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Stability of Pseudospectral and Finite-Difference

Methods for Variable Coefficient Problems

By David Gottlieb*, Steven A. Orszag**, and Eli Türkei***

Abstract It is shown that pseudospectral approximation to a special class of variable

coefficient one-dimensional wave equations is stable and convergent even though the wave

speed changes sign within the domain. Computer experiments indicate similar results are

valid for more general problems. Similarly, computer results indicate that the leapfrog

finite-difference scheme is stable even though the wave speed changes sign within the

domain. However, both schemes can be asymptotically unstable in time when a fixed spatial

mesh is used.

1. Introduction. The semidiscrete Fourier (pseudospectral) approximation to the

differential equation

(1.1) u, = c(x)ux,    u(x + 2it) = u(x),       0 < x < 2ir, t > 0,

is given by the following algorithm [3], [8], [11].

(1) Construct the trigonometric interpolant uN of u(x, t) at the points Xj = jtr/N,

j = 0, 1, . . . , 2N - 1. Hence,

(1.2) uN(Xj)-   2    ak(t)eik\
k--N

where

2N-\

(1.3) ak(t) = -—   2    u(Xj,t)e-^,        -N<k<N,
Llyck   _/-0

where ck = I, k ¥= ±N, cN = c_A, = 2.

Furthermore, since u is real we have ak = a*_ k for — (N — 1) < k < N — 1 and

also aN = a_N is real. Note that uN(xp t) = u(xjy t).

(2) Differentiating (1.2), we have that

é)u N

(1.4) -5?^)-   2    ikak(t)e**>.
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294 DAVID GOTTLIEB, STEVEN A. ORSZAG AND ELI TURKEL

Substituting (1.4) into (1.1), we arrive at the semidiscrete approximation

(1.5) ^(xj,')-^/^,!).

In practice duN/dx is calculated using two fast Fourier transforms to evaluate (1.3)

and (1.4).

(3) Equation (1.5) is advanced in time by some discretization (see, e.g., [3], [5],

[12])-
It is also possible to formulate the algorithm without reference to the Fourier

transform. Define

(1.6) DN(u) = ± sin Nu cot f = ± J^ e** - _L cos ̂

DN(u) is a trigonometric polynomial of the form (1.2). Moreover, since DN(xk — xj)

= 8Jk, it follows that

2/V-l

(1.7) uN(x)=   2    u(xj)DN(x - xj).
7-0

When uN(x) is a trigonometric polynomial with degree less than or equal to 7Y, the

representation (1.7) is unique. Differentiating (1.7), we have

"ST = A u{Xj)Tx D"{x - *>

In particular,

(1.8) ^{*j)-jY uN(xk)(-l)k+Jcot(^).

k*j

This formula for duN/dx replaces (1.3)—(1.4) in (1.5). A comparison of the compu-

tational efficiency of (1.3)—(1.4) versus (1.8) is highly machine dependent. In many

cases (1.8) is more efficient for N < 32, while (1.3)—(1.4) is more efficient for large

N. However, the form (1.8) is more convenient for the present analysis. Since (1.8)

is exact when uN is a trigonometric polynomial of degree less than or equal to TV,

we have

Lemma 1.1.

2JV-1
IX    — X\ itrr

2    cos Nxk cos N(xk - Jc,-)cot( —-—- 1 = 0,       Xj = —.
k = 0
k*j

Proof. Choosing uN(x) = cos Nx, we have by the exactness of (1.8) that

'•^T ' / xk — Xj \
¿j    cos Nxk cos N(xk — Xj) cotl-J

/t-o V      2      /k-0
k*j

dx

This result can also be shown by direct calculation

= -sr cos Nx\xmJi = N sin NXj = 0.
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When c(x) is strictly positive (or negative) throughout [0, 2ir] it is known that the

pseudospectral Fourier method gives a stable, consistent, and convergent ap-

proximation to (1.1) as N -> oo for all t ([2], [3], [11], [13]). On the other hand, when

c(x) has a zero within [0, 2it] and, in particular, if c(x) changes sign in [0, 27r],

solutions of (1.5) may grow without bound as r-»oo. Kreiss and Öliger [8]

analyzed the case c(x) =1-2 cos x and showed that the time derivative of the

Z.2-norm of the numerical solution is not bounded by the L2-norm of the numerical

solution. On the basis of this analysis, Fornberg [2], and Majda, McDonough, and

Osher [10] concluded that instabilities as N -> oo may occur when c(x) changes

sign in the domain. However, as recognized by Kreiss [private communication], the

analysis of [8] is not enough to prove instability as N -» oo.

Here we prove that, for c(x) = A sin x + B cos x + C with arbitrary A, B, C,

(1.5) is stable in the L2-norm. Computational evidence is also presented to show

that, in general, the source of trouble when c(x) changes sign is not instability as

N —» oo but rather growth in time. That is, solutions may grow rapidly in t for fixed

N, but for any fixed / the numerical solution of (1.5) converges as N -> oo to the

exact solution of (1.1).

Similarly, computational evidence is presented to show that the leapfrog finite-

difference scheme provides a stable approximation to (1.1) even though c(x)

changes sign.

2. Stability of the Pseudospectral Method. A semidiscrete method is defined to be

space-stable (or stable) if for some T > 0 the solution uN to (1.5) is bounded for

0 < t < T for arbitrary initial conditions in some Banach space as the number of

mesh points (or modes) N increases. The Lax-Richtmyer equivalence theorem [14]

states that if a method is consistent and stable then the numerical solution

converges to the solution of the differential equation (1.1).

The method (1.2) is defined as time-stable (or asymptotically stable) if the solution

uN to (1.5) is bounded for a fixed number of mesh points (or modes) as t —> oo. To

be precise, attention is restricted to cases where the analytic solution to (1.1) does

not grow in time. More generally, time-stability should be defined by the require-

ment that the solution to the approximate system (1.5) grows no more rapidly than

the solution to (1.1) [5].

A necessary and sufficient condition that the approximation

àuN      _

(2.1) ~-j = QN"s

be stable is that there exist positive definite matrices HN and finite constants aN, ßN

such that

(2.2) QHHN + HNQ% < ßNHN,       0<aNKHN< I/aN,

where Q% is the Hermitian adjoint of QN. When aN and ßN are independent of N,

the algorithm is space-stable. If aN = 0(Na) [a finite], ßN = 0(log N) as tV -» oo,

then (2.1) is said to be algebraically space-stable and uN converges to u as N —> oo

for sufficiently smooth initial data [3]. When ßN < 0, the scheme is time-stable.
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Consider the equations

0"\ \ u<~ [^ sin x + 5 cos x + C)u\x,       0 < x < 2-rr, t > 0,

«(0, i) = m(2t7, t),       u(x, 0) = u0(x),

and

(2.3b) u, = (A sin x + B cos x + C)ux.

Equations (2.3) are analyzed in this study based on the representation (1.8). (2.3b)

contains as a subcase the problem considered by Kreiss and Öliger [8]. An

alternative proof of the stability of (2.3b) is presented in [6] based on a representa-

tion of the pseudospectral method in Fourier space. There it is shown that one may

expect differences in the stability properties of the scheme depending on whether

an even number or odd number of collocation points are used.

For the differential equations (2.3) one has an energy estimate

4 f* u2(x, t)dx<(\A\ + \B\) f2" u\x, t) dx.
at Jn Jq

This implies that

<2-4> (¿ruHx- ° *r * •*Mw*(¿r■** o) *r-
This energy inequality holds despite the fact that the wave speed C(x) = A sin x +

B cos x + C may change sign in [0, 2ir]. For the Fourier method (1.2)—(1.5) we

shall similarly prove

Theorem 2.1. Let uN be the pseudospectral Fourier semidiscrete approximation for

Eq. (2.3a). Let 2NoN be the last coefficient of the finite Fourier transform of the

initial data, i.e.,

2N~X IT]

(2.5) aN =   £    uAxj, 0)cos Nx,,       xj, - —.
2/V-l

2
j-0

Then we have the energy inequality

,       N-\ \l/2 /    j    2AT-1 \l/2

¿a £ ** o)    < **»(¿ 2 uUxj, o))

+ \2aK\(e^+^'- 1).

Proof. Using (1.5) and (1.8), we have that

3m 2n~x
~äT (xi) =   2    (A sinxj + B cos x} + C)cos N(x¡ — Xj)

(2.7) U
i x, - x¡ \

XCOt^-yy^ )«„(*,).
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Multiplying (2.7) by cos Nx¡ and summing over /, we have

2/V-l 9m 2n-l

2    cos Nx,~-^(x¡) =   2  (A sin Xj + B cos Xj + C)uN(x;)
(2.8) /=0 >-°

2i^ ' / */ - *> \
X   2<    cos yYx, cos N(x, - Xj)cot\ ——— I.

/=o V     2     /

Hence, by Lemma 1.1,

and so

3 2N~X
2    cos Nx,uN(x,) = 0,

01   /=o

2N-1

(2.9) 2    cos Nx,uN(x„ t) = Ojv
/=o

for all /.

We now multiply (2.7) by uN(x¡) and sum over / to get

j      . 2/V-l j  2/V-l   2N-1

Ï "j-     S      Mjv(*/> ') "" 7    2 2      [^ Sin *> +  5 COS Xj +  C]
¿ m   1=0 L   1=0     j=0

(2.10) ;w
/ x, — x • \

Xcos N(x, - Xj)coty—-—JuN(Xj)uN(x,).

We now make use of the identity

ix, — Xj \ sin x, + sin x,-      cos x, + cos x,.

V      2     / cos x,
cot

cos Xj      sin x, — sin x}

Taking the symmetric part of (2.10), we get

1   d2N~l

2  «£(*,. 0
¿ "i   /=0

j   2/V-l    2JV-1

7     2 2      [ ̂  (COS X, + COS Xy)cOS /V(x7 — Xj)
4   ,-o     y-o

+ 2?(sin x, + sin x,)cos N(x, - Xj)]uN(xj)uN(x,)

,   2/V-l

-z   2    iA cos x, - B sin x^w^ix,).
2   /-o

Since cos N(x, - x,) = (- l)'+J, we also have

_rf2

dt

N-l /2/V-l \

2    4(*/. 0 = -     2    uN(x,)œsNx,\
1=0 \   1-0 J

(2/V-l \

2    uN(xj)cos NXj(A cos Xj + B sin x¡)
7 = 0 J

2/V-l

—   2    (^ cos x, — B sin x^mj^x,).
/ = 0
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We have, however, the estimate

2/V-l /2/V-l \>/2/2/V-l \I/2V-l /2/V-l \'/2/2/V-l \1

2      »/v(^)cOS X, COS NXj < 2      ul(Xj) 2      COS2 Xj
: = 0 \ 7 = 0 /       \ 7=0

/2/V-l \

<"1/2[ 2 »Uxj)j

j = 0

(2.12)
'2/V-l \l/2

We next define

i     2/V-l

||"/v||2 = Tiv   2   «#(*>ZiV    7-0

Using (2.8) and (2.11) together with (2.10), we get

d_

dt

or

\\uNX < \2oN\(\A\ + \B\)\\uN\\ + (\A\ + \B\)\\uN\\¿

(2.13) j¡\i«s\\<\oHm + |Ä|) +I(W + |Ä|)|K||.

Using the Gronwall inequality, we conclude that

(2.14) IMOII < el^+W\\uN(0)\\ + 2K|(e^l+l*l>' - 1).

Corollary 2.1. If the initial data has a continuous first derivative, then the energy

inequality (2.6) can be improved to yield

(2.15) |«Ar(0|<e*|K(0)||,

where

/Voo/. Let a =^(1^41 + \B\) and ß = 2\aN\. Then (2.7) can be expressed as

||«(Oil = e°"II M(0)|| + ß(e°" — 1). By comparing derivatives, it is easily verified that

e«\\u(0)\\+ß(e«-l)<e*\\u(0)\\,

and (2.15) follows. It only remains to verify that y0 is bounded independent of N.

When uN(0) has a continuous first derivative, then the coefficients of the trigono-

metric interpolation function CN decay more rapidly than 1//V; see, e.g., [15].

Hence, ßN/\\uN(0)\\ = 2/VCN/||wAr(0)|| ->0, and, in particular, y0 is bounded inde-

pendent of N.

Note 1. If uN(0) is of bounded variation, then aN is bounded as N -» oo (see [15,

Part II, p. 14]), and therefore convergence still holds. This requirement of bounded

variation is reasonable for physically relevant problems.

Note 2. The analysis given above illustrates the idea of low-pass filtering to

achieve stability; see [9], [10]. In fact, if aN = 0 for the initial conditions, then the

estimate (2.14) holds.
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Corollary 2.2. For (2.3b), the pseudospectral method (1.5) is stable in the Hx

norm.

Proof. Let R denote the operation of multiplication by c(x) = A sin x + B cos x

+ C and let S denote differentiation by the pseudospectral algorithm. Then (1.5)

becomes

(2.17) -^ = RSuN.

Defining % = SuN, gives dvN/dt = SRvN, so, noting (2.13),

±\dV

where

4lKH<(MI + |5|)(^+i|K||),

2/V-l

*/v =   2    %(*> °)cos iVx,.
7 = 0

Since % = 5%, it is readily verified that tyN = 0, so

\\SuN(t)\\<e^+W'\\SuN(0)\\.

From (2.17), it follows that

{j¡Wu42 = i»N,RSuN) < (\A\ + \B\)\\uN\\ \\SuN\\

so

|||Mjv||<(M| + |5|)||S%(0)||e^KI^.

Therefore,

KWII < ||M0)|| + 2||5^(0)||(^^l + lBl>' - 1),

proving H ' stability.

3. Results for Spectral Methods. Consider the problem

(3.1) u, + sin(Sx - y)ux =0       (0 < x < 2m),       u(x, 0) = f(x).

For all the runs y = tan(0.9) and S = 1, so that sin(Sx — y) is not zero at a

collcation point. The equation is solved numerically by the Fourier method

described in Section 1. The time integration is done with a fourth order Runge-

Kutta method with At = 1/10/V. Smaller time steps were also tried to determine

that errors in the time direction were not contaminating the results. The analytic

solution to (3.1) is given by

(3.2) u(x, t) =/Í2r5-'tan-1 e^'tani Sx ~ y\] + yó""1).

We chose the initial conditions as

II 1\ n   \ cos x
(3.3) f(x) =

1 +0.9cosÍ2x + -|)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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so that a range of modes are present in the solution. In Table la we present the

error, in the standard L2-norm, between the exact solution u(x, t), as given by (3.2),

and U obtained by the Fourier collocation method. It is evident that the method is

converging for sufficiently small t. In fact, for any fixed finite t the method

converges if sufficiently many modes are used. It is also evident that the error

exhibits growth in time. Spectral analysis of the numerical solution shows that only

the lowest and highest modes are increasing as shown in [6]. When S = 4 in (3.1),

then all the Fourier modes grow in time. In Table lb we present results for the

same problem using the formulation suggested in [3]. Thus (3.1) is rewritten as

(3.4)     ", + 2 sMSx - y)ux
1 Ä

+ -(sin(6x — y)u)x - — cos(óx - y)u = 0.

Table la

Error for the Fourier collocation method for (3.1) with

8 - 1, y - tan"'(0.9) andf(x) given by (3.3).

Here t is measured in units of 2m

N
32 64 128

.125

.250
1.0

10.0

0.39

0.78

1.8
22.8

0.050

0.35

3.5

30.2

0.0014

0.074

1.6

14.4

Table lb

Same as Table la but for the Fourier collocation method

based on (3.4)

32 64 128

.125

.250

1.0

10.0

0.23

0.50

1.9

25.8

0.035

0.17

1.4

9.1

0.00083
0.031

1.0

11.5

As seen from Table lb, no substantial improvements over the standard colloca-

tion method are observed. There is still space-stability but no time-stability. Other

computations were performed with different functions c(x) in (1.1). Even though

Theorem 2.1 is no longer applicable the computational conclusion is the same.

There is space-stability but generally no time-stability for the Fourier collocation

method for equations with variable coefficients.
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Table 2

Error for the Fourier collocation method for (3.1) with

8 = 1, y = tan- '(0.9), and the discontinuous initial

conditions (3.5)

32 64 128 256
.125

.250

1.0

5.0

10.0

0.63

1.0

2.6

10.0

20.0

0.65
1.1

4.2

15.6

29.4

0.61
1.0

2.7

0.63

1.1

(3.5) u =

In Table 2, results are presented for S = 1 with the initial conditions

+ 1,    0 < x < m,

-1,      m < x < 2w.

The results given in Table 2 show that the numerical results are stable but not

convergent. In [3] it was shown that this occurs because the Fourier spectral

method is not consistent when the solution is not periodic. Analysis of the

numerical solution shows that it has many large oscillations.

Additional insight on the nature of the stability of these schemes can be achieved

by studying the use of the Chebyshev collocation method [3]. Specifically, consider

the problem

u, - xux =0 (-1 <x < 1),

(3.6a) u(x, 0) = /(x),

u(-l,t)=f(-e'),     u(l, t) = f(e'),

whose analytic solution is

(3.6b) «(x, t) = f(xe').

The solutions to be discussed below were computed by the Chebyshev collocation

scheme for three sets of initial conditions:

(3.7a) f(x) = sin(?rx),

(3.7b) f(x) = sim>x/T6),

(3.7c) f(x) = sim>x/100).

As shown in [3], good resolution by the Chebyshev spectral expansions requires

at least m collocation points per wave length of the solution. For (3.7a) there are e'

waves within |x| < 1 at time /. Hence,

(3-8) r =± log —.
m

For collocation using N points, there are no longer enough polynomials to resolve

the solution. Corresponding formulas hold for the other initial conditions. For the

initial condition (3.7a) with TV = 17, resolution is lost for / > 1.68, while for
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N = 33, resolution is lost for / > 2.32. In Table 3 the computed errors in the

Chebyshev solution of (3.5) are listed for the various initial conditions (3.7). The

error is measured in the Chebyshev norm

N-\

(3.9) \uf= 2 <&

where U(x) = S^'ô anTn(x), and Tn(x) = cos(n cos-1 x) is the Chebyshev poly-

nomial of degree n. The results given in Table 3 show that the Chebyshev

collocation method is stable for both increasing N and increasing t even though the

coefficient of (3.5) changes sign, as proved analytically previously [3]. Any loss of

accuracy is attributable to loss of resolution caused by the decrease in the effective

wavelength of the solution for large time. Hence, the Chebyshev collocation

method has benefits over the Fourier method for problems with variable coeffi-

cients.

Table 3

Error for the Chebyshev method for (3.6) with smooth

initial data

Initial Condition

sin mx sin 7TX/16 sin mx/100

^ 17 33 17 33 17 33

2.7 X 10~4

1.1 X 10_1

1.4 X 10~'

1.7 X 10"1

1.9 x 10_1

1.5 X 10"1

1.7 X 10_1

1.9 X 10"1

1.4 X 10~5

2.6 X 10"4

8.6 X 10~2

9.2 X 10-2

1.2 X 10_1

8.7 x 10"2

1.4 X 10-1

1.1 X 10"1

5.8 X 10~7

4.2 X 10~6

3.4 X 10-5

8.7 X 10"4

1.2 X 10-'

1.3 X 10-1

1.3 X 10"1

2.0 X 10" '

3.6 X 10-8

2.0 X 10"7

1.6 X 10"6

2.7 X 10~5

8.1 X 10~3

9.7 X 10~2

1.1 X 10"1

1.0 X 10"1

1.3 X 10"7

3.8 X 10"7

7.4 X 10~7

7.0 X 10"6

6.4 X 10"5

9.3 X 10-3

1.6 X 10"'

1.2 X 10- *

9.0 X 10~9

2.0 X 10-8

3.8 X 10"8

3.4 X 10-7

3.0 X 10~6

4.4 X 10"5

6.0 X 10~2

1.1 X 10_1

Next, (3.5) has been solved by the Chebyshev method with discontinuous initial

data

(3.10) *■>-{*
1,    -1 < x < 0,

0 <x < 1.

If the error is measured in the norm (3.9), the method is both stable and

convergent. Plots of the numerical solution display large oscillations that do not

decay as N increases. Spectral analysis of the error shows that nearly all the error is

concentrated in the highest mode. Hence, although there is no convergence in L2,

there is convergence in the norm (3.9). It is obvious that weak damping of the high

modes in the Chebyshev collocation method will produce good results in L2 even

for discontinuous data [4].
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4. Stability of the Leapfrog Finite-Difference Method. A heuristic argument has

been given [1] that the leapfrog method is unstable when c(x) oscillates sufficiently

rapidly about zero. The example given in [1] applies only to nonlinear instabilities.

For linear problems c(x) cannot oscillate with increasing rapidity as the mesh is

refined.

Given the differential equation

(4.1) u, + c(x)ux = 0,

the leapfrog finite-difference method is given by

(4.2)        u;+x =u;-x- ^c(Xj)(Ujix - u;_x)    (o < j < n).

Equation (4.2) has been solved numerically with time steps chosen so that

(Ar/Ax)max|c(x)| =0.1. In Table 4 the errors are given for the special case (3.1)

with 5 = 1 and the initial conditions (3.3). It is obvious that for t sufficiently small

the method is converging quadratically. If c(x) oscillates more rapidly than in this

example, then more mesh points will be needed to resolve the solution. However,

for sufficiently fine meshes the leapfrog method will still converge. Only when c(x)

oscillates with ever decreasing scale as N —» oo (which can occur only if c depends

on u) is the convergence doubtful. As was verified by Fornberg [1], the leapfrog

method is unstable in time when c(x) changes sign.

Table 4

Relative error in the numerical solution of (3.1) obtained

by the leapfrog method. Here 8 = 1, y = tan- '(.9), and

f(x) is given by (3.3)

.125 0.0071 0.0018 0.00045 0.00014

.250 0.025 0.0067 0.0016 0.00041

1.0 0.47 0.32 0.18 0.094

10.0 5.3 2.7 4.0 2.8

Table 5

Relative error obtained applying the leapfrog method to

(3.1) with the discontinuous initial condition (3.4)
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In Table 5 the errors are listed when the leapfrog method is used with the

discontinuous initial data (3.4). In contrast to the Fourier method, the leapfrog

scheme converges in this case also, though the rate of convergence is only (Ax)1/3.

As before there is a growth in time.

5. Summary. Both analytic and computational evidence show that Fourier

collocation approximation is stable and convergent for the wave equation (1.1)

even when the wave speed c(x) changes sign. If the number of modes is fixed and

one does long term integrations, then there may be a growth in time. If the initial

data is discontinuous then the method is not consistent. Hence, even though the

results are spatially stable, there is no convergence.

Similar results hold for the leapfrog method. Even when coefficients change sign

the leapfrog method is stable and converges. As before there may be a growth in

time. In addition, Kreiss and Öliger [8] have shown that the leapfrog method is

susceptible to nonlinear instabilities.

When the wave speed c(x) changes sign there can be a growth in time with the

Galerkin-Fourier method. Hence, this is not a disadvantage of the collocation

method compared with the Galerkin method.
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