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1. Introduction. In a previous paper [1], the problem was considered of the pure
homogeneous deformation of a unit cube of incompressible neo-Hookean elastic material
by three pairs of equal and opposite forces acting normally on the faces of the cube and
distributed uniformly over them. It was found that, for certain specified values of the
forces, more than one equilibrium state of pure homogeneous deformation can exist.
The stability of each of these states was investigated, with respect to superposed infini-
tesimal pure homogeneous deformations, with the same principal directions as the
equilibrium state. It was found that for certain ranges of values of the applied forces,
more than one equilibrium state of pure homogeneous deformation which is stable in
this sense can exist. Which of these stable states is actually attained in practice will
depend on the order in which the forces are applied.

As a special case, the situation was considered in which all three pairs of forces are
the same and it was found that, even in this case, for certain values of the applied forces,
more than one stable equilibrium state is possible. We denote by , X2, X3 the extension
ratios for the pure homogeneous deformation and by W the strain-energy per unit
volume. Then, for an incompressible neo-Hookean material, W is given by

W = iC(\* + X/ + X32 - 3), (1.1)

where C is a positive constant. Let T be the force applied to each face of the cube and
we take T to be positive if the force is directed outwards from the cube. It was found by
Rivlin [1] that if

T/C < 3(f)173, (1.2)

only one equilibrium state is possible, that for which X, = X2 = X3 = 1 and this state is
stable in the sense described above. If

3Q)1/3 < T/C < 2, (1.3)

then seven equilibrium states are possible, four of them being stable in the sense described
above and three of them being unstable. One of the stable equilibrium states is that for
which Xx = X2 = X3 = 1 and the other three have two principal extension ratios equal
and different from unity. These three states are the same, apart from cyclic permutation
of the roles of \i , X2 and X3 . Also, in each of the three unstable equilibrium states, two
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of the extension ratios are equal and different from unity. Again, they are the same apart
from cyclic permutation of the roles of Ai , X2 and X3 . For T/C > 2, it was found that
there are again seven equilibrium states. However, in this case, three of the states are
stable, in the sense described above, and four are unstable. Each of the stable states
has two extension ratios equal and different from unity, the states being the same, apart
from cyclic permutation of the roles of Xi , X2 and X3 . One of the unstable states is the
state for which \l = X2 = X3 = 1 and the other three are again states for which two
principal extension ratios are equal and different from unity. These three states are the
same, apart from cyclic permutation of the roles of Xj , X2 and X3 .

Hill [2] discussed the state Xj = X2 = X3 = 1 in the case of a neo-Hookean material
and found that the state is unstable when T/C > 2 and stable when 0 < T/C < 2, in
agreement with Rivlin [1].* Hill's stability criterion is, however, stronger than that of
Rivlin, since he required stability with respect to arbitrary infinitesimal superposed
deformations. Hill further indicated that the analysis can also be applied in the case of
a Mooney material, with an appropriate change in the upper stability limit on T. Green
and Adkins [3] obtained similar results for the case of a general incompressible isotropic
elastic material. Beatty [4] drew particular attention to the instability of the undeformed
state when T < 0, and pointed out that this arises essentially from instability with respect
to rigid-body rotations, and accordingly could never have been discovered by using the
weaker stability criterion of Rivlin. This result can be read off quite easily from the
results of Hill and Green and Adkins.

In the present paper, we discuss the stability of all the equilibrium states which can
result from the application, normally to the faces of the cube, of three similar pairs of
equal and opposite, uniformly distributed forces T. The cube is assumed to consist of
an incompressible neo-Hookean material. The stability criterion used here is that used
in [2, 3, 4]. It has already been pointed out that this is stronger than the criterion used
in [1], It is, however, found that the stability limits remain the same as those found in [1],
with the exception of the instability already mentioned when Xt = X2 = X3 and T < 0.

2. The stability criterion. We consider the deformation of a body of incompressible
elastic material in which a particle initially at XA , in the rectangular cartesian coordinate
system x, moves to x{ . The deformation is described by the dependence of x,- on XA thus:

x,- = x,(XA). (2.1)

Since the material is incompressible, the deformation gradients xiiA must satisfy the
relation

\Xi.A\ = 1. (2.2)

We now suppose that the deformation (2.1) results from the superposition of an
arbitrary deformation on a homogeneous deformation in which a particle initially at XA
moves to ciAXA . We accordingly rewrite (2.1) as

Xi = ciAXA + u,(XA), (2.3)

* Hill [2] noted an apparent conflict of his result, that the undeformed state is unstable when T/C > 2,
with that of Rivlin [1], This apparent conflict probably results from an error in the abstract of [1], which
does not correctly reflect the conclusions in the body of the text, as was pointed out by Beatty [4],
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where ciA are constants and is the displacement associated with the arbitrary super-
posed deformation.

Let nAi be the Piola-Kirchoff stress associated with the state of homogeneous
deformation. We define a functional $ of the deformation gradient field Xi,A(XB) by

$ = f [W(XiiA) — n.4iXiiA\ dV, (2.4)Jy

where W is the strain-energy per unit volume and V is the domain occupied by the body
in the undeformed state. The homogeneous equilibrium states corresponding to a
specified dead-loading condition, i.e. to specified values of nAi , are those for which $
has stationary values with respect to all possible infinitesimal values of the deformation
gradients ui:A compatible with the constraint (2.1). The equilibrium states are accord-
ingly given by

5$ = 0 (2.5)

for all allowable infinitesimal ui<A .
An equilibrium state is stable if the corresponding stationary value of $ is a minimum,

i.e. if

52$ > 0, (2.6)

for all allowable infinitesimal uiiA . If this condition is violated the equilibrium state is
unstable. (We neglect the case of neutral stability in which 52<E> may be zero for some
allowable values of w, A , but is never negative.) The conditions (2.6) and (2.7) for stable
equilibrium express the requirement that the work done by the specified forces, in any
allowable infinitesimal deformation from a stable equilibrium state, is greater than the
increase in strain-energy associated with this deformation.

Following Beatty [4], we can relax the constraint (2.2) onij^ by using the method of
undetermined multipliers. Accordingly, we replace the expression (2.4) for $ by

$ = f \W(xt.A) - nAiXi,A - vi\xi,A I - 1)] dV, (2.7)
Jr

where p is an undetermined multiplier which may depend on XA , but is independent
of Xi,A . We note that, for infinitesimal ui:A ,

1) = BcCj B^kcUi ,A = 0. (2.8)

Thus, (2.7) yields, in agreement with Beatty [4],

f „ i 15$ — J Ai iVtiiktABCCjliCkC yii,/. dV (2.9)

and

where

= i r r d2w
2 JV L^Ciyl dCjS & - o / ~ VtiiklABcCkC Ui,AUj,B dV, (2.10)

dW = dW
dciA dXi,A

d W d W
Ui-O , dciA dcjB dXi,A dXj,B (2.11)
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From (2.5) and (2.9) we obtain the well-known formula for the Piola-Kirchoff
stress in an incompressible material,

ILu = (dW/dciA) hVeiikeA ncCjBckc • (2.12)

For an incompressible neo-Hookean material, the strain-energy W is given by

W = tC(Xi.AxllB - 3), (2.13)

where C is a positive constant. Eq. (2.12) then becomes

n4, = CciA hVtiiktABCCj B^kC i (2.14)

and from (2.10) we obtain

& $ = y J (C5,y Sab VeHk^ABcCkc)Ui ,AUj, b (IV. (2.15)

3. Pure homogeneous deformation. We now suppose that a state of pure homo-
geneous deformation is produced in a unit cube by three pairs of equal and opposite
forces T applied to the faces of the cube. The Piola-Kirchoff stress in the cube is then
given by

n,A = TSiA . (3.1)

Suppose the principal extension ratios for the pure homogeneous deformation are
Xi , X2 , X3 and the principal directions arc parallel to the axes of the reference system x.
The incompressibility condition (2.2) then yields

XiX2X3 = 1. (3.2)

From (2.14) and (3.1) we obtain, with (3.2),

T = C\, — p/K , T = CX2 - p/X2 , T = CX3 - p/\3 . (3.3)

These equations yield the following results:

either X2 = X3 or T/C = X2 + X3 , (3.4)

either X3 = or T/C = X3 + , (3.5)

either Xi = X2 or T/C = X] + X2 . (3.6)

Eqs. (3.4), (3.5), (3.6) and (3.2) yield the following possible solutions corresponding to
a specified value of T:

Xi = X2 = X, = 1, (3.7)

X2 = X3 and T/C = X, + X2 , (3.8)

X3 = X, and T/C = X2 + X3 , (3.9)

X, = X2 and T/C = X3 + X! . (3.10)

(We note that if the second of the two alternatives are taken in each of the equations
(3.4), (3.5) and (3.6), we obtain the solution (3.7).)
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In the case (3.10), we obtain from (3.2) the equation

F(\3) = 0, (3.11)

where

F(X.O = X3(| - X3) - 1. (3.12)

The cases (3.8) and (3.9) yield similar equations with X3 replaced by Xi and X2 respec-
tively. We now determine the values of T/C for which the cubic equation (3.11) has
one or three real roots for X3 .

The stationary values of F(\3) occur when X3 = \T/C and X3 = T/C. We note that

F<0)--1, (3,13)

F(T/C) = -1, f(oo) = CO, F(- oo) = - 00 .

Accordingly, if T/C > 0, Eq. (3.11) has three positive solutions provided that T/C >
3(|)1/3 and one positive solution if T/C < 3(j)I/3. If the three positive solutions are
denoted by X3(1), X3<2>, X3<3>, they must satisfy the inequalities

0 < X3U' < |T/C < X3(2) < T/C < X3<3> < co. (3.14)

If only one positive solution exists, it must satisfy the inequality

X3 > T/C. (3.15)
We discard this solution and the solution X3<3) in (3.14) since, from (3.10)2 , they lead
to X, < 0.

Turning now to the case when T/C < 0, we note that there is only one positive
solution of (3.11) for X3. For this solution T/C — \3 < 0 and hence, from (3.10)2, < 0.
We accordingly discard it.

Summarizing the conclusions of this section, we see that
(a) if T/C < 0, only one equilibrium state is possible, that for which Xi = X2 =

X3 = 1;
(b) if T/C > 0, seven equilibrium states are possible and these are characterized by

extension ratios satisfying the following conditions:
(i) Xi = X2 — X3 = 1,

(ii) Xi = X2 , 0 < X3 < \T/C,
(iii) X2 = X3 , 0 < X, < \T/C,
(iv) X3 = Xi , 0 < X2 < \T/C,
(v) Xi = X2 , T/C > X3 > \T/C,

(vi) X2 = X3 , T/C > X, > \T/C,
(vii) X3 = X, , T/C > X2 > \T/C.
In the next section, we investigate the stability of these states with respect to super-

posed infinitesimal deformations.
In the previous paper [1], the results obtained in this section were derived as a special

case of the more general problem, in which the three pairs of forces are not necessarily
the same. In the present paper, we attain a considerable simplification of the argument
leading to these results by introducing ab initio the condition that the three pairs of
forces arc the same.
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4. Stability of the states of pure homogeneous deformation. We have seen in Sec. 2
that a homogeneous state of deformation is stable, in an incompressible neo-Hookean
material, with respect to arbitrary superposed infinitesimal deformations, if

52$ > 0, (4.1)

where <E> is given by (2.15). Using (3.3) to substitute for p in (2.15), and introducing

Cn = } C22 = X2 , C33 = X3 , Ckc = 0 {k 9^ C), (4.2)

we obtain

= 2 C J {(U'.lT + (M2.2)2 + (Ws.s)2

- 2X12(X1 — T/C)u2,2u3,3

- 2X22(X2 — T/C)u3,3u1:1

- 2X32(X3 - T/C)U1AU2,2

+ [(w2,3)2 + (w.3.2)2 + 2X^(X! — T / C)u2,3u3,2\

+ [(u3,i)2 + (mi,3)2 + 2X2"(X2 — T/C)u3iiul3]

+ [(Ml,2)2 + (M2.02 + 2X32(X3 - T/Ou^ut,,]} dV. (4.3)

In the case when Xt = X2 = X3 = 1, Eq. (4.3) can be rewritten as

S% = 2 ° L {"I1 ~~ + (2 ~

~^J{UB,A Ua,b)(Ub,A , B) J dV. (4.4)

The constraint (2.8) on u{.A due to the incompressibility of the material now takes the
form

uA,A = 0. (4.5)

It follows from (4.4) and (4.1), that the condition for stability is

j (^)UB 'AUB ,A ^1 11b,a)(Ub,A ua , b)^ d V > 0, (4.6)

for all uB,A satisfying (4.5). This condition is not satisfied if T/C > 2 and accordingly,
for such values of T, the state Xj = X2 = X3 = 1 is unstable. If 0 < T/C < 2, the condi-
tion is satisfied and accordingly the state is stable with respect to arbitrary superposed
infinitesimal deformations. If T/C < 0, the condition (4.6) is not satisfied and accordingly,
for negative values of T, the state XL = X2 = X3 = 1 is unstable, as is evident from [2, 3, 4],

We now consider the cases when (3.10) applies, so that X3 is given by (3.11). By using
(3.10) and (3.2), we obtain, in this case,

X.2(| - X.) = X22(| - x2) = 1. (4.7)

Introducing (4.7) into (4.3), we obtain, with (3.10) and (3.2),
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S2$ = ± C2 C J {(Wi.i "t~ U2,2 W3,3) 2(1 X1X3 )uulu2.

~t~ (W2l3 113,2) "t" (W3,i Wii3) X3 X ] (u I 2 1/-2,1)

+ XiX3(X! — X3)[(m,i2)2 + (m2,i)2]1 clV. (4.8)

We note that for the state (b(ii)) in Sec. 3, X3 < \T/C and accordingly, from (3.10)2 ,
Xi > § T/C, so that X1 > 2X3. In this case the coefficients in the integrand of (4.8) of each
of the squares involving ui%A (i ^ A) are positive. Thus, for this case, if the deformation
is stable with respect to superposed infinitesimal pure homogeneous deformations having
the same principal directions as the basic pure homogeneous deformation, it will be
stable with respect to an arbitrary superposed infinitesimal homogeneous deformation.

We shall show, in accord with the result of Rivlin [1], that the state (b(ii)) is in fact
stable with respect to superposed infinitesimal pure homogeneous deformations having
the same principal directions as the basic pure homogeneous deformation. To do this
we take uiiA = 0 (i ^ A) in (4.8) and investigate the sign of the resulting expression
for 52$. We obtain, for 52<£,

523> = | C J {(«!,! + u2,2 + u3,3)~ - 2(1 — X1X32)wltlM2,2} dV. (4.9)

For stability, 52$ > 0 for all uui , w2,2, u3,3 satisfying the relation (2.8), which may now
be rewritten as

T- (^1,1 ~f" ̂ 2,2) ~t~ ^3,3 = 0. (4.10)
Ai A3

Using (4.10) to eliminate u3,3 from (4.9), we obtain, with (4.10)i ,

52$ = I ° Iv Xs(Xl ~ X3)!(Xl _ + (u2'2)2] _ 2X3M.,.W2.2} dV. (4.11)

The condition 52$ > 0 is satisfied for arbitrary choice of ultl and w2>2 , if and only if
Xi > 2X3 . It is therefore satisfied for the state (b(ii)), which is accordingly stable with
respect to all superposed infinitesimal homogeneous deformations. The condition Xj > 2X3
is violated for the state of deformation (b(v)), which is therefore unstable.

Precisely analogous considerations apply to the states (b(iii)) and (b(iv)), which are
accordingly stable with respect to all superposed infinitesimal homogeneous deformations,
and to states (b(vi)) and (b(vii)), which are unstable.
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