrical interpretation which actively connects

human’s intuition [93].

Recent research [40] indicates that the use of subspace identification techniques can

be utilized for the model-free Linear Quadratic Gaussian (LQG) controller design,

which can be viewed as a very useful feature enabling the user to obtain an LQG

controller without the need for identification of a process model.

Subspace identification methods exploit the so-called orthogonal projections of

“the future outputs onto past and future inputs and the past outputs”. Mathemati-

cally the task of system identification is solved in several steps [40].

Step 1

Given two measurements ui and yk, i,k = 1,2, · · · ,N, form the input matrices for

the ‘past’ and ‘future’ signals:

U1 =








u0 u1 · · · uk−1

u1 u2 · · · uk

...
...

...
...

uBH−1 uBH · · · uBH+k−2








, (6.18)
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U2 =








uBH uBH+1 · · · uBH+k−1

uBH+1 uBH+2 · · · uBH+k

...
...

...
...

uBH+FH−1 uBH+FH · · · uBH+FH+k−2








, (6.19)

where k is the number of columns1, BH and FH stand for the backward and for-

ward prediction horizons (number of data samples used for backward/forward pre-

diction), respectively. According to [93], the prediction horizons must be “large

enough”. U1 and U2 denote matrices containing the ‘past’ and ‘future’ signals. In

a similar manner matrices Y1 and Y2 for the output yk are formed.

Step 2

Define the new matrix W1 = [Y ′1,U
′
1]
′ and then calculate the matrices Lw and Lu:

Y2/

[
W1

U2

]

= Y2

[
W ′1U ′2

]
[

W1W ′1 W1U ′2
U2W ′1 U2U ′2

]†[
W1

U2

]

(6.20)

= LwW1 +LuU2 (6.21)

In equation (6.20), the operator ‘†’ is understood as the Moore-Penrose pseudo-

inverse. For any square nonsingular matrix R, its pseudo-inverse R† = R−1. If R

is a non-square matrix and the following holds: R†RR† = R†,RR†R = R,(R†R)′ =
R†R,(RR†)′ = RR†, then R† is the pseudo-inverse of R.

Step 3

The procedure terminates by computing the singular value decomposition (SVD)

of Lw and estimating of the future output x̂1 [45]:

Lw = [Ua Ub]

[
Sa 0

0 Sb

][
V ′a
V ′b

]

, (6.22)

where Ua,Ub are the output singular vectors, Va,Vb are the input singular vectors,

and Sa,Sb are the singular values of the matrix Lw.

x̂1 = S
1/2
a V ′aW1. (6.23)

Concluding remarks on system identification

The main reasons for using identification techniques in power systems are the

uncertain nature of the power system and ageing of power system components.

1In [40], it is noted that k has to approach infinity in order to attain unbiased estimates.
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Of course, it is preferable to explore every possibility of developing models of

the system based on physical insights in order “not to estimate what we already

know” [113]. Often a combination of modeling based on physical insights and

system identification yields best results.

Power System Load Identification

In the context of this chapter, the load voltage and load power comprise the pair of

input and output signals. It can be noticed that both models (6.3) and (6.4) describe

the dynamic behavior of a load as functions of the nodal voltage in a noise-free

environment i.e., the presence of noise is not reflected in the models. Hence, to

account for the presence of noise in the measurements and since no information

is available regarding the noise model, an output error model is chosen, which

is known to be robust and have a plausible physical interpretation. To simplify

notation, two new functions u1(θ) and u2(θ) are introduced:

u1(θ) := P0V θ1(t)−P0V θ2(t)

u2(θ) := P0V θ2(t)

Now, the model (6.3) can be reformulated in a stochastic framework as:

ẋ(t) =−θ3x(t)+u1(θ)

y(t) = θ3x(t)+u2(θ)+ e(t)

= ŷ(t)+ e(t).

(6.24)

In the equation above, the term e(t) represents white Gaussian noise with known

statistics. Similar arguments apply to the model of reactive power.

Model discretization

Since measurements used in system identification are collected at predefined in-

stants of time, the continuous-time load equations (6.24) should be converted to

discrete-time counterparts. In this work, the discrete-time description of the load

equations is based on the Zero-Order Hold method (ZOH) and is obtained as fol-

lows [124]:

x(kℓ+ ℓ) = F(θ)x(kℓ)+H(θ)u1(kℓ) (6.25)

y(kℓ) = θ3x(kℓ)+u2(kℓ)+ e(kℓ) (6.26)
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where ℓ := tk+1− tk,∀k ∈ I ⊆ N, stands for the sampling interval, and the vari-

ables F(θ) and H(θ) are:

F(θ) := exp(−θ3ℓ), (6.27)

H(θ)u1(kℓ) =
∫ kℓ+ℓ

kℓ
{exp(θ3(kℓ+ ℓ− τ ))u1(τ )}dτ

= (1−F(θ))θ−1
3 u1(kℓ). (6.28)

In equation (6.28), it is assumed that the input function u1(τ ) is constant and equal

to u1(kℓ) for kℓ 6 τ 6 kℓ+ ℓ.

Several numerical experiments conducted in the framework of this thesis con-

firmed that ZOH discretization yields the least error as compared with other meth-

ods such as, for instance, the forward Euler and the trapezoidal methods. Thus,

ZOH is used here to discretize the nonlinear equations (6.24).

Prediction Error for the Nonlinear Load Model

The discretized equations can be utilized as a basis for the prediction of future

outputs of the dynamic system, i.e.,

qx(kℓ) − F(θ)x(kℓ) = H(θ)u1(kℓ)

x(kℓ) = (q−F(θ))−1H(θ)u1(kℓ)

y(kℓ|θ) = θ3

{
(q−F(θ))−1H(θ)u1(kℓ)

}
+u2(kℓ)e(kℓ)

=
1−F(θ)

q−F(θ)
u1(kℓ)+u2(kℓ)+ e(kℓ)

= ŷ(kℓ|θ)+ e(kℓ). (6.29)

In equation (6.29), the symbol q denotes the forward shift operator. It is interesting

to observe that the predicted value of the system output ŷ(k|θ) at time k equals the

sum of the pre-filtered input function u1(k) and input function u2(k). Finally, the

prediction error is defined as the difference between the predicted and actual output

of the system

ε(k|θ) = y(k)− ŷ(k|θ), ∀k ∈I . (6.30)
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Prediction Error for the Linear Load Model

Similarly to the nonlinear load model, let us assume that the dynamic response of

the load can be satisfactorily described by a linear output error model, i.e.,

∆y(t) = A(θ)∆x(t)+D(θ)∆V (t)+ e(t). (6.31)

Applying the ZOH method to linearized load model (6.6), one readily obtains the

discrete load model:

∆x(kℓ+ ℓ|θ) = F(θ)∆x(kℓ)+Γ(θ)∆V (kℓ)

∆y(kℓ|θ) = A(θ)∆x(kℓ)+D(θ)∆V (kℓ)+ e(kℓ), (6.32)

where (6.32), Γ(θ) = H(θ)P0(θ1− θ2), where F(θ) and H(θ) are defined as in

(6.27) and (6.28), respectively.

Eliminating the state variable ∆x(kℓ), the discretized output error model (6.32)

can be rewritten in the form of a transfer function:

∆y(kℓ|θ) =
θ3Γ(θ)

q−F(θ)
∆V (kℓ)+ e(kℓ)

= P0
1−F(θ)

q−F(θ)
(θ1−θ2)∆V (kℓ)+ e(kℓ)

= ∆ŷ(kℓ|θ)+ e(kℓ). (6.33)

The prediction error for the linearized model is formulated as the difference be-

tween the measured output ∆y(kℓ) and the predicted output ∆ŷ(kℓ):

ε(k|θ) = ∆y(kℓ)−∆ŷ(kℓ|θ), ∀k ∈I . (6.34)

Minimization of the Prediction Error

Ideally, in a noise-free environment the prediction error is zero at all times, if both

load model and the values of the parameter vector θ are known exactly. In practice,

however, this is not achievable due to the fact that these conditions are not satisfied;

moreover, field measurements always contain noise. Therefore, in the best case

scenario, one can hope for keeping the prediction error reasonably small, which
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can be accomplished by formulating an optimization problem in which certain ob-

jective function—often a 2-norm of the prediction error vector—is minimized by

varying the parameter vector θ over the feasible parameter space. We thus follow

the system identification tradition and define the optimization problem as

θ∗ = argmin
θ∈Ω

1

2N
‖ε(θ)‖2

2 . (6.35)

In the expression above, N is the number of data samples, θ∗ and Ω stand for

the optimal parameter vector and the feasible parameter space defined by (6.5),

respectively.

The success of prediction error minimization depends on a number of factors,

namely,

(i) The optimization technique applied

(ii) The availability of a reasonable initial vector θ0, and

(iii) The properties of the objective function.

While the first two factors in most practical cases can be relatively easy overcome,

non-convexity of the objective function can in general represent a significant chal-

lenge for all gradient-based optimization techniques. In order to avoid the traps of

local minima, a robust minimization technique capable of finding the global opti-

mum has been applied in the work reported in this chapter. A brief description of

this optimization method as well as the techniques used to determine the variance

of the estimates are given below.

Adaptive Simulated Annealing

Simulated annealing (SA) can be defined as a family of general-purpose con-

strained optimization algorithms whose operational principles imitate the process

of crystal formation in solids during gradual cooling [92], [119].

The key idea behind SA algorithms is the analogy with the thermodynamical

process of cooling of a substance and subsequent formation of regular crystals.

It has been discovered that when slowly cooled, the molecules of the substance

tend to assume spatial positions which minimize the total potential energy of the

substance. Analogously, in SA optimization routines a certain objective function

represents the potential energy of the substance, the parameters to be optimized

can be thought of as the molecules of the substance. The analogy is completed by

introducing an artificial parameter that represents the temperature of the substance.
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The invention of SA is credited to Metropolis [83]; however, its widespread

use was initiated by Kirkpatrick’s work [70]. Simulated annealing algorithms have

already been applied to a large number of optimization problems such as power

system planning and dynamic security assessment, spectral analysis estimation,

signal detection, image processing and many other.

The main strength of SA algorithms lies in the fact that they are capable of

finding the global optimum of a given objective function. This is achieved by in-

troducing the so-called acceptance probability which allows avoiding local optima.

The simplest implementation of an SA algorithm involves the following steps.

• Selection of an initial guess θ0 of the parameter vector θ .

• Formulation of the objective function J(θ) and temperature schedule Tk(∆Jk,k),
where k is the iteration number. Evaluation of the objective function at θ0.

• Setting the so-called generating probability function, i.e., the function that

will govern the formation of random perturbations to the current parameter

vector θ .

• Setting the acceptance probability which is described by the Boltzmann dis-

tribution pk(∆Jk,Tk).

• Generation of r perturbations θ(r) in proximity to θ0 and computing the cor-

responding ∆J
(r)
k = J

(r)
k − Jk. If θ(r) yields an increase of the objective func-

tion, it is accepted as the new parameter vector, i.e., θ← θ(r), otherwise it is

accepted with the probability p
(r)
k = exp(∆J

(r)
k /Tk).

• Selection of a stopping criterion and checking if the stopping criterion is

satisfied.

• The iteration number is increased and the temperature is reduced.

It is known that simulated annealing algorithms are statistically guaranteed to find

global optima, provided the temperature schedule, generating probability function,

and acceptance probability are properly chosen [111]. It should however be noted

that simulated annealing has some drawbacks, one of which is slow convergence

rate.

Several modifications have been made to the basic SA algorithms in an attempt

to improve its performance. One of the most successful SA variations was devel-

oped by L. Ingber [59] and termed Adaptive Simulated Annealing (ASA). Due to a
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new temperature schedule with Tk decreasing exponentially in time and utilization

of re-annealing ASA performs significantly better that the basic SA algorithm and

algorithms based on Cauchy annealing.

The reasonable performance of ASA combined with the ability to locate global

optima make its use suitable for the optimization tasks studied in this chapter.

Cramér-Rao Lower Bound for the nonlinear load model

Determination of an optimal θ∗ satisfying (6.35), constitutes the first step of the

load identification procedure presented in this chapter. The second step involves the

computation of the variance of the estimates to assess the “quality” of the proposed

identification procedure. The variance of the estimates depends on several factors,

among which the most important for the application discussed here are the number

of data samples available, the variance of noise e(t), the model of the load, and the

input signal.

To assess the minimum variance of the unknown parameters, the so-called

Cramér-Rao Lower Bound (CRLB) is often used. By definition, CRLB is an in-

verse of the Fisher Information Matrix (FIM)

FIM = E

((
∂ lnL(θ,N)

∂θ

)′ ∂ lnL(θ,N)

∂θ

)

, (6.36)

where N is the number of data samples available and E (ξ ) is the expected value

of ξ . The maximum likelihood function lnL(θ,N) is defined in terms of the corre-

sponding probability density function L(θ,N) as follows:

L(θ,N) =
(2π)−N/2

√

det(W )
exp

[

−
1

2
[y− ŷ]′W−1 [y− ŷ]

]

=
(2π)−N/2

√

det(W )
exp

[

−
1

2
‖y− ŷ‖2

W−1

]

(6.37)

In equation (6.37), W is a symmetric matrix representing the covariance of white

Gaussian noise e(t). This matrix can be used as an instrument to accentuate reliable

parts of the measured data y. Often it is assumed that W = σ2IN , where IN is the

identity matrix and σ2 is the variance of e(t). Without significant loss of generality,

in the remainder of this chapter it is assumed that W ≡ IN , which renders the two

norms ‖ · ‖2 and ‖ · ‖W−1 equivalent.

The derivation of CRLB for the parameter vector θ requires the computation

of the gradient of the maximum likelihood function, which is equivalent to the
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gradient of the objective function in (6.35). The gradient is computed as follows:

(for notational simplicity the argument θ is suppressed in the following)

1

2N

∂‖ε(θ)‖2
2

∂θ
=

1

2N

∂ (ε ′ε)

∂θ

=
1

2N

[
∂ε ′

∂θ
ε +
(
ε ′⊗ In

) ∂ε
∂θ

]

=
1

N

∂ε ′

∂θ
ε, (6.38)

where the Jacobian matrix ∂ε ′/∂θ is defined by

∂ε ′

∂θ
=










∂ε1

∂θ1

∂ε2

∂θ1
· · ·

∂εn

∂θ1
∂ε1

∂θ2

∂ε2

∂θ2
· · ·

∂εn

∂θ2
∂ε1

∂θ3

∂ε2

∂θ3
· · ·

∂εn

∂θ3










(6.39)

and the partial derivatives are

∂εk

∂θ1
=

F(θ)−1

q−F(θ)
P0V θ1(k) lnV (k)

∂εk

∂θ2
=

1−q

q−F(θ)
P0V θ2(k) lnV (k)

∂εk

∂θ3
= ℓF

1−q

(q−F(θ))2
u1(k).

(6.40)

It should also be noted that for the load model adopted in this chapter, i.e., that

given by (6.25)–(6.26), the CRLB explicitly depends on both the input signal V (k)
and the sampling interval ℓ. Moreover, by direct inspection of equations (6.39)

and (6.40), one can immediately conclude that for V (k)≡ 1 ∀k, the matrix ∂ε ′/∂θ
looses rank and as a result FIM becomes singular indicating that the variance of

θ is infinite; that is, the parameters θ are not identifiable, when the voltage is at

steady state (V (t) = V0).
It should be noted that the Jacobian (6.39) can be utilized to enhance the iden-

tification procedure by excluding the parameters θi that are weakly identifiable or

non-identifiable [27], [57]. That is, one can use the algorithm proposed in [27] to

determine which load parameters θi cannot be reliably identified from the available

field measurements. This can be done in the following 5 steps.
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1. Decompose ∂ε ′/∂θ := VΛV ′.

2. Inspect the eigenvalues of the Jacobian, i.e., the diagonal elements of the ma-

trix Λ. Determine the number ρ which is equal to the number of eigenvalues

of the Jacobain which are greater than some threshold value. This number

indicates the number of identifiable parameters.

3. Partition V := V1⊕V2, where V1 ∈ R
N×ρ consists of the first ρ columns of

matrix V .

4. Factorize V ′1 to obtain the orthonormal basis of the range space of V ′1, the

upper triangular matrix R, and the permutation matrix P, i.e., V ′1P := QR.

5. Use P to determine the parameters θi that should not be identified but rather

set to some (approximate) values which are know beforehand.

The study reported in [27] indicates that this algorithm allows a significant reduc-

tion of the variance of the estimates of the ρ parameters even when the exact values

of the non-identifiable parameters are unknown. A more detailed description of the

algorithm and its applications can be found in [27], [57]. Numerical experiments

conducted in the framework of this study show that for the typical values of the

load parameters the Jacobian matrix is always well-conditioned implying that all

3 parameters are identifiable; thus this algorithm is not applied in the case study

discussed here.

6.4 Application Examples

Artificial data

In order to investigate the statistical properties of the identification procedure pre-

sented in this chapter, a series of experiments is conducted using artificially created

data. Thus, in this section, the following issues are addressed:

• It is shown numerically that the estimates are asymptotically unbiased, which

would not have been the case if an unreasonable predictor was chosen.

• A rough estimate of the magnitude of bias that can be expected for the lin-

earized model (6.33) is obtained, which is a basic issue in system identifica-

tion that has not yet been addressed in the current literature in load modeling.
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• The adequacy of the optimization routine, i.e. an adaptive simulated anneal-

ing algorithm, used in the chapter is demonstrated, as the method is able to

locate the global minimum of the objective function in all experiments.

The data vector y(tk) is generated with the help of a model with known parameters

θ; the output y(tk) is then corrupted by Gaussian noise having known statistics,

i.e., e(t)∼N (0,σ2I) and the identification procedure is applied. The estimates of

the parameter vector θ are analyzed in this case to assess the performance of the

proposed technique.

The main goal of the numerical experiments in this section is to investigate the

asymptotic behavior of the variance of the estimates θ̂(N). In other words, the

following relation has to be verified numerically:

lim
N→∞

var θ̂(N) = 0 (6.41)

for both linear and nonlinear load models. In expression (6.41) the operator var

is defined as varξ = E (ξ 2), where ξ is a stochastic variable. To study the vari-

ance of estimates, the value of N is steadily increased and for each value of N, a

series of Monte-Carlo simulations is performed. The variance is then computed

and plotted versus the number of samples N. In this case study, the data are gen-

erated using the discrete-time model (6.25)–(6.26). The Monte-Carlo simulations

involve 30 runs for each N, and the noise has the statistics N (0,0.0015) with

θ = [1.2 2.7 0.3448]′. The adaptive simulated annealing optimization routine is

initialized with θ0 = [0.5 2.0 1.7]′; and the feasible region Ω is given by (6.5), and

the additional inequality 0 6 θ3 6 10.

The results of the Monte-Carlo simulations are shown in Figures 6.1 and 6.2.

Several important observations can be made regarding the performance of the

nonlinear model-based identification technique:

• All three parameters θi are accurately estimated by applying the identifica-

tion algorithm to noisy data.

• The variance of the estimates decreases as the number of samples increases.

This result indicates that the estimate θ̂ is asymptotically unbiased, i.e.,

equation (6.41) holds. This could be expected since minimization of (6.35)

is equivalent to maximization of the maximum likelihood function, which

yields asymptotically unbiased estimates [79].

• For all N the variance of the estimates is insignificantly greater than the cor-

responding CRLB, which implies that the proposed estimator is statistically

efficient.
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Figure 6.1: Variance of the estimated parameter vector θ̂ versus number of sam-

ples and the corresponding Cramér-Rao Lower Bounds for the artificial data set.

Nonlinear load model
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Figure 6.2: Variance of the estimates of the linear and nonlinear model parameters
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Comparing the results obtained with the linear and nonlinear model-based iden-

tification methods, the following can be concluded:

• The linear model-based identification method yields estimates of the para-

meters θ̂L acceptable for most practical purposes, since the maximum vari-

ance for this model does not exceed 2×10−2 for the given level of noise and

number of data samples.

• The variance of θ̂L decreases as the number of data samples increases; how-

ever, in all cases, the decrease rate is not very large.

• In all cases, the variance of the estimates θ̂NL obtained with the nonlinear

model is smaller than that obtained with the linear model. This is due to the

bias induced by the use of the linearized model. In other words, for the linear

model, (6.41) does not hold.

It should therefore be expected that the use of linear model may yield reasonable

estimates of the parameters θ; however, the estimates will be biased. In general,

the use of the nonlinear load model always provides more accurate estimates of the

load parameters as compared to the linear model; nevertheless, in the real world

applications the estimates obtained with the nonlinear model will also be biased,

since the nonlinear model (6.24) is only an idealization of the actual load and thus

has its limitations in terms of the accuracy of the estimates.

Application to field measurements

After verifying the adequacy of the proposed technique, it is then applied to field

measurements taken at a paper mill located in the neighborhood the town of Grums,

Sweden. The electrical network of the paper mill is schematically shown in Fig. 6.3;

in this figure, only the part of the network relevant to the present case study is de-

picted. The network consists of two synchronous backup generators G1 and G3,

four high-priority loads LD1–LD4, and six transformers T1–T6.

In normal conditions, the paper mill is fed by the grid denoted as NET. During

the hours of high risk of having power supply interruptions (due to thunderstorms),

the load LD1–LD4 are entirely fed by the backup generators.

In order to assure the proper and reliable operation of the paper mill, detailed

dynamic simulations with accurate load models are needed; thus, a series of field

measurements was obtained on May 15, 2001, in order to obtain aggregate models

of LD1–LD4 and some other equipment. To the best knowledge of the author, the

load in question mainly consists of lighting, heating devices, and electrical motors.
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LD1          LD2
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CLD

GS GS

Figure 6.3: Electrical diagram of the studied part of Grums paper mill

The motors are in almost all cases equipped with power converters. The load

voltage was used as the input and load current as the output. Since the load models

(6.3)–(6.4) use the active Pd and reactive Qd power signals as outputs, Pd and Qd

were synthesized off-line. The sampling rate was set to 2 kHz.

An interruption of power supply to the paper mill may result in a substantial

monetary loss. It should be noted that a step-wise voltage change could cause

excessive shock to the system and trigger a power interruption. Moreover, a voltage

step could result in an ill-conditioned Fisher information matrix and thus estimates

with a large variance. Therefore, the backup generators were used to vary the load

voltage in a smooth manner in a ±3% range. Extensive studies reported in [132]

also suggest that the variations of voltage magnitude has little effect on the success

of the parameter identification procedure, as long as the magnitude variation is a

few per cent of the nominal voltage.

Given the restrictions imposed in the measuring procedure as well as the costs
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Figure 6.4: Application of the proposed identification scheme to field measure-

ments. Estimation of the parameters of active power load. Linearized model

associated with obtaining these measurements, it was only feasible to gather one

set of data at the given operating conditions. Hence, the cross-validation procedure

applied here is based on a comparison between the linear (6.6) and nonlinear (6.24)

load models identified using the proposed procedure and based on the same set of

field measurements. Figures 6.4 and 6.5 depict the field measurements, i.e., the

load voltage and active power, as well as the simulated outputs Pd(t) of the linear

and nonlinear models. Visual comparison of the measured and simulated power

indicate that both models capture the relevant dynamics of the load; however, the

nonlinear model yields better results, showing a very close match with the field

measurement, as these two curves are practically indistinguishable.

Table 6.1 presents the numerical values of the parameters obtained with both

linear and nonlinear system identification techniques. In the table, the error is de-

fined as (θ̂NL
i − θ̂L

i )/θ̂NL
i · 100%, where θ̂L

i and θ̂NL
i , i = 1,2,3 are the estimates

of the linearized and nonlinear model parameters, assuming the nonlinear model is

the reference for these calculations, given the close match between this model and

the actual measurements. The table reveals that the parameters identified with the

linear model do not deviate significantly from those obtained with the nonlinear
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Figure 6.5: Application of the proposed identification scheme to field measure-

ments. Estimation of the parameters of active power load. Nonlinear Identification

Table 6.1: Comparison of the load parameters identified using linear and nonlinear

models

Linear model Nonlinear model Error [%]

Nps [p.u.] 2.3326 2.3131 −0.8430

Npt [p.u.] 1.8778 1.9445 3.4302

T−1
p [s] 0.1002 0.1161 13.6951
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load identification technique. This is mainly due to the fact that the voltage devia-

tion was not large and hence nonlinear effects were not very significant. However,

observe that the maximum error introduced by the use of linearized model is still

greater than 13%; hence, we may conclude from these results that the nonlinear

model is a more accurate representation of the given aggregate load.

Notice that at different operating conditions, one would expect to obtain differ-

ent values for the load parameters. However, based on the results depicted here and

the fact that the load composition is not expected to change significantly for typical

operating conditions, it is reasonable to expect similar trends in terms of the accu-

racy of the linear and nonlinear load models for representing the given aggregate

load.

It is interesting to compare the values of load parameters obtained in this study

with those reported in the literature. For instance, [132] cites the following value

for Nps = 0.72 for an industrial load. This value differs significantly from the one

shown in Table 6.1, which can be mainly explained by a different composition of

the load. The steady state and transient voltage indices determined in [66] match

those of the present case study somewhat more closely; however, the time constants

Tp differ significantly, which can be explained by the absence of devices having

slow dynamics, e.g., OLTC in the present study.

6.5 Summary

Two power system load identification techniques are proposed in this chapter. Well

established equations describing the nonlinear recovery mechanisms of load form

the basis of both techniques, which are formulated in the framework of stochas-

tic system identification theory. Specifically, a linear and nonlinear output error

estimators are introduced and analyzed, and generic equations applicable to iden-

tification of aggregate models of power system loads are developed and studied in

detail.

The asymptotic behavior of the estimates is studied by means of numerical ex-

periments with artificially created data, demonstrating that the estimates are as-

ymptotically unbiased for the nonlinear load model and their variance attains the

Cramér-Rao lower bound. To avoid numerical problems associated with possible

multiple minima of the objective function, a global minimization technique was

utilized. The enhanced numerical features of the minimization routine enable fast

convergence to the global minimum of the objective function with a probability

of 1.
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The theoretical foundations presented in this chapter were applied to field mea-

surements taken at a paper mill located in the neighborhood of the town of Grums,

Sweden. Both linear and nonlinear models were utilized in order to estimate the

load parameters. The results show that, in principle, the linear model yields valid

estimates that differ from the estimates obtained using the nonlinear model. When-

ever the accuracy requirements on the numerical values of the load parameters are

not stringent, linear identification can be applied for the estimation of the parame-

ters. Alternatively, the nonlinear load modeling and identification technique pre-

sented in this thesis can be used to better model the load and obtain more accurate

estimates of the load parameters.
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Chapter 7

Design of Robust Control for

Enhancing the Performance of

SOFC Power Plant

“He was under the impression that a system description

(like the transfer function) is exactly the same

as a system in a concrete physical sense.”

— R. Kalman [65]

On the flaws in the Wiener formulation.

This chapter presents a discussion on the load following capabilities of a power

plant that consists of solid oxide fuel cells (SOFC) and microturbines. Such a

power plant, in theory, is capable of operating at unprecedented efficiencies which

can be above 80%. However, as the analysis in this chapter shows, the load fol-

lowing capabilities of this power plant can be unsatisfactory, due to certain con-

trol limitations. To enhance the load following capabilities of the power plant,

attenuate possible disturbances from the distribution grid, and avoid interaction

between the control functionalities of the fuel cells and the microturbines, two

H∞ controllers are designed. The main emphasis in this chapter is placed upon

the behavioral features of the fuel cell plant itself rather than on the studying the

integrated system “fuel cell–distribution grid”. The exposition of the theoretical

material in this chapter is rather axiomatic; however, this approach will certainly

suffice for the practical purposes of this work. We commence by giving a brief

overview of H∞ control theory.

7.1 Robust ControlModeling of electric power systems is not a trivial task even if the engi-

neer has succeeded in collecting all the necessary information about the

power system. Aging of power equipment and uncertain load1 complicate

1More specifically, both the level and composition of the load at a given instant of time are

uncertain. In system planning studies, power system loads can be forecasted; however, neither type

105
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modeling, analysis, and control of electric power systems.

This feature of power systems suggests the choice of control strategy—robust

control—if precise and “guaranteed” control of some quantities, e.g., active power

output is required. It is quite likely that the potential of robust and optimal control

techniques will have the commanding influence on power engineering; however,

this time is yet to come. For this and other reasons, the foundations of H∞ control

theory are presented in detail in this chapter. It is hoped that this will help in

disseminating these techniques among practicing electrical engineers.

The origins of H∞ optimal control theory were established in the early 1980’s

by G. Zames, see e.g., [133]. Since then it has been intensively studied by the con-

trol community. A brief introduction to this fascinating theory is given below. This

sections establishes the relationship between the robustness issue and H∞ -norm

minimization. Most of the section makes an extensive use of frequency domain due

to nice geometrical interpretations of the main concepts and follows chiefly [76];

however, time-domain solutions to the standard H∞ problem are also presented. It

should be noted that the presentation is fairly general, and the theory is applicable

to a large class of linear time-invariant systems, whose transfer functions or state

space realizations are represented by either the capital P or G, respectively. There

is however a simple relationship between these two representations. For details on

the SOFC plant studied, the reader should refer to Section 3.2 and Appendix C.

The standard H∞ control problem can now be formulated. However, prior to the

introduction of the H∞ theory, it is instructive to introduce the main configuration

of the controlled plant and controller itself. Fig. 7.1 shows the standard block

diagram of the dynamic system which is controlled by an external controller K. It

should be stressed that the so-called weighting functions which are the main tools

for fulfilling the control specifications are already absorbed into the plant G. At the

present time, this will not be discussed, as the structure of the plant is different in

the setting for the frequency and time domains.

The main purpose of the linear robust controllers in this chapter is to provide

tight active power output control of the tandem SOFC–microturbines. Further-

more, the models of the SOFC is assumed be deterministic; however, the terminal

voltage variations are treated as unstructured model uncertainty. The voltage vari-

ations are assumed to be caused either by the operation of the microturbines or by

the disturbances on the distribution grid. Thus, in this study, the presence of the

microturbines is accounted for only indirectly.

Now the problem of H∞ -controller synthesis can be stated

nor dynamical characteristics of the load are specified.
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Figure 7.1: Standard diagram of the plant and controller
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Figure 7.2: Single-input single-output plant

H∞ CONTROLLER PROBLEM FORMULATION

Given the generalized plant G, exogenous inputs w, outputs z, and control speci-

fications, find all admissible controllers K such that the H∞ -norm of the transfer

matrix from w to z is minimized, subject to the constraint that all K’s stabilize the

plant G.

We commence by reviewing frequency-domain methods for H∞ controller synthe-

sis.

Frequency domain solutions to H∞ control problem

The system to be controlled is depicted in Fig. 7.2. For simplicity, the system

is assumed to be a single-input single-output (SISO) system. As the analysis is

somewhat more lucid in the frequency domain, the plant studied is represented by

the transfer function P = C(sI−A)−1B + D, where A,B,C, and D are the system

matrices.

In Fig. 7.2, P(s) is the controlled plant, C(s) is the controller, w represents a

disturbance, and z is the output. The resultant transfer function from r to z is given

by the expression:

H(s) =
C(s)P(s)

1+C(s)P(s)
(7.1)
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The ratio (1 +C(s)P(s))−1 is called the sensitivity function of the feedback sys-

tem, which characterizes the sensitivity of the compensated plant to various distur-

bances.

Usually the sensitivity function is denoted by capital S. In the ideal case, the

sensitivity function S should be zero. In practice it is, however, unrealistic to re-

quire zero sensitivity. Instead, an upper bound on the peak value of the sensitivity

function is specified for a certain range of frequencies. That is, one sets an upper

limit on ‖S‖∞:

‖S‖∞ = sup
ω∈R

|S( jω)| . (7.2)

As is seen in (7.2), the sensitivity function is a function of frequency, assuming

different values for different frequencies. As this dependence is undesirable (due

to the possible magnification of noise and the influence of neglected dynamics), a

weighting function W ( jω) is introduced in order to reduce the dependence.

‖WS‖∞ = sup
ω∈R

|W ( jω) ·S( jω)| . (7.3)

The loop gain L = PC is another quantity which plays an important role in H∞ op-

timization and is closely connected to robustness of the system, see Fig. 7.2.

Due to the plant uncertainties (in power systems this can be the level of loading

of the system), the actual plant parameters differ from the nominal ones. To distin-

guish between them, the loop gain of the actual plant is denoted by L and that of

the nominal plant as L0. Both these plants are stable if the corresponding Nyquist

plots do not encircle the point (−1, j · 0). Following in steps of [76], it may be

noted that plant is stable if the following inequality holds:

|L( jω)−L0( jω)|< |L0( jω)+1| , ∀ω ∈ R. (7.4)

Graphical interpretation of the inequality is given by Fig. 7.3. Inequality (7.4) can

be rearranged as follows:

|L( jω)−L0( jω)|

|L0( jω)|
·
|L0( jω)|

|L0( jω)+1|
< 1, ∀ω ∈ R (7.5)

The complementary sensitivity function T0 of the closed loop plant is defined as:

T0 = 1−S0 = 1−
1

1+L0
=

L0

1+L0
(7.6)
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Figure 7.3: Nyquist plot of the SISO system

In equation (7.6), S0 stands for the sensitivity function of the nominal plant. Equa-

tions (7.5)–(7.6) can be combined to produce:

|L( jω)−L0( jω)|

|L0( jω)|
· |T0( jω)|< 1, ∀ω ∈ R. (7.7)

The multiplier |L( jω)−L0( jω)|
/
|L0( jω)| is called the relative size of the per-

turbation of the gain loop L from its nominal value L0. If the relative size of the

perturbation is bounded, we can write:

|L( jω)−L0( jω)|

|L0( jω)|
6 |W ( jω)| , ∀ω ∈ R, (7.8)

where W ( jω) is the aforementioned (given) weighting function. The following

expression can be obtained after simple manipulations:

|L( jω)−L0( jω)|

|L0( jω)|

1

|W ( jω)|
|T0( jω)W ( jω)| < |W ( jω) ·T0( jω)| , (7.9)

|W ( jω) ·T0( jω)| < 1, ∀ω ∈ R. (7.10)

The last result can be interpreted as follows: for any disturbance that is bounded

by W ( jω) (inequality (7.10) holds) the closed-loop plant remains stable (inequality
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(7.9) holds). Since H∞ is essentially norm minimization, the last equation should

be written in terms of norm notation:

‖W ( jω) ·T0( jω)‖∞ < 1. (7.11)

Thus, the open loop plant remains stable for any disturbance that is bounded by

equation (7.8), if inequality (7.11) holds. However, it must be explicitly stated that

stability alone is not the ultimate goal. For most practical systems there are two

competing requirements: stability and performance. Not all stable systems perform

well, though all systems performing well must be stable, except explosive devices,

of course. This consideration in some sense discourages the direct use of inequal-

ity (7.11) for an H∞ loop shaping and requires a new minimization objective. The

so-called mixed sensitivity problem was presented in [76] to incorporate the per-

formance specification into the H∞ controller design. In mathematical terms it is

usually expressed by
∥
∥
∥
∥

W1SV

W2UV

∥
∥
∥
∥

∞
, (7.12)

where W1 and W2 are weighting functions that are the “knobs” of the H∞ -norm

minimization, S and U are the sensitivity function and input sensitivity function,

respectively. The new function V is introduced to increase the design flexibility.

There is a nonunique solution to the standard H∞ -optimal regulator problem

[50], [76] [
X

Y

]

= Z−1
λ

[
A

B

]

, (7.13)

where the optimal controller is C = Y X−1, normally A = I, B = 0, and Zλ is deter-
mined from equation (7.14)

[
0 I

−P̃∗12 −P̃∗22

][
λ 2I− P̃11P̃∗11 −P̃11P̃∗21

−P̃21P̃∗11 −P̃21P̃∗21

]−1 [
0 −P̃12

I −P̃22

]

= Z∗λ JZλ , (7.14)

where (·)∗ operates as X∗(s) = X ′(−s) and the plant transfer matrix P̃ is defined as

P̃ =

[
P̃11 P̃12

P̃21 P̃22

]

=





W1V W1P

0 W2

−V −P



 . (7.15)

Time domain solutions to H∞ control problem

Time-domain solutions to standard H∞ control problem have been in the focus of

attention of control society for quite a long time and resulted in neat, compact, and
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relatively “simple” expressions. Below we replicate the ones that will shortly be

used in the present thesis.

Some mathematical preliminaries which will facilitate the further treatment

open this subsection.

Lemma 1 Let matrix H be defined as

H ,

[
A R

Q −A′

]

,

and suppose H ∈ dom(Ric) and X = Ric(H). A,Q and R ∈ R
n×n with Q and R

symmetric. Then:

1 X is symmetric.

2 λi(A+RX) < 0,∀ i.

3 X satisfies the algebraic Riccati equation A′X +XA+XRX−Q = 0. �

A proof of the lemma and details on the notation used can be found in [36] and

[134]. For now, the most important detail is that X satisfies the associated Riccati

equation. This fact will be used when tackling with suboptimal H∞ controllers.

Unlike the situation with LQR, in the present case close-form solutions to the

optimal H∞ control problem cannot be obtained as the optimal control requires an

iterative search over the set of all admissible controllers.

Let the transfer matrix of the plant G be partitioned as

G =





A B1 B2

C1 0 D12

C2 D21 0



 (7.16)

and the following assumptions hold

a (A,B1) and (A,B2) are stabilizable.

b (C12,A) and (C21,A) are detectable2.

c D′12 = [0, I].

d

[
B1

D21

]

D′21 =

[
0

I

]

.

2The pair (C,A) is said to be detectable if for some L the matrix A+LC is a Hurwitz matrix.
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We now present closed-form suboptimal H∞ controllers which are given by

Theorem 3 Let the following two matrices be defined as

H∞ ,

[
A γ−2B1B′1−B2B′2

−C′1C1 −A′

]

J∞ ,

[
A′ γ−2C′1C1−C′2C2

−B1B′1 A

]

,

where γ is a given real number. There exists an admissible controller s.t. ‖Tzw‖∞ <
γ if and only if the following conditions hold:

a H∞ ∈ dom(Ric) and X∞ , Ric(H∞) > 0.

b J∞ ∈ dom(Ric) and Y∞ , Ric(J∞) > 0.

c ρ(X∞Y∞) < γ2.

In addition, if these conditions hold, one such controller is given by

Ksub =

[
Â∞ −Z∞L∞
F∞ 0

]

, (7.17)

where the matrices Â∞,F∞,L∞ and Z∞ are defined as

Â∞ , A+γ−2B1B′1X∞ +B2F∞ +Z∞L∞C2

F∞ ,−B′2X∞
L∞ ,−Y∞C′2

Z∞ ,
[
I−γ−2Y∞X∞

]−1
.

�

Again, a proof of the theorem can be found in [36]. It is possible to parameterize

all the suboptimal controllers Ksub that are given by Theorem 3; here only the final

result is shown. For technicalities and a proof, the reader can consult [36] or [134].

Theorem 4 Suppose the conditions of Theorem 3 are satisfied. Then, for any

choice of Q : ‖Q‖∞ < γ and Q ∈ RH ∞, the set of all admissible suboptimal

controllers with ‖Tzw‖∞ < γ is

M∞ =





Â∞ −Z∞L∞ Z∞B2

F∞ 0 I

−C2 I 0



 .

�
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Figure 7.4: Parametrization of all suboptimal H∞ controllers

Figure 7.4 shows a schematic block diagram of the parameterized sub-optimal

H∞ controllers.

To exemplify the theory presented earlier in this chapter, let us design an H∞ -

controller for a single machine infinite bus (SMIB) system.

Example: Consider the SMIB system, which represents a simplified linearized

model of single generator connected to an infinite bus. The classical model of

the generator is used in this example; that is, the generator is modeled by equations

(3.3)–(3.4). The quantities E ′q and E ′d in equations (3.4) are assumed to be constant.

The parameters of the system are chosen such that the generator exhibits quite an

oscillatory behavior. In this example we seek an H∞ controller that is capable of

stabilizing the SMIB system by regulating the mechanical power of the generator.
[

δ̇
ω̇

]

=

[
0 100π

−0.05 −0.01

][
δ
ω

]

+

[
0

0.1

]

u(t), (7.18)

y = C [δ,ω]′+Du, C = [1,0], D = 0.

The following frequency-domain control specifications are set3:

Closed-loop bandwidth: ωB = 12 rad/sec.

Peak of sensitivity function: Smax = 1.1.

Steady state: Approximate integral action at low frequencies.

Obj. function: For this example, selecting ε = 10−6, the objective functions is

chosen as

J(S,K) = argmin
K

∥
∥
∥
∥

wPS

KS

∥
∥
∥
∥

∞
, wP =

0.67s+10

s+ ε
.

3These control specifications are set arbitrarily for demonstration purposes only; however, these

values are quite realistic.
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The H∞ -norm minimization is performed with the help of the µ-toolbox in MAT-

LAB [20], which yields the value of γ = 1.08. The resultant suboptimal controller

K(s) has following structure

K(s) =
4617s2 +46.17s+7.254e4

s3 +4451s2 +3.64e4s+0.01348
.

The SMIB system controlled by K has the following eigenvalues: λ1 = −4443

and λ2,3 =−1.8044± j4.3542. The input to the H∞ optimal controller is the angle

deviation of the generator’s shaft and the output is the control signal u(t). �

Note: It is worth mentioning that selection of weighting functions for the design

of H∞ controller synthesis plays an essential role. As yet, selection of weights

in robust and optimal control is more art than science, since from case to case,

different ad hoc approaches have to be tried in order to obtain “the best design.”

This example concludes the introduction to basics of the H∞ controller synthesis.

7.2 Application of Robust Control to the SOFC Plant

Motivation

Recent advances in the fuel cell technology significantly improved the technical

and economical characteristics of modern fuel cells making them more suitable

and beneficial for the decentralized use of energy generation [55]. Environmental

friendliness, practically noise free operation, and very high efficiency combined

with the forecasted shift to gaseous fuels make fuel cells a very sound competitor

on the future electricity markets [22], [12]. In addition, it should be noted that

fuel cell-based generators possess other important properties such as compact size,

modularity, and controllability.

It is shown in [56] and [135] that load following and regulation comprise a

substantial part of total interconnected operation services, which is likely to stim-

ulate the owners of DG’s to participate in the provision of this particular ancillary

service. There are, however, some technical challenges associated with the fuel

cell technology which can represent certain difficulties for these services. One of

the most important challenges is the slow output power ramping [135]. Therefore,

a series of questions concerning the adequacy of some fuel cell power plants for

stationary operation in conventional distribution grids has to be addressed. These

questions are closely related to that of the fundamental control limitations of fuel

cell-driven power plants.
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Thus, effective methods should be devised to overcome the control barrier im-

posed by the inability of some fuel cell power plants (e.g., solid oxide fuel cells, or

SOFC) to ramp up the power output quickly. Physically, the inability of the SOFC

power plant to ramp the output very quickly is caused by the dynamics of the fuel

cell reformer which itself is slow.

One the most economic solutions is to build an integrated system consisting

of a fuel cell module and a small-scale gas turbine. Typically, the rating of the

microturbine is one third of that of the fuel cell plant, which enables a more efficient

use of the hot exhaust of the SOFC.

Normally, the contracts of DG owners require either maintaining a constant

output power level of the DG or following the local load demand4.

Irrespectively of the DG operation mode, the fuel cell module and the gas tur-

bine will have different control objectives, i.e., the fuel cell will control the volt-

age magnitude (short-term control) and the reactive power generation, supplying a

constant active power, while the gas turbine will perform load following. Here it

is worth recalling that usually microturbines utilize asynchronous generators that

are incapable of controlling the terminal voltage, while their active power output

can be easily controlled by manipulating the mechanical torque applied to the gen-

erator. The voltage source inverter of the fuel cell plant, on the other hand, is able

to accurately control the terminal voltage of the plant as well as the output power

and the frequency. However, ultimately the inverter itself does not produce ac-

tive power, which implies that its output power control is as effective as the power

control of the fuel cell power plant.

If the contractual obligations of the DG owner require load following capabili-

ties, then most likely it will be effective to utilize both the fuel cell system and the

microturbines, since the rating of the microturbine is relatively small compared to

the rating of the fuel cell. If both the fuel cell and the microturbine are deployed in

the active power regulation, it is likely to result in undesirable interactions between

the fuel cell system and the microturbine turbine, which can adversely affect the

performance of the overall system.

To ensure the proper operation of this control scheme, undesirable interactions

between the fuel cell and turbine controls should be eliminated. In order to avoid

these dynamic interactions, an auxiliary controller can be designed that is able to

sustain the output power of the fuel cell constant irrespective of the output power

of the gas turbine.

4This theme will be further discussed in more detail in Chapter 8.
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Figure 7.5: Transfer function of a fuel cell plant

In this chapter, two robust controllers are designed to achieve the aforemen-

tioned control objective. Both controllers are synthesized by solving the associated

H∞ mixed sensitivity problem. In particular, the controllers are expected to enable

the fuel cell power plant to reject disturbances affecting the plant’s output and en-

hance the set-point tracking of the plant. Figure 7.6 shows the interconnection of

the plant G and the controller K to be designed5. To validate the controller design,

the performance of the fuel cell power plant compensated by each of the controllers

is assessed by running several nonlinear numerical simulations.

The mixed-sensitivity S/KS optimization

According to the theory presented in the previous section [e.g., equation (7.12)],

the mixed sensitivity problem can be solved by minimizing the following objective

function

K = arg min
K∈K

∥
∥
∥
∥

wpS

wuKS

∥
∥
∥
∥

∞
. (7.19)

In equation (7.19), S denotes the sensitivity function of the compensated plant and

is defined as S = (I−GK)−1. As usual, the performance weighting function and

the input weighting function wp(s) and wu(s) are the main design mechanisms of

the H∞ optimization and are used for shaping the response of the closed-loop plant.

Let us consider the following two weighting functions

wu = 1 (7.20)

wp1 =
0.9s+10

s+10−5
. (7.21)

5For more details on the SOFC plant modeling, the reader should also refer to Section 3.2,

Appendix C, and [135].
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Figure 7.6: Preliminary control configuration of the fuel cell plant

This particular choice of the performance weighting function gives a peak of the

sensitivity function S = 1.1 and the effective bandwidth of the closed loop ωB = 10

rad/s.In addition, the controller will provide an approximate integral action, thus

enhancing tracking properties of the closed loop plant.

Let us now recall that the model (3.24)–(3.25) of the SOFC power plant has 3

inputs and 1 output. The inputs entering the model represent the set-point devia-

tions and the disturbances. The exact numerical values of the disturbances [which

are deviations of the terminal voltage magnitude and angle] are assumed unknown,

but bounded as is shown below

‖∆m‖2 6 0.1 p.u. (7.22)

‖∆θs‖2 6 20◦. (7.23)

The plant’s output is the fuel cell active power injected into the distribution grid.

Note that disturbances represented in such a way are fairly general, since this form

can model network voltage variations due to the operation of the microturbine and

any other bounded disturbances occurring on the grid.

The model (3.24)–(3.25) can be cast in the form of transfer matrix as shown in

Fig. 7.5, where the plant transfer matrix G(s) is defined as G(s) = C (sI−A)−1 B+
D, and the output y = G(s)Pre f +D1(s)m+D2(s)θs. In the latter expression, D1(s)
and D2(s) denote the transfer functions from m and θs to the output y. Inspection

of the transfer functions G(s), D1(s), and D2(s) reveals that they share the same

dynamics and therefore the disturbances m and θs can be transferred to the plant’s

input (the argument s will be dropped in the remainder of the section for simplicity

of notation).
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Figure 7.7: Disturbance rejection by one degree-of-freedom controller.

One-degree-of-freedom controller

An H∞ mixed sensitivity problem is solved with the help of the MATLAB’s µ-

Analysis and Synthesis Toolbox, resulting in a 6th order H∞ controller. The closed

loop performance of the compensated plant is shown in Figs. 7.7 and 7.8. Fig-

ure 7.7 demonstrates the ability of the compensated plant to reject disturbances

induced by variations in the magnitude of Vf c. One can see that the controller

shaped by the weighting function wp1, which will henceforth be called one-degree-

of-freedom controller (1DOF), is capable of fast disturbance rejection. However,

as Fig. 7.8 shows, the set-point tracking is unsatisfactory, as the overshoot is ap-

proximately 50%.

Two-degrees-of-freedom controller

The results obtained in the previous subsection suggest a new controller should

be sought which would be able to ensure acceptable performance in terms of both

disturbance rejection and tracking. One way of improving the performance of the

closed-loop plant is to consider another configuration of controller. Thus, a two-
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Figure 7.8: Step response by one degree-of-freedom controller.
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Figure 7.10: Disturbance rejection by the two degrees-of-freedom controller.

degree-of-freedom (2DOF) controller is designed. The 2DOF controller consists of

2 blocks: a compensator K and a pre-filter Cpre, as is shown in Fig. 7.9. The design

procedure follows closely that applied to the design of the 1DOF controller; thus,

the compensator block is found by solving an H∞ mixed sensitivity problem. The

only new step involves the design of a pre-filter (normally a lead-lag block) whose

main purpose is to improve the tracking response of the overall system. It was also

decided to decrease the effective bandwidth of the closed-loop plant to wB = 0.08

rad/s by modifying the performance weighting function accordingly. That is, the

following wp is used in the 2DOF controller design:

wp2 =
0.9s+0.08

s+10−5
(7.24)

The input weighting function wu remains unchanged in this design. The controller

is again synthesized with the help of µ-Analysis and Synthesis Toolbox in MAT-

LAB. The pre-filter (Cpre) was tuned manually by the “trial-and-error” method.

Satisfactory results were obtained with Cpre = (2s+1)−1.

The performance of the fuel cell power plant compensated with the 2DOF con-

troller is depicted in Figs. 7.10 and 7.11. It can be observed in Fig. 7.10 that the
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Figure 7.11: Step response of the plant with the two degrees-of-freedom controller.

reduction of the bandwidth wB has some adverse impact on the disturbance re-

sponse. Nevertheless, it can be concluded that the 2DOF controller satisfactorily

rejects disturbances caused by fluctuations of the voltage Vf c and the output power

of the fuel cell returns back to the reference value reasonably fast. On the other

hand, a significant improvement of the tracking response was achieved, as Fig. 7.11

indicates, since the closed loop plant has a negligibly small overshoot, while the

response time is practically unchanged. Observe also that the steady-state error of

the compensated plant is eliminated by the integral action of the 2DOF controller.

7.3 Discussion

It is important to observe that neither 1DOF nor 2DOF controllers were able to

significantly improve the step response of the fuel cell power plant. Even if “ex-

cessive” use of the input u signal was allowed—which normally would not be

the case due to the potential risk of damaging the fuel cell—no significant im-

provement could be achieved in the step response of the original nonlinear model

(3.20)–(3.21), since hard limits on the input u are built in the controls of the SOFC,
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as follows from (3.21). The presence of the limits in the model is justified by

the necessity to avoid under- or over-utilization of the fuel cell, which is mainly

accomplished by limiting the current Ir
f c of the fuel cell.

The response time of a SOFC is limited by the time constants of the fuel proces-

sor, which are normally large and cannot be made smaller for a given fuel cell plant

due to physical limitations imposed by the parameters of the corresponding chem-

ical reactions. Therefore, the response time of the plant cannot be enhanced by

manipulating its input, technological change in the fuel cell plant are required if

the fuel cell power plant is to operate in a stand alone mode which requires load-

following capabilities. Alternatively, other technical solutions should be sought;

for example, the combined use of fuel cell modules and a gas turbine, or the use

of an external energy storage, such as batteries, a flywheel, or a superconducting

magnetic energy storage device.

Another alternative could be the use of a phosphoric acid fuel cell (PAFC)

power plant which possesses significantly better load following capabilities. For

instance, the commercial PAFC PC-25 according to [9]: “can be ramped at 10

kW/s up or down in the grid connected mode. The ramp rate for the grid indepen-

dent mode is idle to full power in approximately one cycle or essentially one-step

instantaneous from idle to 200 kW (nominal power). Following the initial ramp

to full power, the unit can adjust at an 80 kW/s ramp up or down in one cycle.”

It should however be mentioned that the efficiency of PAFC plants is somewhat

smaller than that of SOFC/GT power plants.

7.4 Summary

In this chapter, a linearized model of a solid oxide fuel cell power plant was ob-

tained. The linear model was used in order to design robust controllers capable of

rejecting disturbances caused by fluctuations of the magnitude and/or angle of the

SOFC terminal voltage, which could in real world applications be caused by either

the fluctuation of the utility voltage (e.g., due to faults) or by the operation of the

microturbines. Two H∞ controllers were synthesized and their performance was

analyzed. To validate the performance of the controllers, nonlinear simulations of

a SOFC were performed. The load following capabilities of various fuel cell power

plants were briefly discussed. Apparently, further research in this area should in-

volve numerical experiments with a more realistic model of the distribution grid

and microturbines in order to assess the impact of the microturbine dynamics on

the operation of the solid oxide fuel cell power plant.



Chapter 8

Interaction Between DG and the

Power System: Operation,

Control, and Stability Aspects

“With so much new distributed generation being

installed, it is critical that the power system

impacts be assessed accurately.”

— A quotation from [21]

This chapter presents qualitative analysis of the impact that distributed generation

(DG) might have on the operation, control, and stability of electric power networks

with large penetration ratios. The impact of DG on network losses, power quality,

short circuit power, as well as on system protection and on power system stability

is discussed. Based on the discussion, it can be concluded that the impact of DG to

a large extent depends on the penetration level of DG in the distribution network as

well as on the type of DG technology, and mode of its operation. If DG is properly

sized, sited, and selected in terms of technology, it can clearly provide benefits to

control, operation and stability of the power system. It should however be noted

that distribution networks have traditionally a rather inflexible design (e.g., a uni-

directional power flow), which in principle can cause integration problems with

higher DG penetration levels or different technologies. Nonetheless, those issues

can usually be solved by modifying the distribution network, including the control

and/or operation approach, or by other technical means.

8.1 IntroductionSeveral technical, political, and environmental considerations have stimu-

lated the relatively rapid growth of the number of various DG installations.

While the total installed capacity of the distributed generation remained

small, its impact on the operation of the power grid remained marginal; however,

123
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as the installed capacity of DG increases, the impact which it has on the grid will

intensify. The characterization and quantification of this impact apparently is quite

a complicated engineering task, since such aspects of grid operation as voltage

control, relay protection coordination, power losses, power quality, reliability, and

many other will have to be simultaneously analyzed. Some of these aspects are

also intimately related to the stability phenomena of the grid and therefore they

will have to be explicitly addressed in the studies of the overall power system sta-

bility.

To assist in making a systematic assessment of the impact that large amounts

of DG have on the operation, control, and stability of the power grid, this chap-

ter provides basic qualitative analysis of the interaction between large amounts of

distributed generation and the power network.

8.2 Historical Background

The importance of the impact that DG might have on the operation, stability, and

control of the power system has already been recognized in the late 1970’s. One

of the most interesting publications on this subject was presented at the conference

“Research needs for the effective integration of new technologies into the Electric

Utility” held by the U.S. Department of Energy (DoE) in 1982 and was entitled

“Impacts of new technology and generation and storage processes on power sys-

tem stability and operability” [109]. Over the last two decades the number of

publications discussing various areas of the interaction between DG and the utility

has been gradually increasing. Historically, until the 1990’s the main focus of the

research was placed upon the impact that renewable power sources had on network

operation, [46], [99]; however, also distributed generation in general was inves-

tigated [2]. In the late 1990’s, this theme gained more interest in academia and

industry, which resulted in a large number of publications [6, 7, 10, 11].

Recently, also the results of two extensive simulation case studies have been

reported: (i) Simulation of interaction between wind farm and power system, by the

Risø National Laboratory, Denmark [120], and (ii) DG Power Quality, Protection

and reliability Case Studies Report, by GE Corporate Research and Development,

USA [97].
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Table 8.1: Technologies for distributed generation [13].

Technology Typical available size p. module

1. Combined Cycle Gas T. 35−400 MW

2. Internal Combustion Engines 5 kW −10 MW

3. Combustion Turbine 1−250 MW

4. Micro-Turbines 35 kW −1 MW

5. Small Hydro 1−100 MW

6. Micro Hydro 25 kW −1 MW

7. Wind Turbine 200 W −3 MW

8. Photovoltaic Arrays 20 W −100 kW

9. Solar Thermal, Central Receiver 1−10 MW

10. Solar Thermal, Lutz System 10−80 MW

11. Biomass Gasification 100 kW −20 MW

12. Fuel Cells, PhosAcid 200 kW −2 MW

13. Fuel Cells, Molten Carbonate 250 kW −2 MW

14. Fuel Cells, Proton Exchange 1−250 kW

15. Fuel Cells, Solid Oxide 250 kW −5 MW

16. Geothermal 5−100 MW

17. Ocean Energy 0.1−1 MW

18. Stirling Engine 2−10 kW

19. Battery Storage 0.5−5 MW

8.3 Distributed Generation Technology

One of the most essential factors influencing the interaction between the DG and

grid is the technology utilized in the DG, as well as the mode of DG control and

operation.

Table 8.1 provides a brief overview of the most commonly used distributed

generation technologies and their typical module size. The technologies 5− 11,

16 and 17 can be considered renewable DG. The other technologies could also

be called renewable DG if they are operated with biofuels. Also fuel cells could

be considered renewable DG if the hydrogen is produced using renewable energy

sources, e.g. wind power.

Similarly to the centralized generation, the following three generation technolo-

gies are normally used for distributed generation: synchronous generator, asyn-

chronous generator, and power electronic converter interface [8, 51, 62, 90]. These
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DG technologies will now be briefly discussed.

Synchronous Generator

The advantageous ability of the synchronous generator—the primary generator

technology for centralized generation—to produce both active and reactive power

also provides benefits for distributed generation applications.

Synchronous generators are typically utilized by the following DG applications

if the generation capacity exceeds a few MW: biomass, geothermal, diesel/gas en-

gines driven generators, solar thermal generation, solar parabolic systems, solar

power towers, solar dish engines, gas turbines, and combined cycle gas turbines.

Asynchronous Generator

In contrast to synchronous generators, asynchronous (induction) generators are

only used for distributed generation, but not for centralized generation. An asyn-

chronous generator is basically an induction machine which is connected to a

prime-mover. When the generator is connected to the power network, the mechan-

ical power is converted into electrical power by the action of the prime-mover that

drives the machine above synchronous speed. Hence, the asynchronous generator

is not capable of operating independent from a relatively strong grid. Asynchro-

nous generators are used for many distributed generation technologies as long as

the generation capacity does not exceed a few MW due to its competitive price

compared to synchronous generators. Squirrel cage asynchronous generator used

to be very common in the wind energy industry; however, this type of induction

generator is now being gradually superseded by asynchronous generators equipped

with a converter, i.e., double-fed induction generators.

Power Electronic Converter

Power converters normally use high power electronics to provide the desired power

output. For example, it is quite common that wind turbines use double-fed, variable

speed induction generators with an IGBT converter in the rotor circuit. Power elec-

tronic converters are also used in photovoltaic systems, fuel cells, micro turbines,

Sterling engine as well as battery storage, and magnetic storage systems.



8.4. GENERAL IMPACT OF DG ON POWER SYSTEM OPERATION AND

CONTROL 127

8.4 General Impact of DG on Power System Operation

and Control

To make a qualitative assessment of the impact that DG has on the distribution

grid, a simple example is considered. Such aspects of power system operation as

voltage control, power losses, power quality, and protection system are analyzed.

Based on the analysis, more generic statements are made. Clearly, there can exist

distribution grids to which these statements might not apply to full extent; however,

an effort is made to preserve the generality of discussion.

Difference Between Distribution and Transmission Networks

Technically speaking, distribution and transmission networks are designed for a

somewhat different purposes. The main difference is that distribution systems are

usually not designed for the connection of active power generators. Furthermore,

distribution networks usually have a radial or loop design, rather than a meshed

design typical for transmission networks. Therefore, the power flow in distribution

networks usually is unidirectional and little or no redundancy exists. In addition,

in transmission and urban distribution systems, the effect of line or cable resistance

(R) on voltage drop is small, since its magnitude is generally much less than the

reactive component (X) of the conductor impedance, i.e., X/R > 5. Therefore,

active as well as reactive power production within the distributed generation will

influence the voltage level.

It is also noteworthy mentioning that the low voltage ends of distribution sys-

tems are rarely connected to Supervisory Control and Data Acquisition (SCADA)

systems. The data gathering required for the control of the distribution system as

well as the distributed generation units is therefore difficult at present.

Distribution Network Operation Issues

For the explanation of the relevant operation issues, a hypothetical distribution net-

work is used, see Fig. 8.1. Even though, the example is hypothetic, it possesses all

the relevant attributes of a basic distribution grid necessary for subsequent analy-

sis. The network is a six-bus system (B1, . . . ,B6), with load connected to each bus

(LD1, . . . ,LD6) and three distributed generators (DG1, . . . ,DG3) connected to buses

B2, B4, and B6. Regarding the generation compared to the load in the system, the

following cases are possible:
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Figure 8.1: Hypothetical Distribution Network

Load case 1: The load rating at each bus is always larger than or equal to that of

the distributed generator at each bus, or:

LDi ≥ DGi ∀i

This load case is typical for DG applications such as photovoltaic (PV) systems,

Sterling engines, microturbines, or small wind turbines.

Load case 2: The DG generation at least at one bus is larger than the load at the

same bus, however, the total power of DG in the distribution network is less than

the sum of all loads in the system, or:

∃i ∈ N : (LDi < DGi)∧ (
n

∑
k=1

LDk >
n

∑
k=1

DGk),

where N = {k}6
k=1. This load case might occur if one of the DG units is a wind

farm or biomass system.

Load case 3: The distributed generation at least at one bus is larger than the load

at the same bus, and the sum of all DG generation in the distribution network is

larger than the sum of all loads in the system, i.e.:

n

∑
k=1

LDk <
n

∑
k=1

DGk

This load case might occur if a large wind farm is connected to the end of a dis-

tribution network. Since load centers usually are not located in areas with high
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Figure 8.2: Simplified model of a power system with DG

wind speeds, the power output of a wind farm often can exceed the local power

demand. Finally, it must be mentioned that the load cases within a distribution net-

work might change over time. It is, for example, quite common that a wind farm

provides a significant amount of the load in a distribution network for most of the

time (Load case 2). The other two load cases, however, can also occur. Load case

1 during times with little wind and load case 3 during times with very high wind

speeds and low loads, for example, during the night.

Impact on Losses

To explain the impact of DG on distribution network operation under consideration

of different X/R ratios, the simplest model—a single distribution line and a load—

is used.

In the model presented in Fig. 8.2, E represents the sending end voltage, V is

the receiving end voltage. If we assume that the receiving voltage V as well as the

load current I are known, then the following equations establish the relationship

between the power produced by DG and associated reduction of losses on the line.

Suppose no DG is connected. Then the power losses are

Sloss = (E−V )I∗ = (E−V )(ILD,a− jILD,r),

where ILD,a and ILD,r denote the active and reactive components of the load current.

Now assume that DG producing only active power (cosφ = 1) is connected and

also assume for simplicity that the voltage V at the receiving end is kept constant.

Then it is easy to see that the new power losses are:

SDG
loss = (E−V )(ILD,a− IDG− jILD,r).
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Therefore, the presence of DG reduces the power loss by the amount

Sloss−SDG
loss = (E−V )IDG.

With this approximate expression, the variations of the voltage at the receiving end

are not considered; however, the inclusion of the receiving voltage variations is not

essential for the analysis. In summary, it can be concluded that the introduction

of distributed generation reduces the current flowing through the distribution line,

thus reducing the active as well as reactive power losses.

Based on three load cases defined at the beginning of this section, the following

can be said:

Load case 1 DG will always result in reduced losses on all lines in the distribution

network.

Load case 2 DG might lead to an increase of the losses on some lines, but the total

losses within the [realistic] distribution network will be reduced.

Load case 3 DG might lead to an increase of the losses on some lines, but the total

losses within the [realistic] distribution network will be reduced as long as

the total DG production is less than approximately twice the total load in the

distribution network.

If the DG production is larger than approximately twice the total load in the distri-

bution network, the losses in the distribution network will be larger with DG con-

nected than without DG. In addition, it should be noted that a power loss reduction

in the distribution network entails a loss reduction in the transmission network.

Voltage Control

The voltage level in a distribution network must be kept within a certain range, as

some power system equipment and customer applications function only properly if

the voltage is maintained within this range. The voltage range for normal operation

is defined in different national and international standards.

In a distribution system voltage fluctuations occur when the load current flow-

ing through the resistive and reactive impedances of the lines varies. The voltage

variations in distribution networks without DG are caused by the variations of the

active and reactive load in the distribution network over time. The fluctuations

are generally larger towards the end of the line, due to the high impedance of dis-

tribution lines. Also, the voltage fluctuations are more expressed if the load is
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concentrated near the end of the (radial) system. Practically, for typical distribu-

tion lines the distance before the voltage drop exceeds the allowable fluctuation at

rated current is only a few km. However, a line is normally not designed to operate

at such loading levels. An in-depth analytical discussion of the impact of DG on

the voltage profile in LV networks can be found in [32].

Traditionally, voltage control in distribution networks is performed in two ways:

1. The control of the source voltage at the network substation by using tap

changing transformers and;

2. The control of the reactive power throughout the system, by using shunt

capacitors/shunt reactors [this is very seldom done in distribution networks],

series capacitors, synchronous condenser or Static VAr Compensator (SVC).

DG can influence the voltage variations in two ways:

(i) DG is operated in correlation with the local load requirements, meaning when-

ever the local load in the distribution network increases, the DG production in-

creased as well, and vise versa. In this case, DG contributes to the reduction of the

variations between the maximum and minimum voltage levels, compared to the

situation without DG. This mode of DG operation provides no challenges to the

traditional voltage control approach. This situation was thoroughly investigated

in [77]. This DG control mode is well suited for photovoltaic distributed genera-

tors, if the local loading [e.g., air conditioning equipment] is naturally correlated

to the solar radiation and thus the power output of the photovoltaic cells.

(ii) DG power output is controlled independently of the local loading of the area.

This control mode is implemented if DG operation follows price signals, which

might or might not correspond to the local load variations, or DG follows the avail-

ability of natural resources, like solar or wind power. In this case, DG might ad-

versely affect the voltage control functionality of the network by increasing the

variations between the maximum and minimum voltage level, compared to a situa-

tion without DG, since the minimum voltage level could remain (usually at a high

load, no DG situation) but the maximum voltage level could increase, e.g. in low

load situations with DG operating at maximum production and at a unity power

factor. Generally speaking, DG can provide some challenges to the traditional

voltage control. For example, during a high load situation in the hypothetical net-

work shown in Fig. 8.1, the tap changing transformer (not shown) at the substation

would increase the source voltage to keep the voltage at the end of the lines (bus B4

and bus B6) within the required voltage range. Now with a large DG unit at bus B6,

but no DG at bus B4, the voltage at bus B6 is raised due to DG and might reach the
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overvoltage limits, while the voltage at bus B4 could reach the lower voltage limits

due to the high load. The traditional operation approach of tap changing trans-

former at the substation is not suitable for such situation, as it assumes a similar

voltage drop on all lines downstream from the transformer.

One simple approach to solve this problem is to reduce the power output of the

DG unit. This solution will be the most economic solution for the network operator

but probably not for the DG owner. In case of intermittent renewable generation,

particular wind power, there is a low likelihood that the maximum availability of

the natural resources, e.g. very high wind speeds, correlates with very low load

situation. On the Swedish island of Gotland, for example, such a situation occurs

around 10 hours per year. Another, more costly solution would be the installation

of a more intelligent and flexible voltage control scheme within the distribution

system, based on substation automation and modern communication technology.

This technology would allow sensing the voltage level at different points in the

network, usually at the end of different lines. Hence, the tap changer setting at

the substation could be dynamically adjusted according to the input data from the

measurements. In addition, if the applied DG technology has the capability of dy-

namically changing the power factor it could be used to locally control the voltage.

The aim would be to keep the voltage variations in the distribution network within

tolerable limits. This is already done within some wind power projects, where

the power electronic converter is used for dynamic voltage control in the distri-

bution system [31]. In general, DG technologies using either a power electronics

converter [114] or a synchronous generator could be used for dynamic voltage con-

trol. The approach, however, is rather seldom used—the author is only aware of 3

projects worldwide—due to the following two reasons:

(i) Interconnection rules usually do not allow an active participation in the control

of the distribution network. This might change with the new IEEE Standard for

Distributed Resources Interconnected with Electric Power Systems, which is cur-

rently under discussion. A change of the interconnection rules still leaves open

questions: What is the economic value of dynamic voltage control with DG, or

in other words: How much must the network operator pay the DG operator for

the voltage control service. In most projects where DG current provides dynamic

voltage control, the service was requested by the network operator.

(ii) If DG provides active voltage control the remaining voltage control system,

for example tap changer or capacitor banks, might have to be coordinated with

the DG voltage control system to avoid voltage hunting. Voltage control results in

fast change of voltage level in the distribution system due to interaction between

different voltage control systems. The coordination between the different voltage
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control systems could be done with the help of modern communication systems.

Power Quality

When discussing the impact of DG on power quality, there are typically two major

concerns, namely, voltage flicker and harmonics.

Voltage Flicker

As defined in [37], voltage flicker is an impression of unsteadiness of visual sen-

sation induced by a light stimulus whose luminance or spectral distribution fluc-

tuates with time. In distribution networks the most common cause of flicker is a

rapid variation of load current. However, not only load variations cause flicker, but

also DG can directly or indirectly contribute to voltage flicker. The main causes of

flicker are

(i) Starting of a large DG unit

(ii) Sudden and large variations of the output of DG

(iii) Interactions between DG and the voltage controlling equipment of the feeder.

Voltage flicker mitigation method and its effectiveness depend on many factors and

can be quite complicated. If the rating of DG is significant and the output of DG is

subject to frequent and significant change, then voltage flicker may be felt by some

customers. The simplest mitigation method in such a case would be to require the

owner of DG to reduce the number of DG starts and/or large variation of the output

power. If DG is interfaced with the grid via a converter, then reduction of starting

currents is relatively easy to accomplish. In particular, wind farms have been seen

as potential cause of voltage flicker due to wind speed variations or power output

variation due to passage of the wind turbine blades through the tower shadow.

However, the design of modern wind turbines has been changed such that large

variations of the output power within a short time period can be effectively avoided

(variable speed).

Harmonics

It is widely recognized that the presence of nonlinear components of power sys-

tems, e.g., power converters or saturated transformers, manifests in the appearance

of harmonics [37]. The presence of harmonics in a power system is undesirable for

a number of reasons, some of which are:
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(i) Harmonics increase power loss in both utility and customer equipment

(ii) Sometimes harmonics may provoke malfunctioning of sensitive load or control

equipment [86]

(iii) Harmonics having significant magnitudes can cause a reduction of lifetime of

motors, transformers, capacitor banks, and some other equipment.

Power electronic devices, as used for DG, might cause harmonics. The magni-

tude and the order of harmonic currents injected by dc/ac converters depend on

the technology of the converter and the mode of its operation. For example, a

forced-commutated converter with pulse-width-modulation operated in the linear

range, will introduce only harmonics in the range of high frequencies, i.e., at and/or

around multiples of the carrier frequency [85]. Recent advances in semiconductor

technology (e.g. IGBT’s) allow the use of higher carrier frequencies; which, for

example, allows the generation of quite clean current waveform in compliant with

the IEEE 519 standard. IGBT based converter are used for many DG technologies.

It can therefore be concluded that modern high power electronics technology can

be used to solve the relevant power quality phenomena associated with DG.

Voltage Sags

Theoretically, distributed generation based on power converters can be used to re-

duce the depth of voltage sags. In this case, the converter must act as a static VAr

compensator or dynamic voltage restorer. In principle, power electronic converter

can be designed to operate in those modes; however, presently most of distrib-

uted generation converters seem to be incapable of performing this task. A basic

requirement is that the distributed generation system has sufficient capacity to com-

pensate for the utility voltage reduction and maintain acceptable voltage level for

the duration of the voltage sag. As is stated in [37], the improvement of power qual-

ity in respect to voltage sags by using distributed generation is “a good function to

consider in the future”. In quasi-stationary operation the qualitative impact of dis-

tributed generation on voltage magnitude is practically indistinguishable from that

of a large [negative] load. Indeed, switching of a large load causes voltage magni-

tude variations, which is similar to the effect that DG output power variation has.

The output power variations of a large load and a distributed generator utilizing

renewable energy source e.g. wind or solar energy are subject to daily and seasonal

variations. On the other hand, in many respects DG affects power quality of the

grid in a very specific way. For example, the owner of a distributed generator—

if the DG technology allows—has full control of the output power and voltage
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Table 8.2: Fault currents levels of some DG [21].

Type of generator Fault currents, [%] of the rated current

Inverter 100−400

Separately excited SG First few cycles: 500−1000

Permanent: 200−400

Induction generator or self First few cycles: 500−1000

excited SG Permanent: nearly 0

magnitude of DG. This is different from the situation with large loads which are

often controlled by industrial processes. Furthermore, the installation of new load

never improves the quality of electric power, while DG has the ability to reduce the

harmonic contamination of the current/voltage wave shapes thus enhancing power

quality. Therefore comparing the impact of a distributed generator and a load hav-

ing comparable ratings, it can be concluded that in general the impact of DG on

quality of electric power should be more positive than that of the equivalent load.

Change in Short Circuit Power

The distribution power systems are designed and built to withstand certain thermal

and mechanical stresses in both normal and emergency states. The presence of

DG changes the designed regimes of operation of the grid, which also results in

an increase of fault current levels. Quantitatively the impact on the fault currents

depends on the capacity/penetration of DG and the DG technology deployed. De-

tailed assessment of the impact that DG might have on the fault currents is very

challenging as the impact largely depends upon a number or factors, e.g., its oper-

ation mode, interface of the DG, system voltage prior to the fault, and some other.

Table 8.2 provides a qualitative estimation of fault currents for synchronous and

asynchronous generators, as well as inverters. The values given in the table only

apply to faults at the terminals of the respective generator. As the impedance of

distribution lines is high compared to that of transmission lines, the fault currents

will decrease rapidly with distance from the distributed generator.

It should be noted that those DG technologies which do not possess energy

storage devices, e.g., storage of kinetic or potential or chemical energy are unable

to essentially contribute to short circuit power. A photovoltaic element without a

battery is one such typical example.
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Protection System

By definition, protective relays and systems are power system components which

should “operate the correct circuit breakers so as to disconnect only the faulty

equipment from the system as quickly as possible, thus minimizing the trouble and

damage caused by faults when they do occur” [125]. There are a number of power

system protection devices whose functionality ranges from overcurrent protection

to bus-zone protection [17]. The section will focus on overcurrent protection, the

most commonly used protection in distribution systems. As mentioned before, the

power flow in distribution systems is usually in one direction-from the source to

the customers. Correspondingly, the protection schemes of distributions grids are

designed for this mode of operation. The presence of DG may alter the topology of

the distribution grid and the pattern of the power flow. Depending on the charac-

teristics of DG (its rated power, technology used, mode of operation), the location

of DG and network configuration, the impact of DG on the overcurrent protec-

tion may vary. To exemplify the statement, consider the distribution grid shown in

Fig. 8.1. Normally, the protection of power systems is tuned in such a way that only

faulted parts of the system are isolated at a fault. This tuning is termed “protection

coordination.” Suppose now that all the DG units is disconnected from the grid

and a fault located at B occurs on the system, see Fig. 8.1. The overcurrent pro-

tection coordination assures that the protection device P3 reacts, thereby avoiding

much interruption of power delivery to the other customers. Alternatively, suppose

that DG is now connected to the grid. Clearly, under some operating conditions

the power on the lines may flow either downstream or upstream. This has cer-

tain implications on the operation of the protection schemes. Assume again a fault

located at B. Then the short circuit current flowing through the protection device

P3 is greater than that of the device P2. On the other hand, if a fault located at A

is encountered, the fault current of P2 is greater than the current flowing through

device P3. This example clearly indicates that DG will certainly impact the protec-

tion scheme of the distribution grid. More examples similar to this can be found

in [44]. There are at least two solutions to the problem described above. Appar-

ently, the simplest solution is to require all DG units be disconnected when a fault

occurs on the grid. This is the current practice for most DG interconnections. If the

protection system of DG units are able to detect the fault and rapidly disconnect

from the network, DG will not interfere with the normal operation of the protection

system. Most interconnection standards therefore require disconnection of DG if a

fault occurs. However, this is not always desired, particular when DG penetration

is high in a distribution network. Nowadays, more and more distribution networks
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are automated and equipped with SCADA systems. The primary objective of these

systems is to improve reliability of the grid, but they can also be helpful in dynamic

coordination of the system protection relays. In brief, a SCADA system might al-

low the coordinated control of the protection system, by analyzing the relevant

data (system voltages, level of loading, the DG production, etc.) and operating the

reclosers/circuit breakers that would isolate the fault without much disturbance to

other customers or unnecessary disconnection of DG.

Reliability

The assessment of impacts that DG might have on the grid is complicated by sev-

eral considerations, including the following ones

• Main application of DG.

• Plans concerning the future development of the grid.

• The technology of DG.

Combination of the aforementioned factors determines the overall impact that DG

can have on the system reliability. Let us examine qualitatively these factors. To

simplify analysis, let us only consider distributed generators with fully control-

lable output power. That is, such DGs as photovoltaic arrays or wind turbines are

left outside the scope of the analysis. According to [26], there are three main ap-

plications of DG, namely, providing back up power, peak load shaving, and net

metering. It can be argued that the impact of DG on the overall system reliability

depends on the application. For instance, DG installed with the purpose to provide

back up power will certainly increase the reliability of power supply to the critical

load it is protecting. However, the positive impact on the reliability of the power

delivery to other customers will be only marginal. Positive impacts that DG can

have on the grid are more expressed when the main aim of the DG is to reduce

the peak power demand. The positive impact originates from the fact that electric

power is generated and consumed on-site thereby unloading the main feeder, which

is likely to increase the overall system reliability due to a reduced rate of failures

on the distribution grid.

The impact of net metering on the overall system reliability can be two-fold.

On the one hand, net metering may contribute to peak load shaving and thus en-

hance reliability of power delivery. On the other hand, this application, in principle,

causes bidirectional power flows, which under certain circumstances can depress

reliability of the grid. In addition, the presence of such distributed generators can
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mask the load growth and therefore increase the number of customers which can

be affected by power interruption due to a failure of the DG. For instance, if a dis-

tributed generator is installed in the middle of a feeder, then at the substation end of

the feeder an increase of the load behind the DG may be difficult to recognize. This

might lead to an increased number of customers affected by a fault on the feeder or

the DG itself. In conclusion it can be stated that major impacts that DG can have

on the system reliability is highly dependent on the DG characteristics, grid char-

acteristics as well as the application of DG. The same DG technology utilized for

different applications will affect system reliability in different ways, ranging from

very positive impact (peak load shaving) to quite negative (load growth masking,

changing the load flow pattern). A more detailed treatment of the impact of distrib-

uted generation on the power grid and methods useful for quantifying the impact

can be found in [26]. It must however be stated that “despite these conflicts, DG

installations on utility distribution systems can nearly always be successfully engi-

neered” [37].

8.5 Network Control and Stability Issues

The following sections will briefly discuss what impact a significant penetration of

DG might have on control and stability of power systems. Within the discussion

about DG and control/stability issue often the question about a critical penetration

level of DG emerges. In the author’s opinion, the critical penetration level does

not necessarily have to be defined as it will depend on the network design and

the technology used, if there is actually any critical penetration level for DG. It

is sometimes speculated in the literature on DG that distributed generators will

certainly lead to control and stability issues. In what follows an attempt is made

to qualitatively show that in general such a statement cannot be made, at least

for relatively small penetration levels. The discussion in this section echoes the

conclusions from the previous chapters in this thesis; however, an attempt is made

to extrapolate these conclusions to a general multimachine power system, which—

at present—can only be done by performing basic qualitative analysis.

Islanding

A loss-of-main or islanding problem can occur if a circuit breaker in a distribution

system opens, which could results in an islanding of a DG unit. If the loss-of-main

is not detected by the DG unit, for example due to insufficient fault current, the DG

unit will continue to operate. If the DG unit is able to match active and reactive
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power of the load in the islanded system precisely, then the islanded system could

continue to operate. In this case a safety issue remains, as the network staff might

assume that the islanded network is not energized. It is, however, very unrealis-

tic that DG will exactly match the load in the system during the time the circuit

breaker opens, hence large frequency or voltage variations will occur when the DG

unit tries to supply load. Hence, most interconnection rules require a loss-of-main

detection system which automatically disconnects the DG unit in case of a loss-

of-main and the unit remains disconnect until the grid is restored. In the UK, G59

recommendations requires that all DG units connected to MV or LV with a rating

greater than 150 kVA have a loss-of-main detection system [63]. Apparently, many

customers have an interest to operate DG in parallel to the network as long as the

network is available, but if a network outage occurs they would like to operate the

DG unit as emergency power supply or back-up unit. In this case, the DG unit must

disconnect from the main grid and must quickly match the local load demand.

Availability of Relevant Data

When analyzing stability of a power system, both dynamic and transient stability

issues should be addressed in order to numerically assure the proper and reliable

operation. Be it dynamic or transient stability study, it is extremely important to

have models of the system reflecting the main dynamical features of the system

with reasonable accuracy. Thus, to obtain reliable results from a study, one ulti-

mately needs the data of the system components. This implies that the owners of

DG should make all relevant technical characteristics of DG available. Here, not

only the static characteristics of the DG unit are important, but also the character-

istics of the main controls such as the governor, voltage regulator, and excitation

system of a synchronous generator, etc. should be available.

Dynamic Models of DG Technologies

As the distribution grids are becoming more active their behavior will more resem-

ble that of a transmission network. When the penetration level passes a certain

threshold it will no longer be appropriate to model the distribution networks as

just static loads characterized by the amount of active and reactive power being

consumed. Just as in the case of the transmission grid, it will be necessary to ac-

curately model both the distributed generators and their loads in order to address

such issues as stability and control of DG resources. The importance of the mod-

eling of the new DG technologies has already been realized by the researchers and
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engineers and resulted in a number of scientific articles reporting the development

of dynamic models of fuel cell systems, microturbines, double fed induction ma-

chines, and generic loads [38, 41, 72, 78, 94, 115–117, 123, 135]. Depending on the

dynamical phenomena of interest, various models can be used in the analysis and

simulations; however, it should be noted that presently most of the commercially

available power simulation packages do not have detailed models of such DG tech-

nologies as a fuel cell or doubly-fed induction machines. Therefore, presently the

system analyst has to face the challenge of modeling various components without

relying on the availability of well-established models. If for some reason analytical

modeling is inaccurate or infeasible, alternative ways of obtaining reliable models

should be sought. One such solution is to apply a system identification technique.

System identification techniques have proven useful and robust numerical tools for

obtaining reliable models of dynamical systems in various fields of modern en-

gineering, e.g., biomedicine, signal processing, aerospace industry and are now

gaining more momentum in power system applications. Certain results have al-

ready been obtained in identification of linear and nonlinear models of fuel cell

stack and an aggregate industrial load [72], [112]. In conclusion it can be stated

that the choice of the dynamic model to be used in a particular case strongly de-

pends in the nature of the study. That is, when assessing the dynamic stability of a

power system, linear models—possibly obtained with the help of a linear identifi-

cation method—will suffice. When a linear system is obtained by linearization of

a nonlinear model, an explicit assumption is made on the magnitude of deviations

of the system’s states from an equilibrium point-the deviations should be small

for all times. If this assumption is violated, the results from the linearized model

may not be reliable. If this is the case, the use of linear tools becomes a choice of

questionable value and application of nonlinear techniques should be considered

as a viable alternative. When studying transient stability issues in electric power

systems, nonlinear models are commonly used [88]. The necessity to model power

systems with nonlinear differential equations originates from the following fact:

When a power system is subjected to a sudden and severe disturbance, its states

(generators shaft angular frequencies, exciter voltages, etc.) may deviate signif-

icantly from the pre-fault steady state. Moreover, a new post-fault equilibrium

may be different from the pre-fault, which implies that linear models for pre- and

post-fault are also different. All these considerations suggest that nonlinear system

analysis should be applied to a certain class of power system studies. There are

many nonlinear analysis tools that can be used for stability studies in power system

applications. One of the most commonly used techniques is the Lyapunov direct

method and its modifications presented in Chapter 4 and [43, 64, 95].
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Change of Short Circuit Capacity

The installation of new distributed generators on the distribution networks poten-

tially brings a number of benefits; however, it also may cause some side effects.

One of those effects is the increased level of short circuit capacity (SCC) of the

distribution networks. Although sometimes it is desirable to have a high SCC, e.g.,

at the point of connection of the inverter of a line commutated HVDC station or in

the presence of large loads with rapidly varying demands, in general the increase

of the SCC potentially indicates a problem. The problem is two-fold:

(i) Increased fault currents and

(ii) Voltage control issues.

Now these topics will be considered in more detail. To facilitate the exposition,

assume a DG unit has been installed at a busbar A of an abstract distribution grid.

Prior to the installation of DG, busbar A was a pure PQ node; with the distributed

generator installed it becomes active and produces a certain amount of power at a

constant power factor. Suppose a fault occurred in a neighborhood of busbar A. As

Tab. 8.2 suggests, during a fault a distributed generator can inject into the busbar

fault currents of a magnitude ten times greater than its rated current. Such currents

can cause two types of problems: thermal and mechanical stress to the busbar.

It is well known that the mechanical force acting on a busbar during a fault is

proportional to the square of the fault current. In addition to the mechanical stress

under faulted conditions the busbar will also be exposed to thermal stress, which

can also cause damage to the busbar. Another issue to be addressed in connection

with the increase of SCC is the voltage control problem. If the voltage of A at

steady state is 1 p.u., then after a sudden load level reduction the voltage of A might

increase beyond the desirable limits. The presence of shunt capacitors and/or filters

installed to compensate for the reactive power or harmonics absorption may further

worsen the situation. We would like however to mention that so far only the worst

case scenarios have been considered. In reality the situation might actually be less

severe. That is, normally low voltage lines and cables do have resistance values of

a comparable magnitude with that of the reactance. Thus, the relative impedance

[Ω/km] of the distribution lines is greater than that of transmission lines. Therefore,

the fault currents will quickly dwindle as the distance between A and the fault

increases causing less or no damage to A.

It should be noticed that the overwhelming majority (up to 70–80%) of the

faults are one-phase-to ground and are of temporary character, which also reduces
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the severity of the impact that the fault currents have on A. Finally, it is worth

mentioning that the fault currents heavily depend in the grounding of both the dis-

tributed generator and distribution grid. Among the positive sides of an increased

SCC is the fact that A becomes a more stiff voltage source thus reducing the mag-

nitude of voltage sags caused by a remote earth fault or switching of large nearby

loads.

Inertia Constant

As was already discussed in Section 8.3, presently there are available a number

of various DG technologies which might differ significantly from a conventional

synchronous generator in many respects. For instance, some distributed generators

are interfaced with the grid via a converter, which is uncommon for conventional

synchronous generators.

It can be argued that when conducting rotor angle stability studies, the most sig-

nificant features of new DG units (except those built on SG’s) are reduced damping

and low inertia constants. In extreme cases, e.g., fuel cell systems, the inertia con-

stant is undefined. To elucidate the latter statement, let us consider a synchronous

generator. The swing equation for the generator is shown below:

2H

ω0

d2δ
dt2

= Tm−Te(δ, δ̇),

where δ, Tm, and Te are the rotor angle, mechanical torque of the turbine, and

the electrical torque produced by the generator, respectively. The quantity H =
Jω2

m,base/Pbase is termed the inertia constant and is related to the kinetic energy of

the rotating mass of the generator [88]. Clearly, this definition does not apply to

systems without rotating masses. Let us now assess implications that reduced iner-

tia constants have on the rotor angle stability of the power system. As an example

a wind turbine having light rotor and relatively large installed capacity is analyzed.

For this purpose the swing equation can be rewritten in per unit as

2H

ω0

d2δ
dt2

= Tm,pu−Te,pu(δ, δ̇).

Assume now that a solid three-phase short circuit has occurred at the terminals of

the wind turbine, i.e., Te,pu = 0. Then the critical clearing time can be calculated as

follows

tcr =

√

4δcr

ω0

H

Tm,pu

.
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Thus, as the ratio H/Tm,pu decreases, so does the critical clearing time tcr. There-

fore, in order to preserve stability of the wind turbine, the protection system has to

isolate the fault faster compared to the case of an equivalent synchronous generator

having the same rating. It should however be noted that the low inertia constants of

new DG technologies also impact such an important quantity of the power system

as frequency. To show this, we postulate that DG units which do not utilize the

conversion of mechanical energy into electrical have zero inertia constant, than the

ratio
∑k Hk

∑ j Tm,pu, j

decreases as the penetration level increases and a fraction of the newly installed

DG consists of “massless” generators such as, for example, fuel cells. This implies

that when a contingency occurs on the power system which leads to the loss of

some conventional generators, the system frequency will experience a deeper sag

that would have been shallower had one chosen synchronous generator-based DG.

This is evident from the equation

d2δ
dt2

=
ω0

2H
(Tm,pu−Te,pu) ,

which indicates that the system frequency will reduce at a greater rate when H is

reduced. It can also be stressed that low inertia constants not only represent dif-

ficulties under a fault conditions, but also during normal operation the control of

output power of a low-inertia generator is more complicated. This phenomenon

has been observed in [135], where a step increase of the output power of a mi-

croturbine caused significant rotor oscillations for approximately 20 seconds. This

type of response can severely affect the ability of microturbines to follow rapid

load variations.

Voltage Stability

Voltage stability of an electric power system can be defined in several ways de-

pending on the desirable emphasis: small or large signal stability, possible causes

of instability, etc. For now let the following definition be adopted:

A power system at a given operating state and subject to a given disturbance is

voltage stable if voltages near loads approach post-disturbance equilibrium values.

The disturbed state is within the region of attraction of the stable post-disturbance

equilibrium.
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In simpler terms, a power system is voltage stable if the voltages of nodes in some

proximity of loads (load centers) following a disturbance approach an acceptable

post-disturbance steady state values.

Among the most important factors determining voltage stability of a power sys-

tem are characteristics of the load and voltage control equipment of the network.

To emphasize the importance of this fact, voltage stability is sometimes referred

to as load stability. Normally, the reactive power component of the load and reac-

tive power losses play the major role in causing voltage stability problems. Due

to adverse effects of asynchronous motor and constant energy loads are considered

to be especially prone to provoking voltage stability problems [122]. Generally

speaking, voltage stability is a dynamic phenomenon, which implies that full-scale

modeling of the power system behavior might be needed for rigorous analysis of

voltage stability [96, 130]. In some cases involving slow forms of voltage insta-

bility, detailed dynamic analysis is not needed; voltage stability can be assessed

by adequately modified load flow analysis [96]. For simplicity, in this section

the load response is assumed slow, which allows the use of load flow analysis

for voltage stability studies. As stated earlier in this section, one of the most im-

portant factors affecting voltage stability is the ability of system generation and

transmission to match the reactive power consumption due to the reactive load and

losses [33,84,122]. We thus conjecture that the major impact of DG on voltage sta-

bility of the grid will be determined by the power angle of the distributed generator.

Let us now consider the DG technologies listed in Section 8.3 from the perspective

of their impact on the grid voltage stability, i.e., their ability to generate reactive

power.

Synchronous generator

Conventional synchronous generators are capable of both generating and absorbing

reactive power. Therefore, the use of DG’s utilizing overexcited synchronous gen-

erators will allow the production of reactive power on-site. The local generation

of reactive power reduces its import from the feeder, thus reducing the associated

losses, and improving the voltage profile. As a consequence, the voltage security

is also improved.

P-V curves have been traditionally used as a graphical tool for studying voltage

stability in electric power systems. Figure 8.3 shows conceptually the impact of a

synchronous generator on voltage stability of a hypothetic node. As can be seen in

the figure, the installation of a distributed generator of ∆P MW shifts the operation

point on the associated P-V curve from point A to point B, which results in a raise
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Figure 8.3: P-V curve: Enlargement of voltage stability margin

of the node voltage by the amount VDG−V0 and enhanced voltage security: the

stability margin increases from m0 to mDG. An immediate conclusion to be drawn

here is: the installation of a distributed generation will most likely enhance the

voltage stability of the grid as long as the DG rating is smaller than twice the

local loading level. This conclusion has been confirmed by computer simulations

reported in reference [84]. DG interfaced with the grid by self-commutated power

electronic converters The utilization of self-commutated converters allows fast and

precise control of the output voltage magnitude and angle. Therefore, reactive

power can be either generated or absorbed, depending on the control mode. Since

normally the power factor of such a converter is close to unity, no reactive power

is injected in the network; however, the overall impact of the distributed generator

on the voltage stability is positive. This is due to the improved voltage profiles as

well as decreased reactive power losses, as the equation below suggests.

Qloss =
(Pload−PDG)2 +(Qload−QDG)2

V 2
Xline.

In the expression above Pload , Qload , PDG, and QDG are the active and reactive

power of the load and DG, respectively. Xline is the aggregate reactance of the

line connecting the load to the feeding substation. Note that for simplicity the

resistance of the line is neglected. Clearly, as the active power injected by the

distributed generator increases, the reactive power loss decreases. Thus, positive
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impact on the voltage stability. Case studies presented in reference [110] report a

significant improvement of transient stability by a fuel cell power plant interfaced

with a power electronics converter.

Asynchronous generators

An asynchronous generator possesses a number of features that make it very suit-

able for DG. Among these features are: relatively inexpensive prices, insignificant

maintenance requirements, in addition these motors are robust. On the other hand,

when directly connected to the grid, this type of DG will always consume reactive

power thus contributing to the factors increasing the probability of encountering

voltage stability problems. The reactive power consumption of asynchronous gen-

erators is normally compensated by shunt capacitor banks. This however is only

a partial solution to the voltage stability problem, since a voltage reduction will

decrease the amount of reactive power generated by the capacitor banks, while

increasing the reactive power consumption of the asynchronous generator. There-

fore, there is a risk that instead of supporting the grid at an undervoltage situation

the asynchronous generator will further depress the system voltage. This might in

principle trigger a voltage stability problem. There exist however effective ways to

alleviate possible voltage stability problems with asynchronous generators, namely,

installation of a static VAr system or using a self-commutated converter to inter-

face the generator with the grid. As the overwhelming majority of newly installed

asynchronous generators are equipped with a self-commutated power converter, the

detrimental impact of the induction generator on voltage stability of the network is

to a great extent eliminated. Moreover, the injection of active power reduces the

power losses thus further enhancing voltage stability of the grid.

Line Commutated Converters

It is a well-known fact that conventional line commutated converters always con-

sume reactive power. The amount of the consumed reactive power is can be as

high as 30% of the rated power of the converter [the number has to be double-

checked]. To compensate for the Q demand, capacitor banks are normally installed

on the ac side of the converter. This makes a line commutated converter quali-

tatively equivalent to a directly connected induction generator. Therefore, under

certain circumstances, the presence of such a converter can negatively affect volt-

age stability. We would like however draw the reader’s attention to the following

chain of facts: the latest achievements in high power electronics which resulted



8.5. NETWORK CONTROL AND STABILITY ISSUES 147

in the advent of relatively inexpensive devices possessing excellent technical char-

acteristics. Moreover, often the capacities of DG are quite small, which makes

the utilization of advanced power electronics devices economically beneficial. It

can therefore be anticipated with certain degree of confidence that in the near future

most of the power electronics converters will be self-commutated. In general, it can

be concluded that the presence of DG does not adversely affect voltage stability.

The utilization of asynchronous generators directly connected to the can potentially

cause voltage stability problems; however, the present trends in the manufacturing

of asynchronous generators indicate that the fraction of converter interfaced gen-

erators gradually grows, reducing the likelihood of encountering voltage stability

related problems. The qualitative analysis performed in this section only concern

steady state operation of the tandem DG–distribution network.

On the Quantification of Maximum Penetration Levels

Quantification of the maximum allowable amount of DG that can be connected to

a distribution network without jeopardizing the operation standards is highly case

specific depending upon the specific circumstances related to the operation of both

DG and the utility. For instance, one of the key factors is the mode of DG oper-

ation, i.e., if the DG output is following the load variations or not. If DG is not

following the load variations, increasing DG penetration will usually violate volt-

age standards, before reaching any other limitation. In some cases, if synchronous

generators are placed in meshed low voltage grids, the short circuit level might

reach unacceptable levels before voltage standards are violated. Technically, both

these issues can be solved by reconfiguration or upgrading of the network.

In distribution networks already reconfigured for DG, thermal limits on some

lines or substations can be the limiting factors defining the maximum penetration

levels. Some network operators might be willing to except those overloadings, if

they occur only for a very short time. Some European network operators actually

accept a 20% overloading of their overhead lines, if the overloading is cased by

wind power, as it is expected that the high wind speed at the times of the overload-

ing will also cool the overhead lines. If overloading is excepted, the network must

be further upgraded or reconfigured. It should be emphasized that, if reconfigu-

ration and upgrading of the distribution network is taking into account, virtually

there are only a few technical limitations for the penetration ratio of DG.

With increasing DG penetration ratios, the network will be reconfiguring and

upgrading, thereby becoming more flexible and may be evolving from a LV to a

MV grid system. Hence, the integration of DG into distribution systems becomes



148CHAPTER 8. INTERACTION BETWEEN DG AND THE POWER SYSTEM

an economic issue rather than a technical one. There are a few real-world existing

wind-diesel systems in operation which support this statement. Such system, for

example on Rathlin Island (Northern Island), Froya Island (Norway), or Denham

(Australia) achieve a wind power penetration ratio of up to 100% for short periods

of times and annual average wind penetrations of 70% to 94%, [39,49]. The wind-

diesel system in the Australian city of Esperance, for example, supplies power

to around 12000 of its inhabitants. It consists of eight diesel generators with a

combined capacity of 14 MW and two wind farms with a combined capacity of 2.4

MW. It is reported that the system is capable of adequately responding to all power

fluctuations, including wind power fluctuation and load fluctuations. At nights with

low system loads and high wind speeds, the wind farms provide up to 75% of the

total system load without problems. In average the wind farms supplies around

14% of the system demand, [102].



Chapter 9

Closure

“In all human affairs there are efforts, and there are results,

and the strength of the effort is the measure of the result.”

— J. Allen [16]

This chapter recapitulates the main results obtained in the framework of this

project by providing general conclusions and discussions on the key findings, which

is followed by suggestions for possible extensions of the work reported in the dis-

sertation.

9.1 ConclusionsThe main focus of this project has been placed upon the development of

analytical tools for stability analysis of power systems with large amounts

of distributed generation. The results obtained can be roughly categorized

into four main groups, namely, (i) transient stability analysis, (ii) voltage collapse

analysis of power systems with intermittent generation and/or stochastic loads, (iii)

identification of aggregate power system loads, and (iv) design of robust control

for the enhancement of load following capabilities of solid oxide fuel cell-driven

power plants.

Along these lines, the main conclusions obtained in this project can be summa-

rized as follows.

Transient Stability

• Numerous attempts were made in order to construct a Lyapunov or Lyapunov

energy-like function for a single asynchronous generator, which, however,

did not lead to the discovery of a suitable Lyapunov function. In particular,

the Krasovskii method, the Energy Metric algorithm, and the First Integral of
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Motion failed in synthesizing an energy function for the single asynchronous

generator model [with damping neglected].

• The difficulties associated with the construction of a Lyapunov (or energy)

function for a single generator strongly suggest that the construction of a

practical Lyapunov function for a multimachine power system consisting of

both synchronous and asynchronous generators might be a very challenging

task. The Converse Lyapunov theorems combined with the empirical exis-

tence of a stable equilibrium in such power systems imply that there always

exists a Lyapunov function for the system, e.g., a quadratic Lyapunov func-

tion. However, it is very likely that the use of quadratic Lyapunov functions

is impractical due to the excessive conservatism of the estimates of the re-

gion of attraction. At present it is not clear if a suitable practical Lyapunov

or energy function can be found for a multimachine power system.

• It was demonstrated in this thesis that the use of Extended Invariance Prin-

ciple can yield a family of extended Lyapunov functions that could be used

in the transient stability analysis. In addition, has been demonstrated in the

thesis that there exists an extended Lyapunov function for the three-machine

power system.

• Numerical time-domain simulations of both single asynchronous machine

and the three-machine power systems confirmed that the estimated attraction

regions are reasonable accurate. For instance, for the three-machine power

system the conservatism amounted to approximately 3.6%.

• It was observed in the literature that for power systems without asynchronous

generators the attraction region estimates obtained with the help of extended

Lyapunov functions are more conservative than the estimates which conven-

tional energy functions give. Therefore, it is quite likely that for multima-

chine power systems the extended Lyapunov functions might yield attrac-

tion region estimates that are somewhat conservative. However, at present

the only alternative is to use the extended Lyapunov functions for analyti-

cal stability studies of such power systems, since to date no pure Lyapunov

or energy function has been found for a power system with asynchronous

generators.
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Voltage Stability

• The intrinsic intermittent behavior of wind farms has stimulated research in

the area of voltage stability analysis of power system with large amounts of

wind power.

• It was demonstrated in this dissertation that the problems of calculating the

critical loading and the maximal loadability in a power system can be treated

in a stochastic framework, i.e., certain system parameters could be treated as

bounded stochastic parameters.

• It is known that the problems of calculating the critical loading and the max-

imal loadability can be reduced to certain optimization problems. It has been

proposed in this thesis that these optimization problems can be reformulated

such that the parameters become interval-valued. Then the methods of inter-

val arithmetic could be applied to solve these optimization problems. Thus,

performing one optimization, it is possible to determine the set of all values

that the critical loading or maximal loadability assume for any combinations

of the uncertain parameters.

• To exemplify the application of the proposed methodology, a simple three-

bus power system was used. For this sample power system the results ob-

tained have been found accurate and nonconservative.

Identification of Aggregate Power System Loads

• Two power system load identification techniques are proposed in this thesis.

The load models are based on well established equations describing the non-

linear recovery mechanisms of load. The models are then reformulated in

the framework of stochastic system identification theory.

• A linear and nonlinear output error estimators are introduced and analyzed,

and generic equations applicable to identification of aggregate models of

power system loads are developed and studied in detail.

• The asymptotic behavior of the estimates is studied by means of numerical

experiments with artificially created data, demonstrating that the estimates

are asymptotically unbiased for the nonlinear load model and their variance

attains the Cramér-Rao lower bound.
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• To avoid numerical problems associated with possible multiple minima of

the objective function, a global minimization technique was utilized.

• The load identification techniques were applied in order to identify the load

of a paper mill. Field measurements taken and linear and nonlinear load

models were accurately identified.

Robust Controller Design

• The load following capabilities of a solid oxide fuel cell-driven power plant

were explored by means of numerical experiments. It was found that aux-

iliary control could improve the load following functionality of the SOFC

plant.

• To enhance these load following capabilities, a robust two-degree-of-freedom

H∞ controller was designed.

• Nonlinear dynamic simulations were used in order to verify the performance

of the compensated SOFC power plant. It appeared that the robust controller

was capable of improving the set point tracking of the plant and significantly

enhanced rejection of disturbances acting on the plant.

General Discussion on the Impact of DG on the Utility

The DG technologies were qualitatively analyzed and their impact on the power

system was discussed. Here, such questions as the impact on the voltage control,

inertia constants, power quality, fault current levels, protection system, reliability,

and stability were studied.

Based on the discussion, it can be concluded that the impact of DG depends on

the penetration level of DG in the distribution network as well as on the type of DG

technology. If DG is properly sized, sited and selected in terms of technology it

can clearly provide benefits to control, operation and stability of the power system.

9.2 Suggestions for Future Work

Transient Stability

In the future work the following issues should be addressed
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• Using the extended Lyapunov function for the three-machine power system

considered in this thesis, it would be interesting to study analytically the

impact that asynchronous generators have on the dynamic performance of

the power system. From such a study more insights could be gained about

the role of asynchronous generators in providing additional damping.

• Generalization of the results obtained in this chapter to a multi-machine

power system.

• Estimation of the conservatism of the estimates of the domain of attraction

provided by the EIP for multimachine power systems.

Voltage Stability

• Application of the methodology described in this dissertation to larger power

systems.

• Rigorous evaluation of the numerical properties of the interval optimization.

• Analysis of the conservatism of the enclosures

• Convergence analysis of the proposed method for voltage collapse analysis

of large-scale power systems.





Appendix A

Interval Arithmetics

“Pure mathematics is, in its way,

the poetry of logical ideas.”

— A. Einstein

One of the most natural and convenient ways to analyze sets of numbers is

to use interval arithmetic. The key concept of interval arithmetics is that of

an interval. An interval [x] is unambiguously defined as a closed connected

set of reals [52], i.e.,

[x] = {x ∈ R | x≤ x≤ x} ∈ IR. (A.1)

In the equation above, x and x stand for the lower and upper bound of the inter-

val [x], respectively. In this Appendix, we enclose all interval variables in square

brackets to distinguish them from the real numbers. Many of the main operations

from real analysis can be readily extended to interval arithmetic. For instance, for

two intervals [x] = [x,x] and [y] = [y,y] the operations of summation, subtraction,

and multiplication are defined as

[x]+ [y] = [x+ y,x+ y] (A.2)

[x]− [y] = [x− y,x− y] (A.3)

[x] · [y] = [min{xy,xy,xy,xy},

max{xy,xy,xy,xy}] (A.4)

Division of two intervals is defined in a slightly different way

[x]/[y] = [x] · [1/y,1/y], if 0 /∈ [y].

In addition to the basic arithmetic operations, several new operators are introduced,

e.g., the width and midpoint of an interval:

w([x]) = x− x

x̌ = mid([x]) =
x+ x

2
.
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It is worthwhile noticing that w([x]) can be viewed as a norm in the space IR;

however, it is only a seminorm, since w(ξ ) = 0,∀ξ ∈ R. As can be easily verified

by direct inspection of (A.2)–(A.4), [x]− [x] 6= 0,∀[x] : w([x]) 6= 0.

The concepts of interval vectors and operations on them are trivially extended

from the real analysis, i.e., an interval vector [x] ∈ IR
n is defined as a Cartesian

product of intervals [xi]

[x] = [x1]× [x2]×·· ·× [xn], (A.5)

ξ [x] = (ξ [x1])× (ξ [x2])×·· ·× (ξ [xn]),ξ ∈ R, (A.6)

[x]′[x] =
n

∑
k=1

[xk] · [yk], (A.7)

Interval matrix operations are defined similarly to the operations on real matrices.

Finally, an interval-valued function f is defined as follows

f ([x]) = { f (ξ ) | ξ ∈ [x]∩ dom( f )}, (A.8)

where ‘dom( f )’ designates the domain of f .

Using the interval operations introduced in this section, the properties of the

sets ΩL and Ω̄l can be readily studied.



Appendix B

Some Mathematical Facts

B.1 Linear AlgebraConsider the matrix H ∈ R
n×n. Suppose that H is positive definite, i.e.,

H ≻ 0. Then the following statements are equivalent

1. x′Hx > 0,∀ x.

2. If λi is an eigenvalue of H, then λi > 0,∀ i.

3. All leading minors Mk of H are positive definite (Sylvester’s criterion).

If matrix H is negative definite, i.e., H ≺ 0, the opposite to facts 1 – 3 holds.

For positive semidefinite H < 0, the strict inequalities in facts 1 – 3 are relaxed.

Assume that H has n distinct eigenvalues {λi}
n
1. Then there exists a nonsingular

matrix T : T−1HT = Λ, where Λ = diag(λ1,λ2, . . . ,λn).
Suppose that H is symmetric, i.e., H = H ′. Then, λi ∈ R,∀ i. Let us order the

real eigenvalues of H such that λ1 > λ2 > · · · > λn. Then, for all x, the following

inequalities hold

λn‖x‖
2
2 6 x′Hx (B.1)

x′Hx 6 λ1‖x‖
2
2. (B.2)

The trace operator of a matrix is defined as the sum of the diagonal elements of the

matrix, i.e.,

Trace H =
n

∑
k=1

hkk.
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B.2 Calculus

Differentiation of quadratic forms

Consider the quadratic form q = 1/2x′Qx. Differentiation of q with respect to the

argument is done as is shown below.

∂q

∂x
=

1

2

∂ (x′Qx)

∂x

=
1

2

[
∂x′

∂x
Qx+

(
x′⊗ In

) ∂Qx

∂x

]

=
1

2
(Q+Q′)x. (B.3)

In the special case Q = Q′, the derivative ∂q/∂x simplifies to Qx.

Line integral independent of path

Consider the vector-valued function f ∈ C1 in some domain D. Then, the line

integral
∫

Γ
f (x)dx

is path independent iff:

• f = ∇ F , where F is some function, or

• curl f = 0, assuming that D is simply connected.

Taylor series expansion

Consider the vector-valued function f ∈Cn in some domain D ∈ R
m. Then, in D,

f can be approximated by a Taylor series expanded around an x0 as follows.

f (x0 +δ)≈
n

∑
k=1

1

k!
(δ ′∇ )k f |x0

, (B.4)

where (δ ′∇ )k denotes an operator that acts on f (x) k times. ∇ f is often referred to

as the Jacobian of f , while ∇ 2 f is known as the Hessian of f . If it is known that

(B.4) exists and that ‖δ‖ is small, than f (x0 +δ) can be satisfactorily approximated

by the sum f (x0)+δ ′∇ f |x0
. This procedure of truncating the higher order terms is

commonly termed linearization.



Appendix C

Linearized Model of SOFC

L inearizing the nonlinear fuel cell model (3.20)–(3.22) and using equation

(3.19), the following state-space model of the solid oxide fuel cell is ob-

tained

A =









−1.336 6.459 ·103 −379.934 9.69 ·103 0

0 0 0 0 0.2
0 0 −0.013 0 0

0 0 0 −3 ·10−4 0.175

0 0 0 0 −0.2









B =









18.87 37.4 299.6
0 0 0

0 0 0

0 0 0

0 0 0









C =
[

3.9 ·10−3 21.56 −1.268 32.35 0
]

D = 0

The numerical values of the system parameters can be found in Table C.1 [135].

The rated voltage of the fuel cell is equal to 333.8 V under rated power output. In

this model it is assumed that the fuel cell inverter was operated at a unity power

factor.
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Table C.1: Parameters in SOFC plant model

Parameter Representation Value

Prate Rated power 100 kW

Pre f Active power reference 100 kW

T Absolute temperature 1273 K

F Faraday’s constant 96487 C/mol

R Universal gas constant 8314 J/(kmol K)

E0 Ideal standard potential 1.18 V

N0 Number of cells in the stack 384

Kr Constant, Kr = N0/4F 0.996×10−6 kmol/(s A)

Umax Maximum fuel utilization 0.9

Umin Minimum fuel utilization 0.8

Uopt Optimal fuel utilization 0.85

KH2
Valve molar constant for hydrogen 8.43×10−4 kmol(s atm)

KH2O Valve molar constant for water 2.81×10−4 kmol(s atm)

KO2
Valve molar constant for oxygen 2.52×10−4 kmol(s atm)

τH2
Response time for hydrogen 26.1 s

τH2O Response time for water 78.3 s

τO2
Response time for oxygen 2.91 s

r Ohmic losses 0.126Ω
Te Electrical response time 0.8 s

Tf Fuel processor response time 5 s

rH O Ratio of hydrogen to oxygen 1.145

cosφ Power factor 1.0
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[29] C. A. Cañizares, A. Berizzi, and P. Marannino. FACTS Controllers to Maxi-

mize Available Transfer Capability. Proceedings of the Bulk Power Systems

Dynamics and Control IV Seminar, IREP/NTUA, Santorini, Greece, pages

633–641, August 1998.
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