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Chapter 1

Introduction

Queueing networks constitute a large family of models in a variety of settings,
involving “jobs” or “customers” that wait in queues until being served. Once its
service is completed, a job moves to the next prescribed queue, where it remains
until being served. This procedure continues until the job leaves the network;
jobs also enter the network according to some assigned rule.

In these lectures, we will study the evolution of such networks and address
the question: When is a network stable? That is, when is the underlying Markov
process of the queueing network positive Harris recurrent? When the state space
is countable and all states communicate, this is equivalent to the Markov process
being positive recurrent. An important theme, in these lectures, is the applica-
tion of fluid models, which may be thought of as being, in a general sense,
dynamical systems that are associated with the networks.

The goal of this chapter is to provide a quick introduction to queueing net-
works. We will provide basic vocabulary and attempt to explain some of the
concepts that will motivate later chapters. The chapter is organized as follows.
In Section 1.1, we discuss the M/M/1 queue, which is the “simplest” queueing
network. It consists of a single queue, where jobs enter according to a Pois-
son process and have exponentially distributed service times. The problem of
stability is not difficult to resolve in this setting.

Using M/M/1 queues as motivation, we proceed to more general queueing
networks in Section 1.2. We introduce many of the basic concepts of queueing
networks, such as the discipline (or policy) of a network determining which jobs
are served first, and the traffic intensity ρ of a network, which provides a natural
condition for deciding its stability. In Section 1.3, we provide a preliminary
description of fluid models, and how they can be applied to provide conditions
for the stability of queueing networks.

In Section 1.4, we summarize the topics we will cover in the remaining chap-
ters. These include the product representation of the stationary distributions
of certain classical queueing networks in Chapter 2, and examples of unstable
queueing networks in Chapter 3. Chapters 4 and 5 introduce fluid models and
apply them to obtain criteria for the stability of queueing networks.
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1.1. The M/M/1 queue

The M/M/1 queue, or simple queue, is the most basic example of a queueing
network. It is familiar to most probabilists and is simple to analyze. We therefore
begin with a summary of some of its basic properties to motivate more general
networks.

The setup consists of a server at a workstation, and “jobs” (or “customers”)
who line up at the server until they are served, one by one. After service of a
job is completed, it leaves the system. The jobs are assumed to arrive at the
station according to a Poisson process with intensity 1; equivalently, the inter-
arrival times of succeeding jobs are given by independent rate -1 exponentially
distributed random variables. The service times of jobs are given by indepen-
dent rate-µ exponentially distributed random variables, with µ > 0; the mean
service time of jobs is therefore m = 1/µ. We are interested here in the behavior
of Z(t), the number of jobs in the queue at time t, including the job currently
being served (see Figure 1.1).

The process Z(·) can be interpreted in several ways. Because of the inde-
pendent exponentially distributed interarrival and service times, Z(·) defines
a Markov process, with states 0, 1, 2, . . . . (M/M/1 stands for Markov input
and Markov output, with one server.) It is also a birth and death process on
{0, 1, 2, . . .}, with birth rate 1 and death rate µ. Because of the latter interpre-
tation, it is easy to compute the stationary (or invariant) probability measure
πm of Z(·) when it exists, since the process will be reversible. Such a measure
satisfies

πm(n+ 1) = mπm(n) for n = 0, 1, 2, . . . ,

since it is constant, over time, on the intervals [0, n] and [n + 1,∞). It follows
that when m < 1, πm is geometrically distributed, with

πm(n) = (1 −m)mn , n = 0, 1, 2, . . . . (1.1)

All states clearly communicate with one another, and the process Z(·) is positive
recurrent. The mean of πm ism(1−m)−1 , which blows up asm ↑ 1. Whenm ≥ 1,
no stationary probability measure exists for Z(·). Using standard reasoning, one
can show that Z(·) is null recurrent when m = 1 and is transient when m > 1.

The behavior of Z(·) that was observed in the last paragraph provides the
basic motivation for these lectures, in the context of the more general queueing

Fig. 1.1. Jobs enter the system at rate 1 and depart at rate µ. There are currently 2 jobs in
the queue.
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networks which will be introduced in the next section. We will investigate when
the Markov process corresponding to a queueing network is stable, i.e., is positive
Harris recurrent. As mentioned earlier, this is equivalent to positive recurrence
when the state space is countable and all states communicate.

For M/M/1 queues, we explicitly constructed a stationary probability mea-
sure to demonstrate positive recurrence of the Markov process. Typically, how-
ever, such a measure will not be explicitly computable, since it will not be
reversible. This, in particular, necessitates a new, more qualitative, approach
for showing positive recurrence. We will present such an approach in Chapter 4.

1.2. Basic concepts of queueing networks

The M/M/1 queue admits natural generalizations in a number of directions. It
is unnecessary to assume that the interarrival and service distributions are expo-
nential. For general distributions, one employs the notation G/G/1; or M/G/1
or G/M/1, if one of the distributions is exponential. (To emphasize the inde-
pendence of the corresponding random variables, one often uses the notation
GI instead of G.)

The single queue can be extended to a finite system of queues, or a queueing
network (for short, network), where jobs, upon leaving a queue, line up at an-
other queue, or station, or leave the system. The queueing network in Figure 1.2
is also a reentrant line, since all jobs follow a fixed route.

Depending on a job’s previous history, one may wish to prescribe different
service distributions at its current station or different routing to the next station.
This is done by assigning one or more classes, or buffers, to each station. Except
when stated otherwise, we label stations by j = 1, . . . , J and classes by k =
1, . . . , K; we use C(j) to denote the set of classes belonging to station j and
s(k) to denote the station to which class k belongs. In Figure 1.3, there are 3
stations and 5 classes. Classes are labelled here in the order they occur along
the route, with C(1) = {1, 5}, C(2) = {2, 4}, and C(3) = {3}.

Other examples of queueing networks are given in Figures 1.4 and 1.5. Fig-
ure 1.4 depicts a network with 2 stations, each possessing 2 classes. The network
is not a reentrant line but still exhibits deterministic routing, since each job en-
tering the network at a given class follows a fixed route. When the individual

j=1 j=2 j=3

Fig. 1.2. A reentrant line with 3 stations.
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j=3j=2j=1

Fig. 1.3. A reentrant line with 3 stations and 5 classes. The stations are labelled by j = 1, 2,3;
the classes are labelled by k = 1, . . . 5, in the order they occur along the route.

j = 1 j = 2

Fig. 1.4. A queueing network having 3 routes, with 2 stations and 4 classes.

routes are longer, it is sometimes more convenient to replace the above labelling
of classes by (i, k), where i gives the route that is followed and k the order of
the class along the route.

Figure 1.5 depicts a network with 2 stations and 3 classes. The routing at
class 2 is random, with each job served there having probability 0.4 of being
sent to class 1 and probability 0.6 of being set to class 3. For queueing networks
in general, we will assume that the interarrival times, service times, and routing
of jobs at each class are given by sequences of i.i.d. random variables that are
mutually independent (but whose distributions may depend on the class).

Queueing networks occur naturally in a wide variety of settings. “Jobs” can
be interpreted as products of some sort of complex manufacturing process with
multiple steps, as tasks that need to be performed by a computer or communi-
cation system, or as people moving about through a bureaucratic maze. Such
networks can be quite complicated. A portion of the procedure in the manufac-
ture of a semiconductor wafer is depicted by the reentrant line in Figure 1.6.
Another simplified example, with classes emphasized, is given in Figure 1.7.
Typically, such procedures can require hundreds of steps.
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j = 2j = 1

k = 1

k = 2 

k=3

0.4

0.6

Fig. 1.5. A queueing network with 2 stations and 3 classes. The random routing at class 2
is labelled with the probability each route is taken.

Fig. 1.6. Part of the procedure in the manufacture of a semiconductor wafer. The procedure
starts at the top and ends at the bottom. (Example courtesy of P. R. Kumar.)
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Fig. 1.7. Part of the procedure in the manufacture of another semiconductor wafer. (Example
courtesy of J. G. Dai.)

We will say that a queueing network is multiclass when at least one sta-
tion has more than one class; otherwise, the network is single class. The term
Jackson network is frequently used for a single class network with exponentially
distributed interarrival and service times, and generalized Jackson network is
used for a single class network with arbitrary distributions. (The networks in
Figures 1.3–1.7 are all multiclass; the networks in Figures 1.1–1.2 are single
class.) Unless otherwise specified, it will be assumed that there is a single server
at each station j. This server will be assumed to be non-idling (or work conserv-
ing), that is, it remains busy as long as there are jobs present at any k ∈ C(j).
Stations are assumed to have infinite capacity, with jobs never being turned
away. (That is, there is no limit to the allowed length of queues.)

As already indicated, the interarrival times, service times, and routing of
jobs are given by sequences of independent random variables. Although their
specific distributions will be relevant for some matters, their means will be of
much greater importance. We therefore introduce here the following notation
and terminology for the means; systematic notation for the random variables
will be introduced in Chapter 4.

We denote by αk the rate at which jobs arrive at a class k from outside
the network. When k ∈ A, the subset of classes where external arrivals are
allowed, αk is the reciprocal of the corresponding mean interarrival time; when
k 6∈ A, we set αk = 0. The vector α = {αk, k = 1, . . . , K} is referred to
as the external arrival rate. (Throughout the lectures, we interpret vectors as
column vectors unless stated otherwise.) We denote by mk, mk > 0, the mean
service time at class k, and by M the diagonal matrix with mk, k = 1, . . . , K,
as its entries; we set µk = 1/mk, which is the service rate. We also denote
by P = {Pk,ℓ, k, ℓ = 1, . . . , K} the mean transition matrix (or mean routing
matrix), where Pk,ℓ is the probability a job departing from class k goes to
class ℓ. (In Figure 1.5, P2,1 = 0.4 and P2,3 = 0.6.)
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In these lectures, we will be interested in open queueing networks, that is,
those networks for which the matrix

Q
def
= (I − P T )−1 = I + P T + (P T )2 + · · · (1.2)

is finite. (“ T ” denotes the transpose.) This means that jobs at any class are
capable of ultimately leaving the network. Closed queueing networks, where
neither arrivals to, nor departures from, the network are permitted, are not
discussed here, although there are certain similarities between the two cases.

Disciplines for multiclass queueing networks

We have so far neglected an important aspect of multiclass queueing networks.
Namely, when more than one job is present at a station, what determines the
order in which jobs are served? There are numerous possibilities. As we will
see in these lectures, the choice of the service rule, or discipline (also known as
policy), can have a major impact on the evolution of the queueing network.

Perhaps the most natural discipline is first-in, first-out (FIFO), where the
first job to arrive at a station (or “oldest” job) receives all of the service, irre-
spective of its class. (If the job later returns to the station, it starts over again
as the “youngest” job. The jobs originally at a class are assigned some arbitrary
order.) Another widely used discipline is processor sharing (PS), where the ser-
vice at a station is simultaneously equally divided between all jobs presently
there. PS can be thought of as a limiting round robin discipline, where a server
alternates among the jobs currently present at the station, dispensing a fixed
small amount of service until it moves on to the next job.

The FIFO and PS disciplines are egalitarian in the sense that no job, because
of its class, is favored over another. The opposite is the case for static buffer
priority (SBP) disciplines, where classes are assigned a strict ranking, and jobs
of higher ranked (or priority) classes are always served before jobs of lower
ranked classes, irrespective of when they arrived at the station. Within a class,
the jobs are served in the order of their arrival there. The disciplines are called
preemptive resume, or more simply, preemptive, if arriving higher ranked jobs
interrupt lower ranked jobs currently in service; when the service of such higher
ranked jobs has been completed, service of lower ranked jobs continues where it
left off. If the service of lower ranked jobs is not interrupted, then the discipline
is nonpreemptive.

For reentrant lines, two natural SBP disciplines are first-buffer-first-served
(FBFS) and last-buffer-first-served (LBFS). For FBFS, jobs at earlier classes
along the route have priority over later classes. For example, jobs in class 1, in
the network given in Figure 1.3, have priority over those in class 5, and jobs in
class 2 have priority over those in class 4. For LBFS, the priority is reversed,
with jobs at later classes along the route having priority over earlier classes.

In these lectures, we will concentrate on head-of-the-line (HL) disciplines,
where only the first job in each class of a station may receive service. (This
property is frequently referred to as FIFO within a class.) FIFO and SBP disci-
plines are HL, but PS is not. The single class networks we consider will always
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be assumed to be HL unless explicitly stated otherwise. A major simplifying
feature of HL disciplines is that the total amount of “work” (or “effort”) al-
ready devoted to partially served jobs does not build up. Since large numbers of
jobs will therefore tend not to complete service at a station at close times, this
avoids “bursts” of jobs from being suddenly routed elsewhere in the network.

Another non-HL discipline is last-in, first-out (LIFO), where the last job
to arrive at a station is served first. Other plausible non-HL disciplines from
a somewhat different setting are first-in-system, first-out (FISFO) and last-in-
system, first-out (LISFO). FISFO is the same as FIFO, except that the first job
to enter the queueing network (rather than the station) has priority over other
jobs; the discipline may be preemptive or nonpreemptive. LISFO gives priority
to the last job to enter the network.

Throughout these lectures, the term queueing network will indicate that a
discipline, such as FIFO or FBFS, has already been assigned to the system.
In much of the literature, the discipline is specified afterwards. This linguistic
difference does not affect the theory, of course.

For the M/M/1 queue in the previous section, the interarrival and service
times were assumed to be exponentially distributed. As a consequence, the pro-
cess Z(·) counting the number of jobs is Markov. For queueing networks with
exponentially distributed interarrival and service times, the situation is often
analogous. For instance, for preemptive SBP disciplines, the vector valued pro-
cess Z(t) = {Zk(t), k = 1, . . . , K} counting the number of jobs at each class is
Markov; the same is true for PS. For the FIFO and LIFO disciplines, the process
will be Markov if one appends additional information giving the order in which
each job entered the class. In all of these cases, the state space is countable,
so one can apply standard Markov chain theory. We will denote by X(·) the
corresponding Markov processes.

The situation becomes more complicated when the interarrival and service
times are not exponentially distributed, since the residual interarrival and ser-
vice times need to be appended to the state in order for the process to be
Markov. The resulting state space is uncountable, and so a more general theory,
involving Harris recurrence, is required for the corresponding Markov process.
We will give a careful construction of such processes and will summarize the
needed results on positive Harris recurrence at the beginning of Chapter 4. We
avoid this issue until then, since the material in Chapters 2 and 3 typically
does not involve Markov processes on an uncountable state space. (The sole
exception is the uncountable state space extension for symmetric processes at
the end of Section 2.4.) In a first reading of the lectures, not too much will
be lost by assuming the interarrival and service times are exponentially dis-
tributed.

Traffic intensity, criticality, and stability

The mean quantities α,M , and P introduced earlier perform an important
role in determining the long-time behavior of a queueing network. To provide
motivation, we first consider reentrant lines.
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The (long term) rate at which jobs enter a reentrant line is α1, and the mean
time required to serve a job over all of its visits to a station j is

∑

k∈C(j)mk.
So, the rate at which future “work” for the station j enters the network is

ρj = α1

∑

k∈C(j)

mk. (1.3)

We recall that a queueing network is defined to be stable when its underlying
Markov process is positive Harris recurrent. When the state space is countable
and all states communicate, this is equivalent to the Markov process being
positive recurrent. It is intuitively clear that, in order for a reentrant line to be
stable, ρj ≤ 1, for all j, is necessary. Otherwise, by the law of large numbers,
the work in the system, corresponding to j, will increase linearly to infinity as
t → ∞, and so the same should be true for the total number of jobs in the
system. (When the state space is countable, it follows from standard Markov
chain theory that a stable network must be empty a fixed fraction of the time,
as t → ∞, from which it follows that, in fact, ρj < 1 must hold for all j.)

A natural condition for stability (assuming all states communicate), is that
ρj < 1 for all j. This turns out, in fact, not to be sufficient for multiclass
queueing networks, as we will see in Chapter 3. Not surprisingly, the much
stronger condition

∑

j

ρj < 1 (1.4)

suffices for stability, since whenever the network is not empty, the total work
in the network tends to decrease faster than it increases. (This will follow from
Proposition 4.5.)

The situation is analogous for queueing networks with general routing, after
the correct quantities have been introduced. We set

λ = Qα, (1.5)

and refer to the vector λ as the total arrival rate. (Recall that vectors are to be
interpreted as column vectors.) Its components λk, k = 1, . . . , K, are the rates
at which jobs enter the K classes; they each equal α1 for reentrant lines. The
traffic equations

λℓ = αℓ +
∑

k

λkPk,ℓ, (1.6)

or, in vector form, λ = α+P Tλ, are equivalent to (1.5), and are useful in certain
situations. Employing m and λ, we define the traffic intensity ρj at station j to
be

ρj =
∑

k∈C(j)

mkλk. (1.7)

(ρj is also known as the nominal load.) The traffic intensity is the rate at which
work for the station j enters the network, and reduces to (1.3) for reentrant
lines. We write ρ for the corresponding traffic intensity vector.
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We continue the analogy with reentrant lines, and say that a station j is
subcritical if ρj < 1, critical if ρj = 1, and supercritical if ρj > 1. When
all stations of a network are either subcritical or are critical, we refer to the
network as being subcritical or critical. We will sometimes abbreviate these
conditions by writing ρ < e and ρ = e, where e = (1, . . . , 1)T ; we similarly write
ρ ≤ e,when ρj ≤ 1 for each j. When at least one station is supercritical, we
refer to the network as being supercritical. As in the reentrant line setting, a
supercritical queueing network will not be stable, and the number of jobs in the
network will increase linearly as t → ∞. This is a bit tedious to show directly;
it will follow quickly using fluid limits in Proposition 5.21. Of course, since a
reentrant line with ρ < e need not be stable, the same is the case for queueing
networks with general routing. We will show in Chapters 4 and 5, though, that
the condition ρ < e is sufficient for the stability of queueing networks under
various disciplines. Also, (1.4) suffices for stability irrespective of the discipline;
a variant of this is shown in Example 1 at the end of Section 4.4.

In Chapters 4 and 5, we will also establish criteria for when a queueing
network is e-stable. By this, we will mean that the underlying Markov process
is ergodic, i.e., it possesses a stationary distribution π to which the distribution
at time t converges in total variation norm as t→ ∞, irrespective of the initial
state. When the state space is countable, this is equivalent to the probabilities
converging to π(x) at each point x. As we will see, results on stability can be
modified to results on e-stability with little additional work.

We have so far not used the term “unstable”. Somewhat different definitions
exist in the literature; in each case, they mean more than just “not stable”. For
us, a queueing network will be unstable if, for some initial state, the number
of jobs in the network will, with positive probability, go to infinity as t → ∞.
(When the network has only a finite number of states with fewer than a given
number of jobs, and all states communicate with one another, this is equivalent
to saying that for each initial state, the number of jobs in the network goes to
infinity almost surely as t → ∞.) According to the paragraph before the last, a
supercritical queueing network will be unstable; in fact, the number of jobs in
the network grows linearly in time. This will typically be the case for unstable
networks, such as those given in Chapter 3.

1.3. Queueing network equations and fluid models

One of the main themes in these lectures will be the application of fluid models
to study the stability of queueing networks. Fluid models will be introduced and
studied in detail in Chapter 4; they will then by applied to specific disciplines
in Chapter 5. We provide here some of the basic motivation for fluid models.

In the last section, we gave various examples of queueing networks. Such sys-
tems are frequently complicated. They can be interpreted as Markov processes,
but to derive specific results, one needs a means of expressing the properties
of the specific queueing network. Queueing network equations provide an ana-
lytic formulation for this. After deriving these equations and taking appropriate
limits, one obtains the corresponding fluid models.
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Queueing network equations tie together random vectors, such as A(t), D(t),
T (t), and Z(t), that describe the evolution of a queueing network. The indi-
vidual coordinates of these K dimensional vectors correspond, respectively, to
the cumulative number of arrivals Ak(t) and departures Dk(t) at a class k up
to time t, the cumulative time Tk(t) spent serving this class up to time t, and
the number of jobs Zk(t) at this class at time t; we introduced Z(t) in the last
section. Examples of queueing network equations are

A(t) = E(t) +
∑

k

Φk(Dk(t)), (1.8)

Z(t) = Z(0) + A(t) −D(t), (1.9)

Dk(t) = Sk(Tk(t)), k = 1, . . . , K. (1.10)

We are employing here the following terminology. The vector E(t) is the
cumulative number of jobs arriving by time t at each class from outside the
network (i.e., external arrivals). When the interarrival times are exponentially
distributed, E(·) will be a Poisson process. The vector Φk(dk) is the number of
the first dk departures from class k that are routed to each of the K classes;
Sk(tk) is the cumulative number of departures from class k after tk units of
service there. We will denote by Φ and S the matrix and vector corresponding
to these quantities.

The quantities E(·), S(·), and Φ(·) should be thought of as random, but
known input into the system, from which the evolution of A(·), D(·), T (·), and
Z(·) will be determined via (1.8)–(1.10) and other equations. The middle equa-
tion is easiest to read, and just says that the number of jobs at time t is equal
to the original number, plus arrivals, and minus departures. The first equation
says the total number of arrivals is equal to the number of external arrivals plus
the number of arrivals from other classes; the last equation gives the number of
departures at a class as a function of the time spent serving jobs there. We note
that the first two equations hold irrespective of the discipline, whereas the last
equation requires the discipline to be HL.

Other choices of variables, in addition to A(·), D(·), T (·) and Z(·), are fre-
quently made. We will include other variables, such as the immediate workload
W (·), in our detailed treatment in Section 4.3. Often, different formulations
of the queueing network equations are equivalent, with the exact format being
chosen for convenience. One can, for example, eliminate A(t) and D(t) in (1.8)–
(1.10), and instead employ the single equation

Z(t) = Z(0) + E(t) +
∑

k

Φk(Sk(Tk(t))) − S(T (t)), (1.11)

if one is just interested in the evolution of Z(t) (which is most often the case).
Note that, for multiclass networks, neither (1.8)–(1.10) nor (1.11) supplies enough
information to solve for the unknown variables, since the discipline has not been
specified, and so T (·) has not been uniquely determined. To specify the disci-
pline, an additional equation (or equations) is required. For single class networks,
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this complication is not present. As an elementary example, note that for the
M/M/1 queue, (1.11) reduces to the simple scalar equation

Z(t) = Z(0) +E(t) − S

(
∫ t

0

1 {Z(s) > 0} ds

)

, (1.12)

since departing jobs are not rerouted into the queue and the network is non-
idling.

Fluid model equations are the deterministic analog of queueing network equa-
tions, with one replacing the random quantities E(·), S(·), and Φ(·) by their
corresponding means. The fluid model equations corresponding to (1.8)–(1.10)
are then

A(t) = αt+ P TD(t), (1.13)

Z(t) = Z(0) +A(t) −D(t), (1.14)

Dk(t) = µkTk(t), k = 1, . . . , K, (1.15)

where α, P , and µk were defined in the previous section. By employing the
matrix M , one can also write (1.15) as

D(t) = M−1T (t). (1.15′)

Similarly, the fluid model equation corresponding to (1.11) is

Z(t) = Z(0) + αt+ (P T − I)M−1T (t). (1.16)

For the M/M/1 queue, this reduces to the scalar equation

Z(t) = Z(0) + αt− µ

∫ t

0

1 {Z(s) > 0} ds. (1.17)

Fluid model equations can be thought of as belonging to a fluid network which
is the deterministic equivalent of the given queueing network. Jobs are replaced
by continuous fluid mass (or “job mass”), which follows the same routing as
before. The constant rate at which such mass enters the network is given by the
vector α. The rate at which mass is served for a class is µk and the service time
per unit mass is mk = 1/µk. A set of fluid model equations, as in (1.13)–(1.15),
is referred to collectively as a fluid model.

The solutions of fluid models are frequently much easier to analyze than are
the corresponding queueing network equations. As we will see in Chapter 4,
fluid model equations can be derived from the corresponding queueing network
equations by taking limits of Z(·) and the other quantities after hydrodynamic
scaling. (That is, “law of large numbers” scaling of the form Z(st)/s as s→ ∞.)
Fluid models will provide a valuable tool for demonstrating the stability of
queueing networks, as we will see in Chapters 4 and 5. Fluid models are also an
important tool for studying heavy traffic limits, which lie outside the scope of
these lectures.
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To analyze the stability of a queueing network, one introduces the following
notion of stability for a fluid model. A fluid model is said to be stable if there
exists an N > 0, so that for any solution of the fluid model equations, its Z(·)
component satisfies

Z(t) = 0 for t ≥ N |Z(0)|. (1.18)

(Here, | · | denotes the ℓ1 norm.) We will show in Chapter 4 that, under certain
conditions on the interarrival and service times, a queueing network will be
stable if its fluid model is stable.

In the special case of the fluid model equation (1.17) corresponding to the
M/M/1 queue, it is easy to explicitly solve for Z(·). For µ > α, the solution
drifts linearly to 0 at rate µ− α, after which it remains there, and so

Z(t) = 0 for t ≥ Z(0)/(µ− α), (1.19)

which is a special case of (1.18). This behavior of the solution of equation (1.17)
corresponding to a subcritical M/M/1 queue is not surprising, since the solution
Z(·) of (1.12) possesses the same negative drift α− µ when Z(t) > 0. For more
general networks, one typically constructs a Lyapunov function with respect to
which the fluid model solution Z(·) of (1.16) exhibits a uniformly negative drift
until hitting 0.

Despite the utility of fluid models, one needs to exercise some caution in
their application. In particular, a fluid model need not have a unique solution
for a given initial condition, since solutions might bifurcate. As we will see in
Section 4.3, this can be the case even for certain standard disciplines. (Such
behavior might occur at times when there are two or more empty multiclass
stations.) On account of this, thinking of fluid model equations as belonging to
a fluid network loses some of its appeal. In practice, it is often better to think
directly in terms of the fluid model which is defined by the appropriate system
of equations.

1.4. Outline of lectures

We conclude the introduction with an outline of the subject matter we will be
covering. The material can be broken into three parts, Chapter 2, Chapter 3,
and Chapters 4 and 5, each with its own distinct character.

Chapter 2 discusses the “classical” queueing networks introduced in
[BaCMP75] and the accompanying theory of quasi-reversible queueing networks
in [Ke79]. The examples considered in [BaCMP75] include networks with the
FIFO, PS, and LIFO disciplines that were introduced in Section 1.2, and an
infinite server network, which we will introduce in Chapter 2. Exponentially
distributed interarrival times, and in some cases, exponentially distributed ser-
vice times, are assumed. For ρ < e, these networks are stable and explicit
product-like formulas are given for their stationary distributions. This special
structure is a generalization of that for the M/M/1 queue. Independent work
of F. P. Kelly, leading to the book [Ke79], employed quasi-reversibility to show
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that these explicit formulas hold in a more general setting. These results have
strongly influenced the development of queueing theory over the past several
decades.

In the previous sections, we mentioned that even when ρ < e, a queueing
network may be unstable. This behavior came as a surprise in the early 1990’s.
Various examples of instability have since been given in different settings, pri-
marily in the context of SBP and FIFO disciplines. At this point, there is no
comprehensive theory, and in fact, not much is known, in general, about how the
Markov processes for such networks go to infinity as t→ ∞. Chapter 3 presents
the best known examples of unstable subcritical queueing networks in more-or-
less chronological order, with an attempt being made to provide some feeling for
the development of the subject. Examples include those from [LuK91], [RyS92],
[Br94a], [Se94], and [Du97].

In Chapter 4, we give general sufficient conditions for the stability of a queue-
ing network. The main condition is that the fluid model of the queueing network
be stable; general conditions on the interarrival and service times of the queue-
ing network are also needed. In the previous section, we gave a brief discussion of
how the fluid model equations are obtained from the queueing network equations
that describe the evolution of the queueing network. The material in Chapter 4
is largely based on [Da95] and the sources employed there. We go into consider-
able detail on the arguments leading to the main result, Theorem 4.16, because
we feel that it is important to have this material accessible in one place.

The first part of Chapter 5 consists of applications of Theorem 4.16, where
stability is demonstrated, under ρ < e, for a number of disciplines. In Sec-
tions 5.1, 5.2, and 5.3, the stability of single class networks, SBP reentrant lines
with FBFS and LBFS priority schemes, and FIFO networks, with constant mean
service times at a station, are demonstrated. In each case, the procedure is to
demonstrate the stability of a fluid model; the stability of the queueing network
then follows by applying the above theorem.

Sections 5.4 and 5.5 are different in nature from the previous three sections.
Section 5.4 is concerned with the question of global stability. That is, when is a
queueing network stable, irrespective of the particular discipline that is applied?
Again applying Theorem 4.16, a queueing network will be globally stable if
its fluid model is. For two-station fluid models with deterministic routing, a
complete theory is given. Section 5.5 investigates the converse of Theorem 4.16,
namely the necessity of fluid model stability for the stability of a given queueing
network. It turns out that there is not an exact correspondence between the
two types of stability, as examples show. Robust conditions for the necessity of
fluid model stability are presently lacking. The material in Chapter 5 is taken
from a member of sources, including [Br96a], [DaWe96], [Br99], [DaV00], and
[DaHV04].

We conclude this section with some basic notation and conventions. We let
Z+ and R+ denote the positive integers and real numbers; Z+,0 and R+,0 will
denote the sets appended with {0}; and Zd

+, Rd
+, Zd

+,0 , and Rd
+,0 will denote

their d dimensional equivalents. For x, y ∈ Rd, x ≤ y means xk ≤ yk for
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each coordinate k; x < y means xk < yk for each coordinate. Unless indicated
otherwise, | · | denotes the ℓ1 (or sum) norm, e.g., |x| =

∑d
i=1 |xi| for x ∈ Rd.

By a ∨ b and a ∧ b, we mean max{a, b} and min{a, b}. For x ∈ R, by ⌊x⌋ and
⌈x⌉, we mean the integer part of x and the smallest integer that is at least x.
By a(t) ∼ b(t), we mean a(t)/b(t) → 1 as t → ∞, and by a ≈ b, that a and b
are approximately the same in some weaker sense.

When convenient, we will refer to a countable state Markov process as a
Markov chain. (In the literature, Markov chain often instead refers to a discrete
time Markov process.) We say that a Markov chain is positive recurrent if each
state is positive recurrent and all states communicate. (The second condition is
sometimes not assumed in the literature.) As already mentioned, instead of the
term “queueing network”, we will often employ the shorter “network”, when the
context is clear. Throughout these lectures, continuous time stochastic processes
will be assumed to be right continuous unless indicated otherwise.



Chapter 2

The classical networks

In this chapter, we discuss two families of queueing networks whose Markov
processes are positive recurrent when ρ < e, and whose stationary distributions
have explicit product-like formulas. The first family includes networks with the
FIFO discipline, and the second family includes networks with the PS and LIFO
disciplines, as well as infinite server (IS) networks. We introduced the first three
networks in Section 1.2; we will define infinite server networks shortly. These four
networks are sometimes known as the “classical networks”. Together with their
generalizations, they have had a major influence on the development of queueing
theory because of the explicit nature of their stationary distributions. For this
reason, we present the basic results for the accompanying theory here, although
only the FIFO discipline is HL. These results are primarily from [BaCMP75],
and papers by F. P. Kelly (such as [Ke75] and [Ke76]) that led to the book
[Ke79].

In Section 2.1, we state the main results in the context of the above four
networks. We first characterize the stationary distributions for networks con-
sisting of a single station, whose jobs exit from the network when service is
completed, without being routed to another class. We will refer to such a sta-
tion as a node. We then characterize the stationary distribution for networks
with multiple stations and general routing. Since all states will communicate,
the Markov processes for the networks will be positive recurrent, and hence the
networks will be stable.

In the remainder of the chapter, we present the background for these results
and the accompanying theory. In Section 2.2, we give certain basic properties
of stationary and reversible Markov processes on countable state spaces that we
will use later. Sections 2.3 and 2.4 apply this material to obtain generalizations
of the node-level results in Section 2.1 to the two families of interest to us. The
first family, homogeneous nodes, includes FIFO nodes under certain restrictions,
and the second family, symmetric nodes, includes PS, LIFO, and IS nodes.

The concept of quasi-reversibility is introduced in Section 2.5. Using quasi-
reversibility, the stationary distributions of certain queueing networks can be
written as the product of the stationary distributions of nodes that correspond

186
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to the stations “in isolation”. These queueing networks include the FIFO, PS,
LIFO, and IS networks, and so generalize the network-level results in Section 2.1.
Except for Theorem 2.9, all of the material in this chapter is for queueing net-
works with a countable state space.

The main source of the material in this chapter is [Ke79]. Section 2.2 is
essentially an abridged version of the material in Chapter 1 of [Ke79]. Most of
the material in Sections 2.3–2.5 is from Sections 3.1–3.3 of [Ke79], with [Wa88],
[ChY01], [As03], and lecture notes by J.M. Harrison having also been consulted.
The order of presentation here, starting with nodes in Sections 2.3 and 2.4 and
ending with quasi-stationarity in Section 2.5, is different.

2.1. Main results

In this section, we will give explicit formulas for the stationary distributions
of FIFO, PS, LIFO, and infinite server networks. Theorems 2.1 and 2.2 state
these results for individual nodes, and Theorem 2.3 does so for networks. In
Sections 2.3–2.5, we will prove generalizations of these results.

The range of disciplines that we consider here is of limited scope. On the
other hand, the routing that is allowed for the network-level results will be
completely general. As in Chapter 1, routing will be given by a mean transition
matrix P = {Pk,ℓ, k, ℓ = 1, . . . , K} for which the network is open.1 For all
queueing networks considered in this section, the interarrival times are assumed
to be exponentially distributed. When the service times are also exponentially
distributed, the evolution of these queueing networks can be expressed in terms
of a countable state Markov process. By enriching the state space, more general
service times can also be considered in the countable state space setting. This
will be useful for the PS, LIFO, and IS networks.

In Section 1.1, we introduced the M/M/1 queue with external arrival rate
α = 1. By employing the reversibility of its Markov process when m < 1, we saw
that its stationary distribution is given by the geometric distribution in (1.1).
Allowing α to be arbitrary with αm < 1, this generalizes to

π(n) = (1 − αm)(αm)n for n = 0, 1, 2, . . . . (2.1)

For a surprisingly large group of queueing networks, generalizations of (2.1)
hold, with the stationary distribution being given by products of terms similar
to those on the right side of (2.1).

We first consider queueing networks consisting of just a single node. That is,
jobs at the unique station leave the network immediately upon completion of
service, without being routed to other classes. Classes are labelled k = 1, . . . , K.

1In the literature (such as in [Ke79]), deterministic routing is frequently employed. For
these lectures, we prefer to use random routing, which was used in [BaCMP75] and has been
promulgated in its current form by J. M. Harrison. By employing sufficiently many routes,
one can show the two approaches are equivalent. We find the approach with random routing
to be notationally more flexible. The formulation is also more amenable to problems involving
dynamic scheduling, which we do not cover here.
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The nodes of interest to us in this chapter fall into two basic families, depending
on the discipline.

The first family, homogeneous nodes, will be defined in Section 2.3. FIFO
nodes, which are the canonical example for this family, will be considered here.
For homogeneous nodes, including FIFO nodes, we need to assume that the
mean service times mk at all classes k are equal. In order to avoid confusion
with the vector m, we label such a service time by ms (with “s” standing for
“station”). We will refer to such a node as a FIFO node of Kelly type. In addition
to assuming the interarrival times are exponentially distributed, we assume the
same is true for the service times.

The state x of the node at any time will be specified by an n-tuple of the
form

(x(1), . . . , x(n)), (2.2a)

where n is the number of jobs in the node and

x(i) ∈ {1, . . . , K} for i = 1, . . . , n (2.2b)

gives the class of the job in the ith position in the node. We interpret i = 1, . . . , n
as giving the order of arrival of the jobs currently in the node; because of the
FIFO discipline, all service is directed to the job at i = 1. The state space
S0 will be the union of these states. The stochastic process X(t), t ≥ 0, thus
defined will be Markov with a countable state space. For consistency with other
chapters, we interpret vectors as column vectors, although this is not needed in
the present chapter (since matrix multiplication is not employed).

All states communicate with the empty state. So, if X(·) has a stationary
distribution, it will be unique. Since there is only a single station, a stationary
distribution will exist when the node is subcritical. Theorem 2.1 below gives an
explicit formula for the distribution. As in Chapter 1, αk denotes the external
arrival rates at the different classes k; ρ denotes the traffic intensity and is in
the present setting given by the scalar

ρ = ms
∑

k

αk. (2.3)

As elsewhere in this chapter, when we say that a node (or queueing network)
has a stationary distribution, we mean that its Markov process, on the chosen
state space, has this distribution. (For us, “distribution” is synonymous with
the somewhat longer “probability measure”.)

Theorem 2.1. Each subcritical FIFO node of Kelly type has a stationary dis-
tribution π, which is given by

π(x) = (1 − ρ)

n
∏

i=1

msαx(i), (2.4)

for x = (x(1), . . . , x(n)) ∈ S0.
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The stationary distribution π in Theorem 2.1 can be described as follows.
The probability of there being a total of n jobs in the node is (1 − ρ)ρn . Given
a total of n jobs, the probability of there being n1, . . . , nK jobs at the classes
1, . . . , K, with n = n1 + · · ·+ nK and no attention being paid to their order, is

ρ−n

(

n
n1, . . . , nK

) K
∏

k=1

(msαk)nk . (2.5)

Moreover, given that there are n1, . . . , nK jobs at the classes 1, . . . , K, any
ordering of the different classes of jobs is equally likely. Note that since all states
have positive probability of occurring, the process X(·) is positive recurrent.
Consequently, the node is stable.

The other family of nodes that will be discussed in this chapter, symmetric
nodes, will be defined in Section 2.4. Standard members of this family are PS,
LIFO, and IS nodes. The PS and LIFO disciplines were specified in Chapter 1.
In an infinite server (IS) node, each job is assumed to start receiving service as
soon as it enters the node, which it receives at rate 1. One can therefore think of
there being an infinite number of unoccupied servers available to provide service,
one of which is selected whenever a job enters the node. All other disciplines
studied in these lectures will have only a single server at a given station. We note
that although the PS discipline is not HL, it is related to the HLPPS discipline
given at the end of Section 5.3.

We consider the stationary distributions of PS, LIFO and IS nodes. As with
FIFO nodes, we need to assume that the interarrival times of jobs are expo-
nentially distributed. If we assume that the service times are also exponentially
distributed, then the process X(·) defined on S0 will be Markov. As before, we
interpret the coordinates i = 1, . . . , n in (2.2) as giving the order of jobs cur-
rently in the node. For LIFO nodes, this is also the order of arrival of jobs there.
For reasons relating to the definition of symmetric nodes in Section 2.4, we will
instead assume, for PS and IS nodes, that arriving jobs are, with equal proba-
bility 1/n, placed at one of the n positions of the node, where n is the number
of jobs present after the arrival of the job. Since in both cases, jobs are served
at the same rate irrespective of their position in the node, the processes X(·)
defined in this manner are equivalent to the processes defined by jobs always
arriving at the rear of the node.

The analog of Theorem 2.1 holds for PS, LIFO, and IS nodes when the
service times are exponentially distributed. We no longer need to assume that
the service times have the same means, so in the present setting, the traffic
intensity ρ is given by

ρ =
∑

k

mkαk. (2.6)

For subcritical PS and LIFO nodes, the stationary distribution π is given by

π(x) = (1 − ρ)

n
∏

i=1

mx(i)αx(i), (2.7)
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for x = (x(1), . . . , x(n)) ∈ S0. For any IS node, the stationary distribution π is
given by

π(x) =
e−ρ

n!

n
∏

i=1

mx(i)αx(i). (2.8)

The stability of the infinite server node for all values of ρ is not surprising,
since the total rate of service at the node is proportional to the number of jobs
presently there.

For PS, LIFO, and IS nodes, an analogous result still holds when exponential
service times are replaced by service times with more general distributions. One
employs the “method of stages”, which is defined in Section 2.4. One enriches
the state space S0 to allow for different stages of service for each job, with a job
advancing to its next stage of service after service at the previous stage has been
completed. After service at the last stage has been completed, the job leaves the
node. Since the service times at each stage are assumed to be exponentially
distributed, the corresponding process X(·) for the node, on this enriched state
space Se, will still be Markov. On the other hand, the total service time required
by a given job will be the sum of the exponential service times at its different
stages, which we take to be i.i.d. Such service times are said to have Erlang
distributions.

Using the method of stages, one can extend the formulas (2.7) and (2.8),
for the stationary distributions of PS, LIFO, and IS nodes, to nodes that have
service distributions which are countable mixtures of Erlang distributions. This
result is stated in Theorem 2.2. The state space here for the Markov process X(·)
of the node is Se, which is defined in Section 2.4. The analog of this extension
for FIFO nodes is not valid.

Theorem 2.2. Each subcritical PS node and LIFO node, whose service time
distributions are mixtures of Erlang distributions, has a stationary distribution
π. The probability of there being n jobs in the node with classes x(1), . . . , x(n)
is given by (2.7). The same is true for any IS node with these service time
distributions, but with (2.8) replacing (2.7).

Mixtures of Erlang distributions are dense in the set of distribution functions,
so it is suggestive that a result analogous to Theorem 2.2 should hold for service
times with arbitrary distributions. This is in fact the case, although one needs
to be more careful here, since one needs to replace Se with an uncountable
state space which specifies the residual service times of jobs at the node. More
detail on this setting is given at the end of Section 2.4. Because of the technical
difficulties for uncountable state spaces, (2.7) and (2.8) are typically stated
for mixtures of Erlang distributions or other related distributions on countable
state spaces. Moreover, quasi-reversibility, which we discuss shortly, employs a
countable state space setting.

So far in this section, we have restricted our attention to nodes. As mentioned
at the beginning of the section, the results in Theorems 2.1 and 2.2 extend to
analogous results for queueing networks, which are given in Theorem 2.3, below.
FIFO, PS, LIFO, and IS queueing networks are the analogs of the respective
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nodes, with jobs at individual stations being subjected to the same service rules
as before, and, upon completion of service at a class k, a job returning to class
ℓ with probability Pk,ℓ, which is given by the mean transition matrix P . In
addition to applying to these queueing networks, Theorem 2.3 also applies to
networks that are mixtures of such stations, with one of the above four rules
holding for any particular station. We also note that the formula in Theorem 2.3
holds for Jackson networks, as a special case of FIFO networks. The product
formula for Jackson networks in [Ja63] predates those for the other networks.

In Theorem 2.3, we assume that the service times are exponentially dis-
tributed when the station is FIFO, and are mixtures of Erlang distributions in
the other three cases. The distribution function π is defined on the state space

S = S1 × · · · × SJ ,

where Sj = S0 if j is FIFO and Sj = Se for the other cases, and πj is defined
on Sj . (The choice of K in each factor depends on Sj .)

Theorem 2.3. Suppose that each station j of a queueing network is either FIFO
of Kelly type, PS, LIFO, or IS. Suppose that in the first three cases, the station
is subcritical. Then, the queueing network has a stationary distribution π that
is given by

π(x) =

J
∏

j=1

πj(xj), (2.9)

for x = (x1, . . . , xJ). Here, each πj is either of the form (2.4), (2.7), or (2.8),
depending on whether the station j is FIFO of Kelly type, PS or LIFO, or IS,
and αk in the formulas is replaced by λk.

Theorem 2.3 will be a consequence of Theorems 2.1 and 2.2, and of the
quasi-reversibility of the nodes there. Quasi-reversibility will be introduced in
Section 2.5. Using quasi-reversibility, it will be shown, in Theorem 2.11, that
the stationary distributions of certain queueing networks can be written as the
product of the stationary distributions of nodes that correspond to the individ-
ual stations “in isolation”. This will mean that when service of a job at a class
is completed, the job will leave the network rather than returning to another
class (either at the same or a different station). The external arrival rates αk

at classes are replaced by the total arrival rates λk of the network in order to
compensate for the loss of jobs that would return to them. Quasi-reversibility
can be applied to queueing networks whose stations are FIFO, PS, LIFO, or
IS. By employing Theorem 2.11, one obtains Theorem 2.3 as a special case of
Theorem 2.12.

2.2. Stationarity and reversibility

In this section, we will summarize certain basic results for countable state,
continuous time Markov processes. We define stationarity and reversibility, and
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provide alternative characterizations. Proposition 2.6, in particular, will be used
in the remainder of the chapter.

The Markov processes X(t), t ≥ 0, we consider here will be assumed to be de-
fined on a countable state space S. The space S will be assumed to be irreducible,
that is, all states communicate. None of the states will be instantaneous; we will
assume there are only a finite number of transitions after a finite time, and
hence no explosions. Sample paths will therefore be right continuous with left
limits. The transition rate between states x and y will be denoted by q(x, y); the

rate at which a transition occurs at x is therefore q(x)
def
=
∑

y∈S q(x, y). The
embedded jump chain has mean transition matrix {p(x, y), x, y ∈ S}, where

p(x, y)
def
= q(x, y)/q(x) is the probability X(·) next visits y from the state x.

The time X(·) remains at a state x before a transition occurs is exponentially
distributed with mean 1/q(x).

A stochastic process X(t), t ≥ 0, is said to be stationary if (X(t1), . . . , X(tn))
has the same distribution as (X(t1 + u), . . . , X(tn + u)), for each nonnegative
t1, . . . , tn and u. Such a process can always be extended to −∞ < t < ∞ so
that it is stationary as before, but with t1, . . . , tn and u now being allowed to
assume any real values. When X(·) is a Markov process, it suffices to consider
just n = 1 in order to verify stationarity.

A stationary distribution π = {π(x), x ∈ S} for a Markov process X(·)
satisfies the balance equations

π(x)
∑

y∈S

q(x, y) =
∑

y∈S

π(y)q(y, x) for x ∈ S, (2.10)

which say that the rates at which mass leaves and enters a state x are the
same. We are assuming here that

∑

x∈S π(x) = 1. Since all states are assumed
to communicate, π will be unique. If π exists, then it is the limit of the distri-
butions of the Markov process starting from any initial state. If a measure π
satisfying (2.10) with

∑

x∈S π(x) <∞ exists, then it can be normalized so that
∑

x∈S π(x) = 1. If
∑

x∈S π(x) = ∞, then there is no stationary distribution,
and for all x, y ∈ S,

P (X(t) = ℓ | X(0) = x) → 0 as t→ ∞.

(See, e.g., [Re92] for such basic theory.)
A stochastic process X(t), −∞ < t <∞, is said to be reversible if (X(t1), . . . ,

X(tn)) has the same distribution as (X(u−t1), . . . , X(u−tn)), for each t1, . . . , tn
and u. This condition says that the process is stochastically indistinguishable,
whether it is run forward or backwards in time. It is easy to see that if X(·) is re-
versible, then it must be stationary. When X(·) is Markov, it suffices to consider
n = 2 in order to verify reversibility. The Markov property can be formulated
as saying that the past and future states of the process X(·) are independent

given the present. It follows that the reversed process X̂(t)
def
= X(−t) is Markov

exactly when X(·) is. If X(·) has stationary measure π, then π is also stationary
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for X̂(·) and the transition rates of X̂(·) are given by

q̂(x, y) =
π(y)

π(x)
q(y, x) for x, y ∈ S. (2.11)

A stationary Markov process X(·) with distribution π is reversible exactly
when it satisfies the detailed balance equations

π(x)q(x, y) = π(y)q(y, x) for x, y ∈ S. (2.12)

This condition says that the rate at which mass moves from x to y is the same
rate at which it moves in the reverse direction. This condition need not, of
course, be satisfied for arbitrary stationary distributions. When (2.12) holds,
it often enables one to express the stationary distribution in closed form, as,
for example, for the M/M/1 queue in Section 1.1. It will always hold for the
stationary distribution of any birth and death process, and, more generally, for
the stationary distribution of any Markov process on a tree. By summing over
ℓ, one obtains the balance equations in (2.10) from (2.12).

An alternative characterization of reversibility is given by Proposition 2.4.
We will not employ the proposition elsewhere, but state it because it provides
useful intuition for the concept.

Proposition 2.4. A stationary Markov process is reversible if and only if its
transition rates satisfy

q(x1, x2)q(x2, x3) · · ·q(xn−1, xn)q(xn, x1)

= q(x1, xn)q(xn, xn−1) · · · q(x3, x2)q(x2, x1), (2.13)

for any x1, x2, . . . , xn.

The equality (2.13) says that the joint transition rates of the Markov process
are the same along a path if it starts and ends at the same point, irrespective
of its direction along the path.

Proof of Proposition 2.4. The “only if” direction follows immediately by plug-
ging (2.12) into (2.13).

For the “if” direction, fix x0, and define

π(x) =

n
∏

i=1

[q(xi−1, xi)/q(xi, xi−1)], (2.14)

where xn = x and x0, x1, . . . , xn is any path from x0 to x, with q(xi, xi−1) > 0.
One can check using (2.13) that the right side of (2.14) does not depend on the
particular path that is chosen, and so π(x) is well defined. To see this, let P1

and P2 be any two paths from x0 to x, and P̂1 and P̂2 be the corresponding
paths in the reverse directions. Then, the two paths from x0 to itself formed
by linking P1 to P̂2, respectively P2 to P̂1, satisfy (2.13), from whence the
uniqueness in (2.14) will follow.
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Assume that for given y, q(y, x) > 0. Multiplication of both sides of (2.14)
by q(x, y) implies that

π(x)q(x, y) = q(y, x)

(

n
∏

i=1

q(xi−1, xi)/q(xi, xi−1

)

(q(x, y)/q(y, x))

= q(y, x)π(y).

This gives (2.12), since the case q(x, y) = q(y, x) = 0 is trivial. Since the process
is assumed to be stationary,

∑

x π(x) < ∞, and so π can be scaled so that
∑

x π(x) = 1.

The following result says that under certain modifications of the transition
rates q(x, y), a reversible Markov process will still be reversible. It will not be
needed for later work, but has interesting applications.

Proposition 2.5. Suppose that the transition rates of a reversible Markov pro-
cess X(·), with state space S and stationary distribution π, are altered by chang-
ing q(x, y) to q′(x, y) = bq(x, y) when x ∈ A and y 6∈ A, for some A ⊆ S. Then,
the resulting Markov process X′(·) is reversible and has stationary distribution

π′(x) =

{

cπ(x) for x ∈ A,

cbπ(x) for x 6∈ A,
(2.15)

where c is chosen so that
∑

x π
′(x) = 1. In particular, when the state space is

restricted to A by setting b = 0, then the stationary distribution of X′(·) is given
by

π′(x) = π(x)

/

∑

y∈A

π(y) for x ∈ A. (2.16)

Proof. It is easy to check that q′ and π′ satisfy the detailed balance equations
in (2.12).

The following illustration of Proposition 2.5 is given in [Ke79].

Example 1. Two queues with a joint waiting room. Suppose that two indepen-
dent M/M/1 queues are given, with external arrival rates αi and mean service
times mi, and αimi < 1. Let Xi(t) be the number of customers (or jobs) in
each queue at time t. The Markov processes are each reversible with station-
ary distributions as in (2.1). It is easy to check that the joint Markov process
X(t) = (X1(t), X2(t)), −∞ < t <∞, is reversible, with stationary distribution

π(n1, n2) = (1 − α1m2)(1 − α2m2)(α1m1)
n1(α2m2)

n2 for ni ∈ Z+,0.

Suppose now that the queues are required to share a common waiting room
of size N , so that a customer who arrives to find N customers already there
leaves without being served. This corresponds to restricting X(·) to the set A of
states with n1 + n2 ≤ N . By Proposition 2.5, the corresponding process X′(·)
is reversible, and has stationary measure

π′(n1, n2) = π(0, 0)(α1m1)
n1(α2m2)

n2 for (n1, n2) ∈ A.
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It is often tedious to check the balance equations (2.10) in order to determine
that a Markov process X(·) is stationary. Proposition 2.6 gives the following
alternative formulation. We abbreviate by setting

q(x) =
∑

y∈S

q(x, y), q̂(x) =
∑

y∈S

q̂(x, y), (2.17)

where q(x, y) are the transition rates forX(·) and q̂(x, y) ≥ 0 are for the moment
arbitrary. WhenX(·) has stationary distribution π and q̂(x, y) is given by (2.11),
it is easy to check that

q(x) = q̂(x) for all x. (2.18)

The proposition gives a converse to this. As elsewhere in this section, we are
assuming that S is irreducible.

Proposition 2.6. Let X(t), −∞ < t <∞, be a Markov process with transition
rates {q(x, y), x, y ∈ S}. Suppose that for given quantities {q̂(x, y), x, y ∈ S}
and {π(x), x∈S}, with q̂(x, y) ≥ 0, π(x) > 0, and

∑

x π(x) = 1, that q, q̂, and
π satisfy (2.11) and (2.18). Then, π is the stationary distribution of X(·) and
q̂ gives the transition rates of the reversed process.

Proof. It follows, by applying (2.11) and then (2.18), that

∑

x∈S

π(x)q(x, y) = π(y)
∑

x∈S

q̂(y, x) = π(y)q̂(y) = π(y)q(y).

So, π is stationary for X(·). The transition rates of the reversed process are
therefore given by (2.11).

Proposition 2.6 simplifies the computations needed for the demonstration of
stationarity by replacing the balance equations, that involve a large sum and
the stationary distribution π, by two simpler equations, (2.18), which involves
just a large sum, and (2.11), which involves just π. On the other hand, the
application of Proposition 2.6 typically involves guessing q̂ and π. In situations
where certain choices suggest themselves, the proposition can be quite useful.
It will be used repeatedly in the remainder of the chapter.

2.3. Homogeneous nodes of Kelly type

FIFO nodes of Kelly type belong to a larger family of nodes whose stationary
distributions have similar properties. We will refer to such a node as a homoge-
neous node of Kelly type. Such nodes are defined as follows.

Consider a node with K classes. The state x ∈ S0 of the node at any time is
specified by an n-tuple as in (2.2), when there are n jobs present at the node.
The ordering of the jobs is assumed to remain fixed between arrivals and service
completions of jobs. When the job in position i completes its service, the position
of the job is filled with the jobs in positions i+ 1, . . . , n moving up to positions
i, . . . , n−1, while retaining their previous order. Similarly, when a job arrives at
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the node, it is assigned some position i, with jobs previously at positions i, . . . , n
being moved back to positions i+1, . . . , n+1. Each job requires a given random
amount of service; when this is attained, the job leaves the node. As throughout
this chapter, interarrival times are required to be exponentially distributed. As
elsewhere in these lectures, all interarrival and service times are assumed to be
independent.

We will say that such a node is a homogeneous node if it also satisfies the
following properties:

(a) The amount of service required by each job is exponentially distributed
with mean mk, where k is the class of the job.

(b) The total rate of service supplied at the node is φ(n), where n is the
number of jobs currently there.

(c) The proportion of service that is directed at the job in position i is δ(i, n).
Note that this proportion does not depend on the class of the job.

(d) When a job arrives at the node, it moves into position i, i = 1, . . . , n, with
probability β(i, n), where n is the number of jobs in the node including
this job. Note that this probability does not depend on the class of the
job.

When the mean mk does not depend on the class k, we will say that such a
node is a homogeneous node of Kelly type. We will analyze these nodes in this
section. We use ms when the mean service times of a node are constant, as we
did in Section 2.1.

The rate at which service is directed to a job in position i is δ(i, n)φ(n).
So, the rate at which service at the job is completed is δ(i, n)φ(n)/ms. We will
assume that φ(n) > 0, except when n = 0. The rate at which a job arrives
at a class k and position i from outside the node is αkβ(i, n). We use here
the mneumonics β and δ to suggest births and deaths at a node. Of course,
∑n

i=1 β(i, n) =
∑n

i=1 δ(i, n) = 1.
We have emphasized in the above definition that the external arrival rates

and service rates β and δ do not depend on the class of the job. This is cru-
cial for Theorem 2.7, the main result in this section. This restriction will also
be needed in Section 2.4 for symmetric nodes, as will be our assumption that
the interarrival times are exponentially distributed. On the other hand, the as-
sumptions that the service times be exponential and that their means mk be
constant, which are needed in this section, are not needed for symmetric nodes.
We note that by scaling time by 1/ms, one can set ms = 1, although we prefer
the more general setup for comparison with symmetric nodes and for application
in Section 2.5.

In Section 2.5, we will be interested in homogeneous queueing networks of
Kelly type. Homogeneous queueing networks are defined analogously to homo-
geneous nodes. Jobs enter the network independently at the different stations
according to exponentially distributed random variables, and are assigned po-
sitions at these stations as in (d). Jobs at different stations are served indepen-
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dently, as in (a)–(c), with departing jobs from class k being routed to class ℓ
with probability Pk,ℓ and leaving the network with probability 1−ΣℓPk,ℓ. Jobs
arriving at a class ℓ from within the network are assigned positions as in (d),
according to the same rule as was applied for external arrivals. The external
arrival rates and the quantities in (a)–(d) are allowed to depend on the station.
When the mean service times mk are assumed to depend only on the station
j = s(k), we may write ms

j ; we refer to such networks as homogeneous queueing
networks of Kelly type.

The most important examples of homogeneous nodes are FIFO nodes. Here,
one sets φ(n) ≡ 1,

β(i, n) =

{

1 for i = n,

0 otherwise,

and

δ(i, n) =

{

1 for i = 1,

0 otherwise,

for n ∈ Z+. That is, arriving jobs are always placed at the end of the queue and
only the job at the front of the queue is served. Another example is given in
[Ke79], where arriving jobs are again placed at the end of the queue, but where
L servers are available to serve the first L jobs, for given L. In this setting,
φ(n) = L ∧ n, β is defined as above, and

δ(i, n) =











1/n for i ≤ n ≤ L,

1/L for i ≤ L < n,

0 for i > L.

The main result in this section is Theorem 2.7, which is a generalization of
Theorem 2.1. Since the total service rate φ that is provided at the node can
vary, the condition

B
def
=

∞
∑

n=0

(

ρn

/ n
∏

i=1

φ(i)

)

<∞ (2.19)

replaces the assumption in Theorem 2.1 that the node is subcritical. Here, ρ =
ms
∑K

k=1 αk is the traffic intensity.

Theorem 2.7. Suppose that a homogeneous node of Kelly type satisfies B <∞
in (2.19). Then, it has a stationary distribution π that is given by

π(x) = B−1
n
∏

i=1

(msαx(i)/φ(i)), (2.20)

for x = (x(1), . . . , x(n)) ∈ S0.

As was the case in Theorem 2.1, the structure of the stationary distribution π
in Theorem 2.7 exhibits independence at multiple levels. The probability of there
being a total of n jobs at the node is ρn/B

∏n
i=1 φ(i). Given a total of n jobs
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at the node, the probability of there being n1, . . . , nk jobs of classes 1, . . . , K,
respectively, is given by the multinomial distribution in (2.5). Moreover, the
ordering of the different classes of jobs is equally likely. As was the case in
Theorem 2.1, all states communicate with the empty state, and the Markov
process X(·) for the node is positive recurrent.

Demonstration of Theorem 2.7

The proof of Theorem 2.7 that we will give is based on Proposition 2.6.
In order to employ the proposition, we need to choose quantities q̂ and π so
that (2.11) and (2.18) are satisfied for them and the transition rates q of the
Markov process X(·) for the node. It will then follow from Proposition 2.6 that
π is the stationary distribution for the node and q̂ gives the transition rates for
the reversed process X̂(·). A similar argument will be used again for symmetric
nodes in Section 2.4 and for networks consisting of quasi-reversible nodes in
Section 2.5. We will summarize a more probabilistic argument for Theorem 2.7
at the end of the section.

In order to demonstrate Theorem 2.7, we write q and our choices for q̂ and
π explicitly in terms of α, β, δ, and φ. To be able to reuse this argument in
Section 2.4 for symmetric nodes, we write mk for the mean service times, which
in the present case reduces to the constant ms.

The nonzero transition rates q(x, y) take on two forms, depending on whether
the state is obtained from x by the arrival or exit of a job. In the former case,
we write y = ak,i(x) if a class k job arrives at position i; in the latter case, it
follows that x = ak,i(y), if i is the position of the exiting class k job. One then
has

q(x, y) =

{

αkβ(i, ny) for y = ak,i(x),

m−1
k δ(i, nx)φ(nx) for x = ak,i(y),

(2.21)

where nx and ny are the number of jobs at the node for states x and y.
Finding the transition rates q̂(x, y) of the reversed process involves some

guessing, motivated by our idea of what X̂(·) should look like. It is reasonable to
guess that X̂(·) is also the Markov process for a homogeneous node. The external
arrival rates αk and α̂k will then be the same for both processes, since arrivals
for X̂(·) correspond to exits for X(·), and under the stationary distribution π,
the two rates must be the same. The mean service times mk and m̂k will also
be the same. It is reasonable to guess that φ̂(n) = φ(n); this would be the case
if X(·) were reversible, as it is for the M/M/1 queue. Running X(·) backwards
in time mentally, it is also tempting to set

β̂(i, n) = δ(i, n), δ̂(i, n) = β(i, n) for n ∈ Z+, i ≤ n.

For instance, if the original node is FIFO, then jobs arrive at i = n and exit
at i = 1; if the node is run backwards in time, jobs arrive at i = 1 and exit at
i = n. Substitution of these choices for α, β, δ, φ, and m in (2.21) yields

q̂(x, y) =

{

αkδ(i, ny) for y = ak,i(x),

m−1
k β(i, nx)φ(nx) for x = ak,i(y).

(2.22)
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We still need to choose our candidate for the stationary distribution π of
both X(·) and X̂(·). The equality (2.11), that is needed for Proposition 2.6, is
equivalent to

π(x)q(x, y) = π(y)q̂(y, x) (2.23)

holding whenever y = ak,i(x) or x = ak,i(y). When y = ak,i(x) and q(x, y) > 0,
substitution of (2.21) and (2.22) into (2.23) implies that

π(y)/π(x) = mkαk/φ(ny). (2.24)

The case x = ak,i(y) yields the same equality, but with the roles of x and y
reversed. Reasoning backwards, it is not difficult to see that (2.23) also follows
from (2.24).

Set x = (x(1), . . . , x(n)), for n ∈ Z+,0. One can repeatedly apply (2.24) by
removing jobs from x one at a time, starting from the last, until the empty state
is reached. We therefore choose π so that

π(x) = B−1
n
∏

i=1

(mx(i)αx(i)/φ(i)), (2.25)

where the normalizing constant B = 1/π(∅). Under (2.25), (2.24) must hold.
We have therefore verified (2.11) for this choice of π. In particular, this holds
for mk ≡ ms, as in Theorem 2.7.

In order to employ Proposition 2.6, we also need to verify (2.18). One can
check that

∑

y

q(x, y) =
∑

k

αk + φ(nx)
∑

i

m−1
x(i)δ(i, nx). (2.26)

The first sum on the right side of (2.26) follows by summing the top line of (2.21)
over all i and k. The relationship x = ak,i(y) implies that x(i) = k, and so the
last sum in (2.26) follows by summing the last line of (2.21) over all i. Using
the same reasoning, one obtains the formula

∑

y

q̂(x, y) =
∑

k

αk + φ(nx)
∑

i

m−1
x(i)β(i, nx) (2.27)

from (2.22). As before, the first sum on the right side is obtained from arriving
jobs and the last sum is obtained from exiting jobs.

We see from (2.26) and (2.27) that a sufficient condition for (2.18) is that

∑

i

m−1
x(i)δ(i, nx) =

∑

i

m−1
x(i)β(i, nx). (2.28)

In Theorem 2.7, mk ≡ ms, which factors outside of the sum on both sides
of (2.28). Since the resulting sums both equal 1, (2.28), and hence (2.18), holds
in this setting. Note that this is the only point in the argument at which we
need mk to be constant.

We have shown that both (2.11) and (2.18) are satisfied for q and q′ given
by (2.21) and (2.22), and π given by (2.25), under the assumptions in Theorem
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2.7. It therefore follows from Proposition 2.6 that π is the stationary distribution
for the Markov process with transition rates q. This implies Theorem 2.7.

Some observations

One can generalize the above proof of Theorem 2.7 so that it applies to
homogeneous queueing networks of Kelly type, rather than to just homogeneous
nodes of Kelly type as in the theorem. Then, the stationary distribution π can
be written as the product of stationary distributions πj of nodes corresponding
to the individual stations, when they operate “in isolation”. This is done in
Section 3.1 of [Ke79]. We prefer to postpone the treatment of homogeneous
networks until Section 2.5, where they are considered within the context of
quasi-reversibility.

One can give a more probabilistic proof of Theorem 2.7 that is based on
the following intuitive argument. The rates β(i, n), δ(i, n) and φ(n) governing
the arrival and service rates of jobs, as well as the mean service time ms, do
not distinguish between classes of jobs. Jobs are therefore served as they would
be for an M/M/1 queue modified to have the total rate of service φ(n), when
there are n jobs, and having the arrival rate

∑

k αk. By randomly choosing the
class of each job, with probability αk/

∑

k αk for each k, at either time 0 or at
some later time t, the distributions at time t of the two resulting processes will
be the same. If the stationary distribution for the modified M/M/1 queue is
chosen as its initial distribution, the resulting distribution π′ for the K classes
will therefore also be stationary.

One can show, by using reversibility, that the probability of there being n jobs
for the stationary distribution of the modified M/M/1 queue is ρn/B

∏n
i=1 φ(i),

where B is as in (2.19). Because of the random way in which the classes of jobs
are chosen above for π′, the remaining properties in the alternative character-
ization of π in (2.20), that are given after the statement of Theorem 2.7, also
hold. Therefore, π′ = π, as desired.

We also note the following consequence of the proof of Theorem 2.7, that is a
special case of phenomena that will be discussed in Section 2.5. (It also follows
from the alternative argument that was sketched above.) The transition rates q̂
of the reversed Markov process X̂(·) in (2.22) are the rates for a homogeneous
node of Kelly type. For this reversed node, arrivals are therefore given by K
independent Poisson processes for the different classes, that are independent
of the initial state. These arrivals correspond to exiting jobs for the original
homogeneous node. It follows that the K different exit processes for the classes
are also independent Poisson processes that are independent of any future state
of the node.

2.4. Symmetric nodes

PS, LIFO, and IS nodes all belong to the family of symmetric nodes. They
are defined similarly to the homogeneous nodes of Kelly type in the previous
section, with a few major differences. The basic framework is the same, with
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state space S0 given by (2.2) and existing jobs being reordered as before upon
the arrival and departure of jobs at the node. Moreover, the interarrival times
are exponentially distributed.

In order for such a node to be a symmetric node, we require that it also satisfy
the following properties:

(a) The amount of service required by each job is exponentially distributed
with mean mk. We will soon allow more general distributions, but this
will require us to extend the state space.

(b) The total rate of service supplied at the node is φ(n), where n is the
number of jobs currently there.

(c) The proportion of service that is directed at the job in position i is β(i, n).
Note that the proportion does not depend on the class of the job.

(d) When a job arrives at the node, it moves into position i, i = 1, . . . , n, with
probability β(i, n), where n is the number of jobs in the node including
this job. This function is the same as that given in (c).

In Section 2.5, we will also be interested in symmetric queueing networks.
These networks are defined analogously, with properties (a)–(d) being assumed
to hold at each station, and departing jobs from a class k being routed to a
class ℓ with probability Pk,ℓ. More detail is given in Section 2.3 for homogeneous
networks, where the procedure is the same.

The properties (a)–(d) given here are more restrictive than the properties (a)–
(d) in the previous section in that we now assume, in the notation of Section 2.3,
that δ = β, in parts (c) and (d). These properties are more general in that
the service time means mk need no longer be equal at different classes. After
comparing the stationary distributions of these nodes with those of Section 2.3,
we proceed to generalize the exponential distributions of the service times in
(a) in two steps, first to mixtures of Erlang distributions, and then to arbitrary
distributions.

The PS, LIFO, and IS nodes are standard examples of symmetric nodes. For
the PS discipline, one sets

β(i, n) = 1/n for i ≤ n,

for n ∈ Z+, and for LIFO, one sets

β(i, n) =

{

1 for i = n,

0 otherwise.

In both cases, φ(n) ≡ 1. For IS nodes, φ(n) = n and

β(i, n) = 1/n for i ≤ n.

The analog of Theorem 2.7 holds for symmetric nodes when B < ∞, for B
in (2.19), with the formula for the stationary distribution π,

π(x) = B−1
n
∏

i=1

(mx(i)αx(i)/φ(i)), (2.29)
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for x = (x(1), . . . , x(n)), replacing (2.20). One can check that the same argu-
ment as before is valid. One applies Proposition 2.6, for which one needs to
verify (2.11) and (2.18). As before, the formulas for q and q̂ are given by (2.21)
and (2.22), but with δ = β. The formula for π is given by (2.25).

The argument we gave for (2.11) involved no restrictions onmk, and therefore
holds in the present context as well. The argument we gave for (2.18) consisted
of equating (2.26) and (2.27), and therefore verifying (2.28). Previously, (2.28)
held since m−1

k was constant, and so could be factored out of both sums. It is
now satisfied since δ = β, and so the summands are identical. One can therefore
apply Proposition 2.6, from which the analog of Theorem 2.7 for symmetric
nodes follows, with (2.29) replacing (2.20).

The method of stages

As mentioned earlier, the assumption that the service times be exponentially
distributed is not necessary for symmetric nodes. By applying the method of
stages, one can generalize the service time distributions to mixtures of Erlang
distributions. (These are gamma distributions that are convolutions of identi-
cally distributed exponential distributions.) We will show that the analog of
the formula (2.29) for the stationary distribution continues to hold in this more
general setting.

In order for the stochastic process corresponding to the node to remain
Markov for more general service times, we need to enrich the state space S0. For
this, we replace each coordinate x(i) in (2.2) by the triple x(i) = (x(i), s(i), v(i)),
where

x(i) ∈ {1, . . . , K}, s(i) ∈ Z+, v(i) ∈ {1, . . . , s(i)}. (2.30)

Such a triple gives the refined class of a job, with x(i) denoting its class as before.
The third coordinate v(i) gives the current stage of a job, with s(i) denoting the
total number of stages the job visits before leaving the node. The state space
Se will consist of such n-tuples x = (x(1), . . . ,x(n)), n ∈ Z+,0, under a mild
restriction to ensure all states are accessible.

The basic dynamics of the node are the same as before, which satisfies the
properties for symmetric nodes given at the beginning of the section, including
properties (b)–(d); we are generalizing here the assumption in (a). Instead of
entering the node at a class k with rate αk, jobs enter at a refined class (k, s, s)
with rate αkpk(s), where

∑

s pk(s) = 1. Once at a refined class (k, s, v), such
a job moves to (k, s, v − 1) after completing its service requirement, which is
exponentially distributed with mean mk(s). After a job completes its service at
the stage v = 1, it leaves the node. The current stage v of a job can therefore
be thought of as the residual number of stages remaining before the job leaves
the node. We note that the proportion of service that is directed at a job in
position i is β(i, n), which does not depend on its class or refined class.

The distribution of the service time that is required for the job between
entering and leaving class k is a mixture of Erlang distributions, and has mean

mk
def
=
∑

s

spk(s)mk(s). (2.31)
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The state space Se mentioned earlier is defined to consist of n-tuples whose com-
ponents (k, s, v) satisfy pk(s) > 0, in order to exclude inaccessible states. Under
this restriction, all states will communicate. The state space is of course count-
able. When pk(1) = 1 at all k, the service times are all exponentially distributed
and the model reduces to the one considered at the beginning of the section.
As with homogeneous and symmetric nodes with exponentially distributed ser-
vice times, the networks corresponding to symmetric nodes with stages can be
defined in the natural way.

We wish to show that the nodes just defined have stationary distributions π
that generalize (2.29). This result is stated in Theorem 2.8.

Theorem 2.8. Suppose that the service times of a symmetric node are mixtures
of Erlang distributions, and that the node satisfies B <∞ in (2.19). Then, the
node has a stationary distribution π that is given by

π(x) = B−1
n
∏

i=1

(px(i)(s(i))mx(i)(s(i))αx(i)/φ(i)), (2.32)

where x = (x(1), . . . ,x(n)) ∈ Se and x(i) = (x(i), s(i), v(i)), for i = 1, . . . , n.

As was the case in Theorem 2.7 and in (2.29), the structure of the stationary
distribution π is Theorem 2.8 exhibits independence at multiple levels. The
probability of there being a total of n jobs at the node is ρn/B

∏n
i=1 φ(i). Given

a total of n jobs at the node, the probability of there being n1, . . . , nk jobs at
the classes 1, . . . , K is given by the multinomial

ρ−n

(

n
n1, . . . , nK

) K
∏

k=1

(mkαk)nk . (2.33)

The ordering of these classes is equally likely. Note that none of these quantities
depends on the particular service time distributions, except for the means mk.

The stationary distribution also has the following refined structure. Given the
class of the job at each position i, the probability of the job at a given position,
whose class is k, having refined class (k, x, v) is

pk(s)mk(s)/mk,

and these events are independent at different i. Summing over all stages strictly
greater than v and over all s, while keeping everything else fixed, this implies
that the conditional probability of the job at position i being in a strictly earlier
stage than v is

m−1
k

∑

s

(s− v)pk(s)mk(s). (2.34)

Note that (2.34) depends on the actual service time distributions, and not just
on their means.
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Demonstration of Theorem 2.8

In order to demonstrate Theorem 2.8, we employ Proposition 2.6. To do so,
we need to verify (2.11) and (2.18) for the transition rates q of the Markov
process on Se corresponding to the node, with an appropriate choice of the
quantities q̂ and π.

In order to specify q and q̂, we modify the function ak,i(·) we used for expo-
nential service times on the state space S0. Here, ak,s,i(x) will denote the state
y obtained from state x by the arrival of a job at position i, with refined class
(k, s, s). Since jobs exit from the node at refined classes of the form (k, s, 1)
(rather than at (k, s, s)), we need additional notation. With an eye on defining
q̂, we denote by âk,s,i(x) the state y that is obtained from x by inserting a job
with refined class (k, s, 1) at i; the positions of jobs already at the node are
shifted in the usual way. We also denote by si(x) the state y obtained from a
state x satisfying 2 ≤ v(i) ≤ s(i), when the stage at i advances to v(i)−1. (si(x)
is not defined for other x.)

Using this notation, one can check that q is given by

q(x, y) =











αkpk(s)β(i, ny ) for y = ak,s,i(x),

(mk(s))−1β(i, nx)φ(nx) for x = âk,s,i(y),

(mk(s))−1β(i, nx)φ(nx) for y = si(x),

(2.35)

with q(x, y) = 0 otherwise. Employing the same motivation as in Section 2.3,
we choose q̂ so that

q̂(x, y) =











αkpk(s)β(i, ny ) for y = âk,s,i(x),

(mk(s))−1β(i, nx)φ(nx) for x = ak,s,i(y),

(mk(s))−1β(i, ny)φ(ny) for x = si(y),

(2.36)

with q̂(x, y) = 0 otherwise. The transition function q̂ is the same as q, except
that jobs arrive at the stage v = 1, exit at v = s(i), with changes in stage
occurring from v − 1 to v, for 2 ≤ v ≤ s(i). We choose π as in (2.32).

The assumptions for Proposition 2.6 can be verified as they were in Section 2.3
for the space S0, with only a small change in argument. The argument for (2.11)
is the same when either y = ak,s,i(x) or x = âk,s,i(y). For y = ak,s,i(x), the
equality (2.24) is replaced by its analog

π(y)/π(x) = mk(s)pk(s)αk/φ(ny).

When y ∈ si(x), one has

π(y)/π(x) = q(x, y)/q̂(y, x) = 1, (2.37)

in which case (2.11) is obvious. So, (2.11) holds in all cases. (Note that for the
homogeneous nodes in Section 2.3 with distinct β and δ, the analog of (2.37)
does not hold, and so the method of stages employed here for generalizing the
exponential distributions will not work.)
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The formula (2.18) holds for the same reasons as before, except that one now
has

∑

y

q(x, y) =
∑

y

q̂(x, y) =
∑

k

αk + φ(nx)
∑

i

(mx(i)(s(i)))
−1β(i, nx),

with mx(i)(s(i)) replacing mx(i). So, the assumptions for Proposition 2.6 hold.
Application of the proposition therefore implies Theorem 2.8.

One can generalize the above argument so that it applies to symmetric queue-
ing networks. Then, the stationary distribution π can be written as the product
of stationary distributions πj of nodes corresponding to the individual stations.
As in the previous section, we choose to postpone the treatment of symmet-
ric networks until Section 2.5, where they are considered within the context of
quasi-reversibility.

Extensions to general distributions

We have employed the method of stages to generalize the formula (2.29), for
the stationary distribution of symmetric nodes with exponentially distributed
service times, to the formula (2.32), which holds for service times that are mix-
tures of Erlang distributions. The method of stages can also be employed to
construct service times with other distributions. This approach is employed,
for example, in Section 3.6 of [Wa88] and in Section 3.4 of [As03], where the
more general phase-type distributions are constructed. [As03] also gives further
background on the problem.

Let H =
⋃∞

N=1 HN , where HN denotes the family of mixtures of Erlang
distributions, but with the restriction that mk(s) = 1/N for all k and s. It is
not difficult to show that H is dense in the set of distribution functions, with
respect to the weak topology; this result is given in Exercise 3.3.3 in [Ke79]. The
basic idea is that the sum of Ns i.i.d. copies of an exponential distribution, with
mean 1/N , has mean s and variance s/N , and so, for large N , is concentrated
around s. For large enough N , one can therefore approximate a given service
time distribution function Fk as closely as desired, by setting

pN
k (s) = FN

k (s/N) − FN
k ((s− 1)/N), for s ∈ Z+, (2.38)

equal to the probability that a job chooses a refined class with s stages, when it
enters class k. Here, FN

k is the distribution function satisfying FN
k (s′) = Fk(s′),

for Ns′ ∈ Z+, and which is constant off this lattice. For the same reason, the
phase-type distributions that were mentioned in the previous paragraph are also
dense.

Since the family H of mixtures of Erlang distributions is dense, it is tempting
to infer that a stationary distribution will always exist for a symmetric node
with any choice of service time distributions Fk satisfying (2.19), with mk re-
placingms in the definition of ρ, and that this distribution has the same product
structure as given below the statement of Theorem 2.8. Such a result holds, al-
though the state space needs to be extended so that the last component v of the
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refined class (k, s, v) of a job can now take on any value in (0, s]; this corresponds
to the residual service time of that job. The resulting state space S∞ for the
Markov process is uncountable; this causes technical problems which we discuss
at the end of the section. Since the space is uncountable, it is most natural to
formulate the result in a manner similar to that given below Theorem 2.8.

Theorem 2.9. Suppose that a symmetric node satisfies B <∞ in (2.19). Then,
it has a stationary distribution π on S∞ with

π(x(i) = k(i), i = 1, . . . , n) = B−1
n
∏

i=1

(mk(i)αk(i)/φ(i)). (2.39)

Conditioned on any such set, the residual service times of the different jobs are
independent, with the probability that a job of a class k has residual service time
at most r being

F ∗
k (r) =

1

mk

∫ r

0

(1 − Fk(s))ds. (2.40)

One can motivate (2.39) by applying Theorem 2.8 to a sequence of nodes
indexed by N , with pN

k for each class k being given by (2.38). Since FN
k ⇒ Fk

and mN
k → mk as N → ∞, one should expect (2.39) to follow from (2.32). In

order to motivate (2.40), one can reason as follows. Applying Theorem 2.8, one
can check that, under the stationary distribution πN and conditioned on the
job at a given position being k, the probability that the stage there is strictly
greater than v is

∑

s>v

(s− v)pN
k (s)

/

∑

s

spN
k (s).

One can also check that
∑

s>v(s − v)pN
k (s) =

∑

s>v F̄
N
k (s/N), where F̄N

k (s) =
1 − FN

k (s). So, the above quantity equals

1

N

∑

s>v

F̄N
k (s/N)

/

1

N

∑

s

F̄N
k (s/N).

By setting v = Nr, r ≥ 0, and applying the Monotone Convergence Theorem
to the numerator and denominator separately, one obtains the limit

1

mk

∫ ∞

r

F̄k(s)ds. (2.41)

On the other hand, the same reasoning as above (2.38) implies that, for large
N , the stage v scaled by N typically approximates the residual service time.
So, (2.41) will also give the limiting distribution of the residual service times as
N → ∞. Taking the complementary event, one obtains (2.40) from (2.41).

The same reasoning as above implies (2.40) is also the probability that the
amount of service that has been received by a job is at least r. We point out
that F ∗

k , as in (2.40), is the distribution of the residual time for the stationary
distribution of a renewal process, with lifetime distribution Fk.



M. Bramson/Stability of queueing networks 207

The above reasoning, although suggestive, is not rigorous. In particular, im-
plicit in the explanations for both (2.39) and (2.40) is the assumption that the
stationary distribution π and the residual service time distributions F ∗

1 , . . . , F
∗
K

are continuous in F1, . . . , FK. A rigorous justification for Theorem 2.9 is given
in [Ba76]. There, the Markov processes XN (·) corresponding to the above se-
quences of nodes are constructed on a common uncountable state space S, where
the residual times of the jobs are included in the state. The Markov process that
corresponds to the node in Theorem 2.9 is expressed as a weak limit of the pro-
cesses XN (·); this provides a rigorous justification for the convergence of πN

and FN
1 , . . . , FN

K that is needed for the theorem. [Ba76] in fact demonstrates
the analog of Theorem 2.9 in the more general context of symmetric queueing
networks.

The above uncountable state space setting requires a more abstract frame-
work than one typically wishes for a basic theory of symmetric networks. The
countable state space setting is typically employed in the context of either mix-
tures of Erlang distributions, the more general phase-type distributions, or some
other dense family of distributions. (See, for example, Section 3.4 of [As03], for
more detail.) Quasi-reversibility, which we discuss in the next section, also em-
ploys a countable state space setting.

2.5. Quasi-reversibility

In Sections 2.3 and 2.4, we showed that the stationary distributions of homoge-
neous nodes of Kelly type and symmetric nodes are of product form. Employing
quasi-reversibility, it will follow that the stationary distributions of the corre-
sponding queueing networks are also of product form, with the states at the
individual stations being independent and the distributions there being given
by Theorems 2.7 and 2.8.

Quasi-reversibility has two important consequences. When a queueing net-
work can be decomposed in terms of nodes that are quasi-reversible, the station-
ary distribution of the network can be written as the product of the stationary
distributions of these individual nodes. It will also follow from the “duality”
present in quasi-reversibility that the exit processes of such networks are inde-
pendent Poisson processes, a property that is inherited from the processes of
external arrivals of the network. Quasi-reversibility does not depend on the rout-
ing in a network, but holds only under certain disciplines, like those mentioned
in the first paragraph.

In this section, in order to avoid confusion, we will say that a departing job
from a class that leaves the network exits from the network (as opposed to
being routed to another class). For nodes, such as in the two previous sections,
departures and exits are equivalent.

Before introducing quasi-reversibility, we first motivate the basic ideas with
a finite sequence of M/M/1 queues that are placed in tandem:

→ 1 → 2 → · · · → k → · · · → K → . (2.42)
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Jobs are assumed to enter the one-class station, with j = k = 1, according
to a rate-α Poisson process, and are served in the order of their arrival there.
Upon leaving station 1, jobs enter station 2 and are served there, and so on,
until leaving the network after having been served at station K. All jobs are
assumed to have exponentially distributed service times which are independent,
with means mk so that αmk < 1.

An M/M/1 queue with external arrival rate α and mean service time m
has stationary distribution given by (2.1), if mα < 1. Under this distribution,
the corresponding Markov process X(t), −∞ < t < ∞, is reversible, and so is
stochastically equivalent to its reversed process X̂(t) = X(−t). In particular,
the stationary process X1(·) for the number of jobs at station 1 is stochastically
equivalent to its reversed process X̂1(·). Interpreting X̂1(·) in terms of the arrival
and departure of jobs, with the former corresponding to an increase and the
latter a decrease of X̂1(·), jobs arrive according to a rate-α Poisson process.
But, each arrival of a job for X̂1(·), at time t, corresponds to the departure of a
job forX1(·), at time −t. It follows that the departure process of jobs forX1(·) is
a Poisson rate-α process. Moreover, departures preceding any given time t1 are
independent of X(t1). What we are observing here, is that the specific nature
of the Poisson input into station 1 results in an output of the same form.

Let X2(·) denote the process for the number of jobs at station 2, and assume
that X2(t0) has the stationary distribution (2.1), with m = m2, for a given t0
and is independent of X1(t) for t ≥ t0. The arrival process of X2(·) is also the
departure process of X1(·), which is a rate-α Poisson process, by the previous
paragraph. It follows that X2(·) is also the stationary process of an M/M/1
queue. Its arrivals, up to a given time t1, with t1 ≥ t0, are independent of X1(t1)
by the previous paragraph. Consequently, X1(t1) and X2(t1) are independent,
each with the distribution in (2.1), with m1 and m2 replacing the mean m.
Since t1 was arbitrary, the joint process (X1(·), X2(·)) is Markov and stationary,
for all t ≥ t0. Since t0 was arbitrary, (X1(·), X2(·)) in fact defines a stationary
Markov process over all t.

Continuing in this manner, one obtains a stationary Markov process X(t) =
(X1(t), . . . , XK(t)), −∞ < t < ∞, whose joint distribution at any time is a
product of distributions of the form in (2.1). One therefore obtains the following
result.

Theorem 2.10. Assume that the interarrival time and the service times of
the sequence of stations depicted in (2.42) are exponentially distributed, with
αmk < 1 for each k = 1, . . . , K. Then, the network has a stationary distribution
π, which is given by

π(n1, . . . , nK) =

K
∏

k=1

(1 − αmk)(αmk)nk , (2.43)

for nk ∈ Z+,0.

We note that although the components of the stationary distribution given
by (2.43) are independent, this is not at all the case for the components Xk(·)
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of the corresponding stationary Markov process X(·). In particular, a departure
at station k coincides with an arrival at station k + 1.

Results leading up to Theorem 2.10 and the above proof are given in [Ja54],
[Bu56], and [Re57]. More detail on the background of the problem is given on
page 212 of [Ke79].

The same formula as in (2.43) holds when the routing in (2.42) is replaced by
general routing, if the total arrival rates λk are substituted for α. More precisely,
suppose that a subcritical Jackson network (i.e., a single class network with
exponentially distributed interarrival and service times) has external arrival
rates α = {αk, k = 1, . . . , K} and mean routing matrix P = {Pk,ℓ, k, ℓ =
1, . . . , K}. Then, it has the stationary distribution π, with

π(n1, . . . , nK) =

K
∏

k=1

(1 − λkmk)(λkmk)nk , (2.44)

for nk ∈ Z+,0. This result is no longer as easy to see as is (2.43); it was shown
in the important work [Ja63]. The result will follow as a special case of Theo-
rems 2.3 and 2.12.

Basics of quasi-reversibility

The “input equals output” behavior of the network in (2.42) was central to
our ability to write the stationary distribution of the network as a product of
the stationary distributions at its individual stations. Quasi-reversibility gen-
eralizes this concept, and leads to similar results for more general families of
networks. Quasi-reversibility was first identified in [Mu72] and has been exten-
sively employed in work by F.P. Kelly. The property can be defined in different
equivalent ways; we use the following analytic formulation.

We consider a node for which arrivals at its classes k = 1, . . . , K are given
by independent Poisson processes, with intensities α = {αk, k = 1, . . . , K},
that do not depend on the state of the node at earlier times, and for which
the exits occur only one at a time and do not coincide with an arrival. The
evolution of the node is assumed to be given by a Markov process X(·) with
stationary distribution π defined on a countable state space S. Assume that all
states communicate. Also, let q denote the transition function of X(·) and q̂ the
transition function of the reversed process X̂(·) satisfying (2.11).

Under the above assumptions, any change in the state of the node due to a
transition from x to y must be due to an increase by 1 in the number of jobs
at some class k, for which we write y ∈ Ak(x); a decrease by 1 at some k, for
which we write y ∈ Ek(x); or a transition that involves neither an increase nor
a decrease, for which we write y ∈ I(x), and which we refer to as an internal
transition. Note that y ∈ I(x) and x ∈ I(y) are equivalent. An example of an
internal transition is the “advance in stage” y = si(x) in Section 2.4, although
in the current setting far more general changes of state are allowed, including
the simultaneous swapping of positions by many jobs. General changes of state
are also allowed with the arrival or exit of a job.
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We will say the node is quasi-reversible if for each class k and state x,

∑

y∈Ak(x)

q̂(x, y) = βk (2.45)

for some βk ≥ 0. The equality (2.45) says that the rate of arrivals at each class
k for the reversed process X̂(·) does not depend on the state x. It is equivalent
to the apparently stronger

∑

y∈Ak(x)

q̂(x, y) =
∑

y∈Ak(x)

q(x, y) = αk (2.46)

for each k and x, which states that βk = αk. (Note that the last equality follows
automatically from the definition of αk.)

To see (2.46), we note that by (2.45), the arrival times of X̂(·) form indepen-
dent rate-βk Poisson processes at the K classes. The same reasoning that was
applied to the sequence of M/M/1 queues in (2.42) implies that the exit times
of X(·) also form independent rate-βk Poisson processes. By assumption, only
one exit occurs at each such time. Moreover, under the stationary distribution
π, the rates at which jobs enter and leave a class are the same. Since the former
is αk, this implies βk = αk, as needed for (2.46).

In the preceding argument, we have shown that the exit processes for X(·)
form independent rate-αk Poisson processes. Comparison with X̂(·) also shows
that exits for X(·) preceding any given time t1 are independent of X(t1). These
are important properties of quasi-reversible nodes. We have already employed
them in the proof of Theorem 2.10.

The term quasi-reversible can also be applied to a queueing network rather
than just to a node, with equation (2.45) again being employed as the defining
property. (One should interpret Ak(x) in terms of external arrivals at k.) In this
setting, the stronger (2.46) need not hold, since departures from a class, that
are not exits, may occur because of a job moving to another class within the
network, and the reasoning in the paragraph below (2.46) is not valid. Never-
theless, external arrivals for the reversed process X̂(·) correspond to jobs exiting
the network forX(·). The same reasoning that was employed for quasi-reversible
nodes therefore implies that the exiting processes at the classes k are indepen-
dent rate-βk Poisson processes.

Although we will not use this here, we also note that the partial balance
equations

π(x)
∑

y∈Ak(x)

q(x, y) =
∑

y∈Ak(x)

π(y)q(y, x), (2.47)

for each k and x, are equivalent to (2.46), and hence to the quasi-reversibility
of a node. This follows immediately from the definition of q̂ in (2.11) and the
assumption π(x) 6= 0 for all x. These equations are weaker than the detailed
balance equations, which correspond to reversibility, but include information
not in the balance equations. The partial balance equations are often used as
an alternative to quasi-reversibility.
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Construction of networks from quasi-reversible nodes and applications

The main result on quasi-reversibility is Theorem 2.11, which states that
when a queueing network satisfies certain conditions involving quasi-reversible
nodes, its stationary distribution can be written as the product of the station-
ary distributions of these nodes. These nodes typically correspond to the sta-
tions of the network in a natural way. Such a queueing network is itself quasi-
reversible. Examples of these queueing networks are the sequence of M/M/1
queues in (2.42), Jackson networks, the homogeneous networks of Kelly type
that were defined in Section 2.3, and the symmetric networks that were defined
in Section 2.4.

We will consider queueing networks in the following framework. The network
will consist of J stations and K classes on a countable state space S of the form

S = S1 × · · · × SJ ,

where Sj is the state space corresponding to the jth station. We will typically
write x = (x1, . . . , xJ) for x ∈ S, where xj ∈ Sj . For concreteness, we will
assume that for each j, Sj is one of the two spaces S0 and Se that were employed
in the last two sections, although the theory holds more generally. As usual,
the queueing network is assumed to have transition matrix P = {Pk,ℓ, k, ℓ =
1, . . . , K} and external arrival rates α = {αk, k = 1, . . . , K}. Recall that λ = Qα
denotes the total arrival rate, and satisfies the traffic equations given in (1.6).

We will employ notation similar to what was used earlier in the section, with
Ak(x), Ek(x), Ij(x), and Rk,ℓ(x) denoting the states y obtained from x by the
different types of transitions. As before, Ak(x), Ek(x), and Ij(x) will denote the
states obtained by an arrival into the network at k, an exit from the network
at k, and an internal state change at j. For y ∈ Ak(x) or y ∈ Ek(x), we will
require that yj = xj for j 6= s(k), and that the number of jobs at k increase or
decrease by 1, and elsewhere remain the same. For y ∈ Ij(x), we will require
that yj = xj for j 6= s(k), and that the number of jobs at each class remain the
same. We let Rk,ℓ(x) denote the set of y obtained from x by a job returning to
class ℓ after being served at class k. We require that yj = xj for j 6= s(k) and
j 6= s(ℓ), and that the number of jobs at k decrease by 1, at ℓ increase by 1, and
elsewhere remain the same.

The queueing networks we will consider will be assumed to satisfy properties
(2.48)–(2.52), which are given in terms of prechosen quasi-reversible nodes. Be-
fore listing these properties, we provide some motivation, recalling the sequence
of 1-class stations given in (2.42), with the stationary distribution in (2.43).
When a given station j, with j = k, is viewed “in isolation”, it evolves as an
M/M/1 queue with mean service time mk and external arrival rate α, and has
as its stationary distribution the stationary distribution of the corresponding
M/M/1 queue. The stationary distribution of the sequence of stations is given
by the product of the stationary distributions of the individual queues. Because
of the specific structure of the network, Poisson arrivals into a given station
result in Poisson departures, which then serve as Poisson arrivals for the next
station. This property allowed us to view the stations “in isolation”.
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We will show that queueing networks satisfying properties (2.48)–(2.52) will
have stationary distributions that are the product of the stationary distributions
of the quasi-reversible nodes given there. Each such node can be interpreted as
the corresponding station evolving “in isolation”. Here, “in isolation” will also
mean that routing between classes at the same station is not permitted. The
network in the previous paragraph, consisting of a sequence of 1-class stations,
will be a special case of this more general setup.

Because of the more abstract setting now being considered, we will not ex-
plicitly follow the evolution of individual jobs; instead, we will think of the
quasi-reversible nodes as “black boxes”, which have a given output for a given
input, with a corresponding stationary distribution. Rather than employ the
Poisson-in, Poisson-out property directly, we will use the definition of quasi-
reversibility in (2.45). The external arrival rates αj

k for the classes at a given
node j will be given by the total arrival rate λk for the corresponding class
in the network. This will be consistent with jobs always leaving the node after
being served, without being routed to another class.

The nodes we employ are assumed to have state spaces Sj , j = 1, . . . , J ,
which are the components of the state space S for the network. Therefore, for
x = (x1, . . . , xJ) ∈ S with xj ∈ Sj , j = 1, . . . , J , one can also interpret xj as the
state of the corresponding node. Jobs at a given node will have classes k ∈ C(j),
which are in one-to-one correspondence with the classes of the correspondingly
labelled station in the network. For xj ∈ Sj and k ∈ C(j), we employ notation
introduced earlier in the section for quasi-reversible nodes, with Aj

k(xj), Ej
k(xj),

and Ij(xj) denoting those states yj obtained from xj by an arrival or exit at
class k, or by an internal state change. We let qj, j = 1, . . . , J , denote the
transition rates for the Markov processes Xj(·) of the nodes. The nodes are
assumed to be quasi-reversible, with (2.45) being satisfied by q̂j , the transition
rates of the reversed processes X̂j(·). As mentioned earlier, the external arrival
rates of the nodes are given by αj

k = λk. As earlier in the section, we will assume
that all states of a given node communicate.

We will assume that the transition rates q(x, y) for the queueing network can
be written in terms of the rates qj(xj, yj) for the nodes as follows. For y ∈ Ak(x),
we assume that

q(x, y) = (αk/λk)qj(xj, yj). (2.48)

Setting pj
k(xj, yj) = qj(xj, yj)/λk, this can be written as

q(x, y) = αkp
j
k(xj, yj), (2.48′)

where
∑

yj∈Aj

k
(xj) p

j
k(xj , yj) = 1 holds. (Here and later on, when j and k appear

together, we implicitly assume that k ∈ C(j).) For y ∈ Ek(x), we assume that

q(x, y) = qj(xj, yj)Pk,0, (2.49)

where Pk,0
def
= 1 −

∑

ℓ Pk,ℓ. For y ∈ Rk,ℓ(x), we require the existence of an
“intermediate” state z between x and y, with z ∈ Ek(x) and y ∈ Aℓ(z), and
such that

q(x, y) = qj(xj, zj)qh(zh, yh)(Pk,ℓ/λℓ), (2.50)
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where h = s(ℓ). One can also write this as

q(x, y) = qj(xj, zj)Pk,ℓ p
h
ℓ (zh, yh). (2.50′)

For y ∈ Ij(x), we assume that

q(x, y) = qj(xj, yj), (2.51)

and finally, on the complement of the above sets, we assume that

q(x, y) = 0. (2.52)

The equations (2.48)–(2.52) have the following interpretation in terms of
the transition rates of the queueing network. The J different stations operate
independently of one another, except for the movement of jobs between them.
So, the transition rates in (2.48′), (2.49), and (2.51) depend on xj and yj instead
of on the entire states x and y. In (2.50′), after a class k job is served, it moves to
class ℓ with probability Pk,ℓ, with the probability of the new state y depending
on just zh and yh . When h 6= j, z is automatically given by zj = yj , zh = xh,
and zj′

= xj′

= yj′

for other values j′. The transition rates qj in each display
are those of node j, which does not permit returns. This node can be thought
of as the one obtained from the corresponding station by replacing transitions
to and from each class k by external arrivals and exits at the same rates.

We now employ the above terminology to state Theorem 2.11. When its
hypotheses are satisfied, the theorem enables us to write the stationary distri-
bution of a queueing network as the product of the stationary distributions of
the corresponding nodes.

Theorem 2.11. Suppose that the transition rates q(x, y) of a queueing network
satisfy (2.48)–(2.52), where the nodes with the transition rates qj(xj , yj) are
quasi-reversible with stationary distributions πj . Then, the queueing network
has stationary distribution π given by

π(x) =

J
∏

j=1

πj(xj), (2.53)

where x = (x1, . . . , xJ). Moreover, the queueing network is itself quasi-reversible.

The proof of Theorem 2.11 will be given in the next subsection. We first note
the following consequences of Theorem 2.11 and quasi-reversibility.

As an elementary illustration of Theorem 2.11, we return to the “sequence of
M/M/1 queues” in (2.42). Equations (2.48)–(2.52) all hold in this setting, if qj

are the transition rates for the M/M/1 queues with αj = α and mj = mj . All
of these equations are easy to see and are nondegenerate in only a few cases.
In (2.48), q(x, y) 6= 0 only for k = j = 1 and, in (2.49), q(x, y) 6= 0 only for
k = K = J . In (2.50′), with 1 ≤ k < K, one has Pk,k+1 = pk+1

k+1(z
k+1, yk+1) = 1

if z is chosen by removing a class k job from x; (2.51) is vacuous in this setting.
Moreover, since the M/M/1 queues are reversible, they are quasi-reversible.
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These queues are assumed to be subcritical and have stationary distributions
given by (2.1). Theorem 2.10 therefore follows as a special case of Theorem 2.11.

Equations (2.48)–(2.52) also hold for the more general Jackson networks
(which are, in turn, special cases of FIFO networks of Kelly type). Again, qj are
the transition rates for M/M/1 queues, this time with αj = λj and mj = mj .
The equations are similar to those for the previous example, except that the
mean transition matrix P is general, and so (2.48)–(2.50′) may be nonzero for
arbitrary k. The formula for the stationary distribution in (2.44) is consequently
an easy application of Theorem 2.11.

We now generalize Theorem 2.3 of Section 2.1. For homogeneous networks
of Kelly type and symmetric networks, equations (2.48)–(2.52) all hold if the
corresponding nodes are chosen in the natural way. Namely, each such node, for
j = 1, . . . , J , is obtained from the corresponding station by replacing transitions
involving routing from one class to another by exits from the network, and
by increasing the rate of external arrivals at each class k from αk to λk to
compensate for this. Then, (2.48) and (2.49) are immediate. In (2.50′), the state
z is chosen by removing the served job at k from x. The equality (2.50′) then
follows since a transition from x to y, with y ∈ Rk,ℓ(x), consists of a service
completion at k, followed by the routing of the corresponding job to class l
of a station h, with the job then being assigned a position i according to the
rule ph

ℓ . When Sj = S0, the transition q(x, y) in (2.51) does not occur; when,
for a symmetric node, Sj = Se, the transition corresponds to the advance of a
stage. In either case, (2.51) is clear. Moreover, on account of (2.22) and (2.36)
in Sections 2.3 and 2.4,

∑

yj∈A
j

k
(xj)

q̂j(xj, yj) = αk for all xj ∈ Sj , (2.54)

and so each such node is quasi-reversible. Note that this characterization con-
tinues to hold for networks that are of mixed type, with some stations being
homogeneous of Kelly type and others being symmetric.

Recall that in Theorems 2.7 and 2.8, we saw that such nodes themselves have
stationary distributions that are of product form, as given in (2.20) and (2.32).
Theorem 2.7 was stated, for homogeneous nodes, in the context of service times
that are exponentially distributed, and Theorem 2.8 was stated, for symmetric
nodes, in the context of mixtures of Erlang distributions. Combining these re-
sults with Theorem 2.11, we therefore obtain Theorem 2.12. As in Theorems 2.7
and 2.8, when the node is homogeneous, xj ∈ S0 is assumed, whereas when the
node is symmetric, xj ∈ Se. In either case, we employ the condition

Bj
def
=

∞
∑

n=0

(

ρn
j

/ n
∏

i=1

φ(i)

)

<∞, (2.55)

with ρj =
∑

k∈C(j)mkλk.
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Theorem 2.12. Suppose that each station j of a queueing network is either ho-
mogeneous of Kelly type or is symmetric, and satisfies (2.55). Then, the queue-
ing network has a stationary distribution π that is given by

π(x) =

J
∏

j=1

πj(xj), (2.56)

where each πj is either of the form (2.20) or (2.32), depending on whether the
station j is homogeneous of Kelly type or is symmetric, and αk in these formulas
is replaced by λk.

Theorem 2.11 shows that the stationary distribution of a queueing network
that is composed of stations corresponding to quasi-reversible nodes has the
product structure given in (2.53). Nevertheless, the processes that are associated
with the stations are not independent. One can see this easily for the example
at the beginning of the section consisting of a sequence of M/M/1 queues: a
departure from one queue coincides with an arrival to the next. Similarly, the
combined arrival processes at different classes (i.e., arrivals from other classes
as well as external arrivals) are typically not independent, nor are the departure
processes.

These processes are not to be confused with the processes of external arrivals
or the processes of jobs exiting from the network, which are in either case inde-
pendent. We note, though, that under the stationary distribution for a queue-
ing network composed of quasi-reversible nodes, the conditional distribution at
a station found by an arriving job is the same as the stationary distribution
there. This is clearly the case for external arrivals, but is also true for arrivals in
general. This is shown on page 70 of [Ke79] by considering the reversed Markov
process for the network.

Demonstration of Theorem 2.11

In order to demonstrate Theorem 2.11, we will employ Proposition 2.6. We
therefore need a candidate q̂ for the transition rates of the reversed process X̂(·)
for the network under its stationary distribution. Letting q̂j denote the reversed
transition rates corresponding to qj, we define q̂ using the following analogs
of (2.48)–(2.52). We set

q̂(x, y) = (α̂k/λk)q̂j(xj , yj) = Pk,0q̂
j(xj, yj) for y ∈ Ak(x), (2.57)

q̂(x, y) = q̂j(xj, yj)P̂k,0 = q̂j(xj, yj)(αk/λk) for y ∈ Ek(x). (2.58)

For y ∈ Rk,ℓ(x), we set

q̂(x, y) = q̂j(xj, zj)P̂k,ℓ
q̂h(zh, yh)

∑

wh∈Ah
ℓ
(zh) q̂

h(zh, wh)

= q̂j(xj, zj)q̂h(zh, yh)(Pℓ,k/λk). (2.59)
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We also set
q̂(x, y) = q̂j(xj, yj) for x ∈ Ij(y), (2.60)

q̂(x, y) = 0 for other values of y. (2.61)

Here, we are setting

α̂k = λkPk,0, P̂k,ℓ = λℓPℓ,k/λk, P̂k,0 = αk/λk. (2.62)

The term λkPk,0 is the rate at which jobs exit from the original network at class
k, and so should be the rate they enter the reversed network at k. The second
equality is obtained by reversing the direction of the mean transition matrix P ;
the third equality is obtained by setting P̂k,0 = 1 −

∑

ℓ P̂k,ℓ, and applying the

previous equality together with (1.6). We have implicitly set λ̂k = λk in (2.57).
The second equality in (2.59) needs to be justified; it follows from (2.62) together
with

∑

wh∈Ah
ℓ
(zh)

q̂h(zh, wh) = λℓ. (2.63)

Since each node is assumed to be quasi-reversible, (2.63) follows from (2.46) and
αh

ℓ = λℓ. In the proof of Theorem 2.11, we will also employ

∑

k

α̂k =
∑

k

αk, (2.64)

which follows from the definition of α̂k and (1.6).

Proof of Theorem 2.11. The quasi-reversibility of the queueing network follows
immediately from the first equality in (2.57) and from (2.63), since

∑

y∈Ak(x)

q̂(x, y) = (α̂k/λk)
∑

yj∈Aj

k
(xj)

q̂j(xj , yj) = (α̂k/λk)λk = α̂k,

which does not depend on x.
The remainder of the proof is devoted to showing that the distribution π

in (2.53) is stationary. We wish to show that π satisfies

π(x)q(x, y) = π(y)q̂(y, x) for all x, y ∈ S (2.65)

and
q(x) = q̂(x) for all x ∈ S, (2.66)

where q̂ is defined in (2.57)–(2.61). These are restatements of (2.11) and (2.18),
and together with Proposition 2.6 imply that π is stationary. Since all states
are assumed to communicate, this is the unique such distribution.

Demonstration of (2.65). In order to verify (2.65), one needs to check the differ-
ent cases given by the formulas for q in (2.48)–(2.52). Each is straightforward,
with the most involved case being y ∈ Rk,ℓ. To check (2.65) for y ∈ Rk,ℓ(x),
note that by (2.50) and the second part of (2.59), (2.65) reduces to

πj(xj)πh(xh)qj(xj, zj)qh(zh, yh) = πj(yj)πh(yh)q̂j(yj , zj)q̂h(zh, xh) (2.67)
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after cancelling the common terms πj′

(xj′

), with j′ 6= j and j′ 6= h, and Pk,ℓ/λℓ.
This equality follows immediately from the definition of q̂j and q̂h in (2.11).

For the cases where y ∈ Ak(x) and y ∈ Ek(x), (2.65) reduces to analogs
of (2.67), which are somewhat simpler since only one node rather than two is
involved. The case y ∈ Ij(x) follows from the definition of q̂j. For pairs x and
y not covered in the preceding four cases, q(x, y) = q̂(y, x) = 0 by (2.52) and
(2.61). So, (2.65) holds in this last case as well.

Demonstration of (2.66). This part requires more work. We will show that

q(x) =
∑

k

αk −
∑

k

λk +
∑

j

qj(xj) (2.68)

and
q̂(x) =

∑

k

α̂k −
∑

k

λk +
∑

j

q̂j(xj). (2.69)

The first sums in the two equalities are equal by (2.64), and the last sums
are equal since (2.18) holds for each node. So, (2.68) and (2.69) together im-
ply (2.66).

We first show (2.68). We rewrite q(x) as

q(x) =

(

∑

k

∑

y∈Ak(x)

+
∑

k

∑

y∈Ek(x)

+
∑

k,ℓ

∑

y∈Rk,ℓ(x)

+
∑

j

∑

y∈Ij(x)

)

q(x, y), (2.70)

and analyze the different parts. By (2.48′), the first double sum on the right
equals

∑

k

αk

∑

yj∈A
j

k
(xj)

pj
k(xj , yj) =

∑

k

αk. (2.71)

By (2.49), the second double sum equals

∑

k

∑

yj∈Ej

k
(xj)

q(xj , yj)Pk,0. (2.72)

By (2.50′), the third double sum equals

∑

k

∑

zj∈Ej

k
(xj)

qj(xj, zj)
∑

ℓ

Pk,ℓ

∑

yh∈Ah
ℓ
(zh)

ph
ℓ (zh, yh)

=
∑

k

∑

zj∈Ej

k
(xj)

qj(xj, zj)
∑

ℓ

Pk,ℓ. (2.73)

By (2.51), the last double sum equals

∑

j

∑

yj∈Ij(xj)

qj(xj, yj). (2.74)
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Summation of (2.72)–(2.74) gives

(

∑

k

∑

yj∈Ej

k
(xj)

+
∑

j

∑

yj∈Ij(xj)

)

qj(xj, yj). (2.75)

Also, note that

∑

k

∑

yj∈Aj

k
(xj)

qj(xj , yj) =
∑

k

αj
k =

∑

k

λk. (2.76)

The sum of (2.75) and the left side of (2.76) is just
∑

j q
j(xj). On the other hand,

the right side of (2.70) is equal to the sum of the left side of (2.71) and (2.75).
So, q(x) is equal to the sum of

∑

k αk and (2.75), whereas
∑

j q
j(xj) is equal to

the sum of
∑

k λk and (2.75). Solving for this last term implies (2.68).
The argument for (2.69) is similar, and we employ the analog of the decom-

position in (2.70), but for q̂(x) instead of q(x). By the first equality in (2.57)
and (2.63),

∑

k

∑

y∈Ak(x)

q̂(x, y) =
∑

k

(α̂k/λk)
∑

yj∈Aj

k
(xj)

q̂j(xj, yj) =
∑

k

α̂k. (2.77)

Also, using the first equalities in (2.58) and (2.59), and (2.60), the same reason-
ing as that leading to (2.75) implies that the sum of the terms corresponding to
the last three double sums in (2.70) is

(

∑

k

∑

yj∈Ej

k
(xj)

+
∑

j

∑

yj∈Ij(xj)

)

q̂j(xj, yj). (2.78)

On the other hand, it follows from (2.63) that

∑

k

∑

yj∈Ak(xj)

q̂j(xj, yj) =
∑

k

λk. (2.79)

The sum of (2.78) and the left side of (2.79) is just
∑

j q̂
j(xj). Employing (2.77),

(2.78), and (2.79) as we did (2.71), (2.75), and (2.76), the same reasoning as
before implies (2.69).

Another proof for Theorem 2.11

Another proof for Theorem 2.11, that is more probabilistic, is given in [Wa82]
and [Wa83] (see also [Wa88]). The basic idea of the proof is to modify the
queueing network by imposing an ǫ delay, with ǫ > 0, on all routing between
classes. The corresponding stochastic process will be easier to analyze. It will not
be Markov, but will have a distribution that is of product form and is invariant
over time, and is the same for all values of ǫ. The limiting process as ǫ ↓ 0
will be the Markov process for the original queueing network, and its stationary
distribution will be this distribution.
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We now sketch the argument. Consider the J quasi-reversible nodes that
are associated with the queueing network as in (2.48)–(2.52), but which have
external arrival rates αk instead of λk. We form a new network from these nodes
by assuming that when jobs leave a node j from class k, they are routed back to
class ℓ of node h with probability Pk,ℓ, but with a fixed deterministic delay ǫ > 0.
During this delay, such jobs are assumed to not affect the transitions within the
nodes, which now play the role of individual stations within the network.

One can construct the corresponding stochastic process inductively over time
intervals of length ǫ, starting with [0, ǫ]. One argues by first assuming that (a)
the initial states at the J stations are independent of one another and are given
by the stationary distributions of the isolated nodes with external arrival rates
λℓ and (b) over the time interval (0, ǫ], the jobs returning to classes ℓ constitute
independent Poisson processes having rates λkPk,ℓ, which are independent of
the initial states in (a). Jobs from outside the system arrive at class ℓ at rate
αℓ, and so by (b) and the traffic equations (1.6), the combined arrivals at ℓ from
these two sources of jobs are Poisson processes with rates λℓ and are independent
of one another. Because of the ǫ delay for returning jobs, jobs departing from
nodes over (0, ǫ] will not return over this period, and so do not affect arrivals
at ℓ.

On account of these arrival processes, the processes at the stations will be
stationary over (0, ǫ] and independent of one another. Since the corresponding
nodes are quasi-reversible, jobs depart from the classes k according to indepen-
dent rate-λk Poisson processes over this period, which are independent of the
states of the stations at time ǫ. Because of the deterministic ǫ delay required
for returns, these jobs return to the classes ℓ as Poisson processes with rates
λkPk,ℓ, over the period (ǫ, 2ǫ]. Consequently, the analogs of conditions (a) and
(b) hold over the time interval [ǫ, 2ǫ].

Iteration over the time intervals (ǫ, 2ǫ], (2ǫ, 3ǫ], . . . produces a stochastic pro-
cess on [0,∞) whose states at different stations at any fixed time are independent
of one another, and whose distributions are the same as the stationary distri-
butions of the corresponding isolated nodes. This process can also be extended
to all times t ∈ (−∞,∞).

Letting ǫ ↓ 0, the sequence of these processes will converge to the Markov
process corresponding to the original queueing network. Since each of these
processes has the same joint distribution at any given time, this distribution
will be stationary for the limiting Markov process. Since this distribution has
the desired product form, this reasoning implies (2.53) of Theorem 2.11. By
considering the exit processes of the sequence of processes, one can also show
that the original queueing network is quasi-reversible.



Chapter 3

Instability of subcritical

queueing networks

Until the early 1990’s, the understanding of multiclass queueing networks was
sketchy. In particular, relatively little thought had been given to the stability
of such networks. The network, of course, needs to be subcritical. On the other
hand, the “classical networks” considered in Chapter 2 are all stable when they
are subcritical. Does this behavior hold in general, assuming all states of the
corresponding Markov process communicate? Since one typically cannot explic-
itly compute the stationary distribution of a network, the direct approach in
Chapter 2 needs to be replaced.

If stability holds universally for subcritical networks (or, in a broad enough
setting), one should expect a reasonably simple proof of this; the argument
would presumably be elementary because of its robustness. If, however, such a
result holds in some settings but not in others, a general theory (if one exists)
might be complicated. We now know through various examples that stability
does not always hold. Whether a general theory is possible is still an open
question. In this chapter, we present a number of examples exhibiting different
situations in which the number of jobs in the network goes to infinity as t →
∞. Chapter 4 will be devoted to positive results on the stability of subcritical
networks.

This chapter is broken into three sections, according to the order of appear-
ance and content of the examples. In Section 3.1, the first basic examples of
unstable subcritical queueing networks are given. These consist of examples in
[LuK91] and [RyS92] for static priority disciplines and [KuS90] for a clearing
policy. In Section 3.2, examples of unstable subcritical FIFO networks are given,
which consist of examples in [Br94a; Br94a] and [Se94]. Section 3.3 discusses ex-
amples for other disciplines that illustrate features of interest. They consist of
an unstable network of Kelly type from [DaWe96], and examples from [Du97]
and [BaB99], where the region of stability of certain networks is examined in
greater detail.

220
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Somewhat different definitions of “unstable” exist in the literature. For us, a
queueing network will be unstable if, for some initial state, the number of jobs
in the network will, with positive probability, go to infinity as t → ∞. This
was mentioned in Section 1.2. When the network has only a finite number of
states possessing fewer than a given number of jobs, and all states communicate
with one another, this is equivalent to saying that, for each initial state, the
number of jobs in the network goes to infinity almost surely as t → ∞. Both
conditions will be satisfied for the examples in this chapter with Poisson arrivals
and exponential service times. Note that a network that is not stable is not
necessarily unstable as defined above, since the corresponding Markov process
can be null recurrent.

The intent of this chapter is to provide an elementary introduction to the
subject and at the same time impart some feeling for the development of this
subject in the 1990’s. An omission with regard to the latter is the interaction
with contemporary developments for heavy traffic limits. This includes the ex-
ample in [DaWa93], which highlighted the general lack of understanding of the
asymptotics for even simple multiclass queueing networks. This material re-
quires additional terminology and new concepts. Since it lies outside the scope
of these lectures, we omit it with some regret.

There has also been interest in examples exhibiting instability with regard to
certain questions arising in computer science. In this setting, the models that
are investigated and the relevant questions can take on a somewhat different
flavor. For one such topic, adversarial queueing, stability under a “worst case”
scenario is examined, where an all-knowledgeable adversary is allowed to modify
the precise timing of input into the system. Service times are deterministic and
are most often assumed to be the same everywhere. We omit this topic and
instead refer the reader to [BoKRSW96] and [AnAFKLL96].

As mentioned in Section 1.2, it is sometimes convenient to employ different
notation for the classes of a network, depending on its routing. Most of the
examples in this chapter will be reentrant lines; we will usually label the classes
sequentially based on the order in which they appear along the route. When the
network has more than one deterministic route, this route will be indicated by
the first coordinate. In the first and last examples in Section 3.2, we will find
it convenient to use different notation because of the structure of the networks,
and we include the station as one of the coordinates.

3.1. Basic examples of unstable networks

An elementary example of an unstable subcritical SBP network is given by
the Lu-Kumar network. The example is presented in a deterministic setting in
[LuK91]. Its proof there is short, and requires just a couple paragraphs. We
present here both this version and the model in a random setting, whose proof
is not difficult but requires a bit more work. We also mention a related earlier
model from [KuS90] for a clearing policy.

Independently, an unstable static priority network, the Rybko-Stolyar net-
work, was analyzed in [RyS92]. Its behavior is almost identical to the Lu-Kumar
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network, with the routing differing in just one aspect. We discuss this network
briefly. Although insufficiently appreciated at the time, both networks have since
had a substantial effect on thinking in queueing theory.

The Lu-Kumar network

This network is a reentrant line consisting of two stations, with two classes
at each station. Jobs following the deterministic route first visit station 1 af-
ter entering the network, next visit station 2 twice, and then visit station 1 a
second time, before exiting the network. The route is depicted in Figure 3.1;
as indicated at the beginning of the chapter, we order the classes according to
their appearance along the route. The system evolves according to a preemptive
SBP discipline, with jobs at class 4 having priority over those at class 1, and
jobs at class 2 having priority over those at class 3.

In [LuK91], a deterministic version of this model is given, with jobs entering
periodically at the times 0, 1, 2, . . .. The deterministic service time at class k is
given by mk, with

m2 = m4 = 2/3 (3.1a)

and
m1 = m3 = 0. (3.1b)

This version of the model will be referred to as the deterministic Lu-Kumar net-
work. As we will see, even though the service at classes 1 and 3 is instantaneous,
their presence affects the evolution of the network. This model is somewhat ar-
tificial, but is easy to analyze. (A modification with more general mk will be
discussed shortly.)

Theorem 3.1. The deterministic Lu-Kumar network is unstable.

Note that because of the presence of instantaneous events at classes 1 and 3,
we need to specify an ordering of service in case of “ties”. For this, we assume
jobs at all classes complete service at times t− “just before” t; the assumption,
in particular, allows jobs to be served at class 3 and move to class 4, before a
new job enters the network at class 1 and is served there. The changes in the
long-term evolution of the system induced by other orderings are minor.

k = 1 

k = 4 

k = 2 

k = 3 

j=1 j=2

Fig. 3.1.
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Proof of Theorem 3.1. We assume that there are initially, at t = 0−, M ∈ Z+

jobs at class 1 and no jobs elsewhere. Since m1 = 0, the M jobs at class 1
immediately leave there and move to class 2, where they begin service. Because
of the priority of class 2 over class 3, jobs at class 3 cannot be served until class 2
is empty, which means that class 4 must remain empty until then. Therefore, jobs
at class 1 continue to be served until class 2 is empty. Since m2 = 2/3, reasoning
along these lines shows that at time 2M−, all classes are empty except for class
3, which has 3M jobs (the M original jobs plus 2M new jobs).

Since m3 = 0, these 3M jobs are immediately served at class 3 and move to
class 4, where they begin service. Because of the priority of class 4 over class
1, jobs entering the network at class 1 cannot be served until all of these jobs
depart from class 4. Since m4 = 2/3, this occurs at time 4M−. Over the elapsing
time 2M , M ′ = 2M jobs have arrived at class 1; moreover, at time 4M−, there
are no jobs elsewhere in the network. The state at time 4M− therefore has
the same form as it had initially, but with twice as many jobs; moreover, over
[0−, 4M−], there are never fewer than M jobs in the network. This cycle repeats
itself indefinitely, resulting in always at least 2nM jobs in the nth cycle, which
goes to infinity as n → ∞.

We note that for m2 = m4 = c, any choice of c > 1/2 suffices for the
above instability of the network; c = 2/3 was chosen above for convenience. The
key feature of the network is that the main body of jobs is forced to remain
“clumped together” as it moves from class 1 to class 4 during each cycle. This
induces underutilization of (or “starvation” at) both stations 1 and 2, and so
is responsible for the instability of the network. The above argument does not
rule out the possibility of the number of jobs in the network remaining bounded
over time when starting from different initial states, since such states need not
communicate.

The above deterministic setting for the Lu-Kumar network and the restric-
tions on mk, in (3.1), are not essential features of the model. Assume instead
that jobs enter the network according to a rate-1 Poisson process and are served
at all classes according to independent exponentially distributed random vari-
ables with means mk > 0. We refer to this model as the random Lu-Kumar
network.

Theorem 3.2. The random Lu-Kumar network, with m2 +m4 > 1, is unstable.

The proof of Theorem 3.2 is not difficult, but requires some preparation.
Before proceeding, we first point out that if instead

m1 +m4 < 1, m2 +m3 < 1 (3.2)

(that is, the network is subcritical) and

m2 +m4 < 1, (3.3)

then the network is stable. This is shown in [DaWe96]. The argument employs
the machinery of fluid models, which are discussed in detail in Chapter 4. The
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exponential assumptions on the interarrival times and service times are impor-
tant for neither direction, although in this framework, the Lu-Kumar network
corresponds to a countable state Markov process. We recall the FBFS and LBFS
reentrant lines, which were introduced in Chapter 1. It will be shown in Sec-
tion 5.2 that when they are subcritical, such reentrant lines are always stable.
The Lu-Kumar network, whose discipline is a mixture of these disciplines, is
unstable.

We recall from Chapter 1 the following notation, which will reoccur more
extensively later on in these lectures. Let Zk(t) denote the number of jobs at
class k at time t, with Z(t) being the corresponding vector. Since the interarrival
and service times are all exponentially distributed, Z(t) is a Markov process.
We set |Z(t)| =

∑

k Zk(t). Also, let Wj(t) denote the immediate workload at
station j, that is, Wj(t) is the amount of time required to serve all jobs currently
at j, if one excludes other jobs from entering the station.

Before giving the proof of Theorem 3.2, we make the following two observa-
tions. Suppose that

Z2(t) > 0 and Z4(t) > 0 for all t ∈ (t1, t2], (3.4)

for some t1 ≤ t2. Then,

W2(t2) = W2(t1) − (t2 − t1). (3.5)

The direction “≤” follows from the priority of class 4 over class 1, which prevents
any jobs from entering station 2 when Z4(t) > 0, and hence over (t1, t2]. The
other direction is automatic. Since W2(t2) ≥ 0, (3.5) gives an upper bound on
τ0, the first time at which either Z2(t) = 0 or Z4(t) = 0, in terms of W2(0). In
particular, τ0 <∞ a.s.

Similarly, the priority of class 2 over class 3 prevents any jobs from entering
class 4 as long as Z2(t) > 0. Together with the sentence after (3.5), this implies
that a.s.,

Z2(t) = 0 or Z4(t) = 0 for all t ≥ τ0. (3.6)

As an immediate consequence, we have:

Lemma 3.3. For the random Lu-Kumar network, jobs in the classes 2 and 4
are a.s. not served simultaneously at any time t ≥ τ0.

This simple observation is the basis for the proof of Theorem 3.2. It says,
in essence, that service at these classes is restricted as if they belonged to the
same station, with the condition m2 + m4 > 1 implying that this “station”
is supercritical. Consequently, the network is unstable. This observation was
apparently first made in [BoZ92]. A more general version of it is used heavily in
the work on global stability in [DaV00], which is discussed in Section 5.4.

Proof of Theorem 3.2. Set σi equal to the sum of the service times at classes 2
and 4 of the ith job entering the network after time 0. Then, σ1, σ2, . . . are i.i.d.
random variables with mean m2 +m4. The times at which these jobs are served
are disjoint after time τ0 because of Lemma 3.3. So, the time of departure from
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the network of the nth of these jobs is at least Sn − τ0, where Sn =
∑n

i=1 σi. By
the strong law of large numbers,

Sn/n→ m2 +m4 as n→ ∞

holds a.s. It follows from this limit and the preceding observation that

lim sup
t→∞

D(t)/t ≤ 1/(m2 +m4) as t → ∞ (3.7)

holds a.s., where D(t) is the number of departures from the network over (0, t].
Let A(t) denote the number of arrivals in the network over (0, t]. Since A(t)

is given by a rate-1 Poisson process, it also follows from the strong law that

A(t)/t → 1 as n→ ∞ (3.8)

holds a.s. The difference A(t)−D(t) gives a lower bound on |Z(t)|. So, by (3.7)
and (3.8),

lim inf
t→∞

|Z(t)|/t ≥ 1 − 1/(m2 +m4) > 0 a.s.,

with the last inequality holding since m2 +m4 > 1. Consequently, |Z(t)| → ∞
as t → ∞.

The Kumar-Seidman network

A somewhat earlier example in [KuS90] exhibits behavior similar to the Lu-
Kumar network. The model considered there consists of a reentrant line with
two stations and four classes, with route again given by Figure 3.1. The model is
again deterministic, with rate-1 arrivals and subcritical service times satisfying
m2 + m4 > 0. The authors choose a continuous mass setting for their model,
which is somewhat easier to work with. (This setting is also used for the model
from [Se94] that is discussed in Section 3.2, where additional background is
given.)

The discipline is a clearing policy. This requires each station to continue
serving a class until there is no “job mass” left at that class, at which point the
station begins service at one of the remaining nonempty classes, if there are any.
(In the present example, each station has only two classes, and so there is only
one such remaining class.) We refer to the network given in Figure 3.1 with this
clearing policy as the Kumar-Seidman network. A clearing policy might be a
practical choice for the discipline when there is a high start-up cost for switching
the processing at a station from one task (i.e., class) to another.

The network was assumed to be subcritical, with m2 +m4 > 1. For a direct
comparison with the deterministic Lu-Kumar network, we instead assume the
more restrictive (3.1). Using the same initial state as in Theorem 3.1, with job
mass M initially at class 1, it is not difficult to check that this model is unstable
in the same way as the Lu-Kumar network, with the job mass going to infinity
as t → ∞. Namely, mass starting at and entering class 1 is served at classes 1
and 2. When the mass at class 2 is exhausted, service takes place at class 3 and
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j=1 j=2

(1, 1) 

(2, 2) 

(1, 2) 

(2, 1) 

Fig. 3.2.

immediately afterwards at class 4, where all of the mass has moved. At this last
step, service ceases at class 1, where mass now builds up while the mass at class
4 is served. By the time the last mass at class 4 has been served, the mass is 2M
at class 1, which completes the cycle. Note that the clearing policy here plays
the same role as the priority scheme in the Lu-Kumar network, with the main
body of mass being forced to remain together as it moves from class 1 to class
4 during a cycle. This induces underutilization of both stations 1 and 2, and is
responsible for the instability of the network.

The discipline of the Kumar-Seidman network depends on its earlier states
rather than on the priorities of jobs currently in the network. So, as an exam-
ple of instability, it is less convincing than the Lu-Kumar network. ([KuS90]
also considered a “clear-a-fraction” discipline with the routing in Figure 3.2.)
The paper pre-dates [LuK91]. For that reason, networks with the routing in
Figure 3.1 (or Figure 3.2), under any discipline, are sometimes referred to as
Kumar-Seidman networks.

The Rybko-Stolyar network

This network also consists of two stations, with two classes at each station.
Jobs are assumed to follow one of two symmetric routes, visiting first one station
and then the other, as indicated in Figure 3.2. The classes along the first route
are labelled (1,1) and (1,2), in the order of their appearance, and the classes
along the second route are labelled (2,1) and (2,2).

The system evolves according to a preemptive SBP discipline, with jobs at
(2,2) having priority over jobs at (1,1) and jobs at (1,2) having priority over
those at (2,1). That is, jobs at the last class along a route always have priority
over jobs at the first class. Jobs are assumed to enter the network according to
two independent rate-1 Poisson processes, and are served at the classes (i, k)
according to independent exponentially distributed random variables, with rates
m1,1 = m2,1 and m1,2 = m2,2, and mi,k > 0.

This model was examined in [RyS92], and is generally referred to as the
Rybko-Stolyar network. Unlike the model in [LuK91], it is random. [RyS92]
showed the following result.

Theorem 3.4. The Rybko-Stolyar network, with m1,2 >
1
2
, is unstable.
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j=1 j=2

Fig. 3.3.

One can see, with some experimenting, that the Rybko-Stolyar network should
evolve in the same basic manner as the random Lu-Kumar network, if one
matches the classes (1,1), (1,2), (2,1), and (2,2) with the classes 1, 2, 3, and 4
of the latter network. Jobs entering the Rybko-Stolyar network at (1,1) have
lower priority than jobs at (2,2) and jobs at (2,1) have lower priority than jobs
at (1,2), and so, in either case, must wait until jobs at the latter classes are
served. This is analogous to the relationship between classes 1 and 4, and 3 and
2 in the Lu-Kumar network. In fact, the Rybko-Stolyar network “becomes” the
Lu-Kumar network if one connects the classes (1,2) and (2,1) as in Figure 3.3.

Both the Lu-Kumar and Rybko-Stolyar networks provide simple examples
of unstable subcritical queueing networks, and can be used to motivate more
complicated examples. The Lu-Kumar network has the advantage of being a
reentrant line; the Rybko-Stolyar network is symmetric with respect to its two
stations. A proof of Theorem 3.4 can be given along the same lines as that of
Theorem 3.2, except that the step bounding τ0 needs to be modified. (One can
assume that station 2 is subcritical, from which it will follow that τ0 < ∞.)
The proof in [RyS92] is different and does not rely directly on Lemma 3.3. We
also note that the Rybko-Stolyar network is stable under the analogs of (3.2)
and (3.3) for mi,k. This was shown in [BoZ92].

3.2. Examples of unstable FIFO networks

The examples given in Section 3.1 are for SBP disciplines that have been specif-
ically designed to impede the even flow of jobs, and therefore “starve” their
stations for work. These networks were initially regarded as artificial exam-
ples whose instability was not representative of “typical” disciplines, and so
received insufficient attention. It turns out that even subcritical queueing net-
works with the FIFO discipline may be unstable. FIFO is a natural discipline
and was a typical choice for the discipline of multiclass networks when multiclass
networks started receiving attention. The demonstration of the existence of un-
stable subcritical FIFO queueing networks therefore had substantial influence
on the stability theory of queueing networks.

Examples of subcritical FIFO queueing networks that are unstable were given
in [Br94a], [Br94b], and [Se94]. We focus here primarily on the example in
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[Br94a]. It is the easiest to understand, and the mechanism that causes the
uneven flow of jobs may be thought of as an extension of that in [LuK91].

An unstable FIFO example

The example in [Br94a] is a reentrant line consisting of two stations. Jobs
following the deterministic route first visit station 1 after entering the network,
next visit station 2 repeatedly for a total of K times (where K will be chosen
large), and then visit station 1 a second time, before exiting the network. We
employ the notation (j, k) here for a class, with j = 1, 2 denoting its station
and k denoting the order this class is visited among classes of its station. In all,
there are K + 2 classes in the network.

Jobs are assumed to enter the network according to a rate-1 Poisson process
and have exponentially distributed service times with means mj,k corresponding
to the kth visit to the jth station, with

m1,2 = m2,1 = c (3.9a)

and
mj,k = δ for (j, k) 6= (1, 2) and (j, k) 6= (2, 1). (3.9b)

The route and mean service times can be depicted as in (3.10), with the mean
service times being given above the arrows pointing from the corresponding
classes:

→ (1, 1)
δ
→(2, 1)

c
→(2, 2)

δ
→· · ·

δ
→(2, K)

δ
→(1, 2)

c
→ (3.10)

One requires c to be close to 1 and δ to be small. For the computations in
[Br94a],

399

400
≤ c < 1, cK ≤

1

50
, δ ≤

1 − c

50K2
(3.11)

are used. For instance, one may choose

c =
399

400
, K = 1, 600, δ = 10−11. (3.12)

With additional effort, less extreme values can be chosen. Note that on account
of (3.11),

ρ1 = m1,1 +m1,2 = δ + c < 1, ρ2 =
K
∑

k=1

m2,k = c+ (K − 1)δ < 1, (3.13)

and so these networks are subcritical.
One can demonstrate the following result.

Theorem 3.5. FIFO queueing networks with the routing in (3.10) and mean
service times in (3.9) and (3.11) are unstable.
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According to a simulation in [Da95], instability already occurs at K = 4 for
appropriate mean service times, although this is likely difficult to show analyt-
ically. (The simulation is actually for a variant with slightly different service
times than those in (3.9), so that ρ1 = ρ2 holds.) We also note that the net-
work can be modified so that it remains unstable, without affecting the main
structure of the corresponding proof. For instance, the long string of returns to
station 2 in (3.10),

→ (2, 1) → (2, 2) → · · · → (2, K) →

can be replaced by a route segment also involving a third station,

→ (2, 1) → (3, 1) → (2, 2) → (3, 2) → · · · → (2, K) → (3, K) →

where the service time at (3, k), for k = 1, . . . , K, is the same as at (2, k), which
is again chosen as in (3.9). So, consecutive returns to a station are not a crucial
feature of the model. Similar modifications can be made to the SBP examples
in Section 3.1 without affecting their instability.

In order to investigate the evolution of the queueing networks in Theorem 3.5,
we employ the following notation. Here, Zj,k(t) will denote the number of jobs at
the class (j, k) at time t, with Z(t) denoting the corresponding vector and |Z(t)|
being the total number of jobs. (Recall that since Z(t) does not reflect the order
of jobs, more information is needed to specify the state of the corresponding
Markov process.) By (j, k)+, we will mean the set of classes occurring strictly
after (j, k) along the route followed by jobs, and by Z+

j,k(t) the number of jobs

in (j, k)+.
Most of the work in demonstrating Theorem 3.5 is for the following induction

step.

Proposition 3.6. Consider a FIFO queueing network satisfying the routing
in (3.10) and mean service times in (3.9) and (3.11), with

Z1,1(0) = M, Z+
1,1(0) ≤M/50. (3.14)

Then for some ǫ > 0, large enough M , and appropriate T (depending on M),

P (Z1,1(T ) ≥ 100M, Z+
1,1(T ) ≤M) ≥ 1 − e−ǫM (3.15)

and
P (|Z(t)| ≥M/4 for all t ∈ [0, T ]) ≥ 1− e−ǫM . (3.16)

We will later choose T ≈ 2cM/(1 − c). Of course, the factor 50 in (3.14) is
not special, although the ratio Z+

1,1(0)/Z1,1(0) should be small.
Once Proposition 3.6 has been established, the proof of Theorem 3.5 is quick.

To see this, suppose Z(0) satisfies (3.14) for some largeM . Repeated application
of Proposition 3.6 implies that

P (|Z(t)| < M/4 for some t ≥ 0) ≤ 2

∞
∑

i=0

e−100iǫM , (3.17)
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which → 0 as M → ∞. All states of the Markov process Z(t) corresponding to
the network communicate with one another, and so, by (3.17), no state is recur-
rent. Hence, |Z(t)| → ∞ a.s. as t → ∞, for any Z(0). This implies Theorem 3.5.
Since T ≈ 2cM/(1 − c), one can also employ Proposition 3.6 to show that the
number of jobs increases linearly in t, i.e.,

0 = lim inf
t→∞

|Z(t)|/t ≤ lim sup
t→∞

|Z(t)|/t <∞.

Recall that the iterative procedure of viewing time intervals over which the
number of jobs in a system grows geometrically, while the system returns to
a “multiple” of its original state, was also employed in the proof of Theorem
3.1. Indeed, this is the most natural path to follow in attempting to analyze
the asymptotic behavior of many unstable networks. One question one can ask
for the FIFO queueing network in Theorem 3.5 is whether there are essentially
different ways in which Z(t) can approach infinity. More generally, one can ask
about the nature of the Martin boundary of the Markov process associated with
this or other unstable queueing networks. These questions remain essentially
uninvestigated.

Outline of the proof of Proposition 3.6

We outline here the proof of Proposition 3.6. We begin by introducing a se-
quence of stopping times S1, S2, . . . , Sℓ, . . . for the process Z(t). Jobs at either
station at a given time t are ordered according to the times at which they are
next served, so we can talk about a “first” or “last” job in this sense. (Due
to the multiple classes at each station, jobs entering the network earlier may
nevertheless be ordered behind more recent arrivals.) Let S1 denote the time
at which the last of the original jobs (jobs at t = 0) at station 1 is served.
Let S2, S3, . . . , Sℓ, . . . denote the successive times at which the last jobs at sta-
tion 2 are served, where the ordering is made at t = Sℓ−1. Set SL = SL+1 =
SL+2 = · · · , where SL is the time at which station 2 becomes empty. (On
account of (3.13), ρ2 < 1 and so L < ∞ a.s.) We can think of the intervals
(Sℓ, Sℓ+1], ℓ = 1, 2, . . . , as “cycles” at the end of which each job starting at
(2, k), k < K, is at (2, k+ 1). Note that no job can be served twice at station 2
before every other job there is served once, due to the FIFO discipline. We also
let T (which appears in Proposition 3.6) denote the time at which the last job
at (1, 2) at time S2K leaves the network.

We break the outline of the proof into four main steps, corresponding to the
evolution of Z(t) over the intervals (0, S1], (S1, SK ], (SK , S2K] and (S2K , T ].
We present here the intuition for each step, with the reader being referred to
[Br94a] for a rigorous analysis.

Step 1. Behavior on (0, S1]. We assume, as in (3.14), that Z1,1(0) = M with M
large, and that there are few jobs elsewhere in the network. Since m1,1 = δ ≪ 1,
one has S1 ≪ M except on a set of small probability. Also, m2,1 = c ≫ δ, and
so at time S1, nearly all of the original jobs in the network are still at (2, 1).
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Table 3.1

This table gives the approximate number of jobs at each class of the network at the
successive times 0, S1, . . . , SK+1, T . Classes marked with ∗ are classes having negligible

numbers of jobs off sets of small probability. At t = SK+1, the total number of jobs at (1,1)
and (2,1) is approximately cKM , which is itself negligible. Note that at t = T , the state is a

“multiple” of that at time 0, with factor c/(1 − c). Since SK ≈ cM/(1 − c) and
T − SK ≈ cM/(1 − c), one has T ≈ 2cM/(1 − c)

t\(j, k) (1,1) (2,1) (2,2) (2,3) . . . (2,K − 1) (2,K) (1,2)

0 M ∗ ∗ ∗ ∗ ∗ ∗

S1 ∗ M ∗ ∗ ∗ ∗ ∗

S2 ∗ cM M ∗ ∗ ∗ ∗

S3 ∗ c2M cM M ∗ ∗ ∗

.

..
.
..

.

..
.
..

SK ∗ cK−1M cK−2M cK−3M . . . cM M ∗

SK+1 ∗ ∗ cK−1M cK−2M . . . c2M cM M

S2K ∗ ∗ ∗ ∗ ∗ ∗ M/(1− c)

T cM/(1− c) ∗ ∗ ∗ ∗ ∗ ∗

Moreover, comparatively few new jobs have entered the network up to time S1,
and so there are few jobs at (1, 1). A schematic diagram for this and following
steps is given in Table 3.1.

Of course, since we are working with random events here, the above behavior
is sometimes violated. However, such exceptional events occur with probabilities
that are exponentially small inM , and one can show they can be ignored without
affecting the basic nature of the evolution of Z(t). Here and later on, we therefore
neglect these exceptional probabilities. Needless to say, a rigorous proof requires
accurate bookkeeping of such exceptional probabilities. We discuss this point
after completing the description of Z(t) over [0, T ].

Step 2. Behavior on (S1, SK ]. We first consider the evolution of Z(t) over
(S1 , S2]. Over this time interval, the (approximately) M jobs at (2, 1) all move
to (2, 2). Since m2,1 = c, the time it takes to serve these jobs is (approximately)
cM . The time required to serve other jobs is minimal, so S2 −S1 ≈ cM . During
this time, (approximately) cM new jobs enter the system, which quickly move
to (2,1). Thus, at t = S2, there are (comparatively) few jobs in the system
except at (2,2) and (2,1), where there are (approximately) M and cM jobs,
respectively.

Continuing our reasoning along the same lines, we observe that over (S2, S3],
the jobs at (2,1) and (2,2) advance to (2,2) and (2,3), respectively. Since m2,2 =
δ ≪ 1, the time required to serve the jobs at (2,2) is negligible; the time required
for the jobs at (2,1) is c2M , so S3 − S2 ≈ c2M . Over this time, c2M new jobs
enter the system, which quickly move to (2,1). So, at time S3, there are few
jobs in the system except at (2,3), (2,2), and (2,1), where there are M, cM
and c2M jobs, respectively. Proceeding inductively, we obtain that at time SK ,
there are M jobs at (2, K), cM jobs at (2, K − 1), and so on down to (2,1),
where there are cK−1M jobs. At station 1, there are few jobs. The elapsed time
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SK −SK−1 ≈ cK−1M . On account of (3.11), cK is small, and so there are about

K−1
∑

ℓ=0

cℓM ≈M/(1 − c) (3.18)

jobs in the system. Likewise, SK ≈ cM/(1 − c).

We point out that the large number of “quick” classes for station 2, in con-
junction with the FIFO discipline, serves to trap most jobs within station 2, and
prevent them from reaching class (1,2), until there are few remaining jobs at
the “slow” class (2,1). The behavior of this network thus mimics that of the Lu-
Kumar network, with the role of the single low priority “quick” class of station
2 being played by these many “quick” classes.

Step 3. Behavior on (SK , S2K]. Over the short period of time (SK , SK+1], the
evolution of the system changes. The M jobs from (2, K) arrive at (1,2). Since
m2,1 = c, these jobs require time cM to be served at station 1, during which time
new arrivals at (1,1) will not be served. The cycles (Sℓ, Sℓ+1], ℓ = K, . . . , 2K−1,
are all of much shorter duration than cM , because of (3.11), as is their union
(SK , S2K]. By the end of this period, the jobs already at station 2 at time SK

have already arrived at (1,2); because of (3.18), there are essentially M/(1− c)
such jobs. So, at time S2K , there are essentially M/(1 − c) jobs at (1,2) and no
jobs elsewhere. Of course, here and elsewhere, we are taking liberties in ignoring
“negligible” quantities of jobs and probabilities.

Step 4. Behavior on (S2K , T ]. During (S2K , T ], the M/(1− c) jobs at (1,2) exit
the system. The time required to serve these jobs is cM/(1− c). So, T − S2K ≈
cM/(1− c). During this time, cM/(1− c) jobs enter the system. These new jobs
are obliged to remain at (1,1) until time

T = S2K + (T − S2K) ≈ 2cM/(1 − c).

At this time, there are few jobs elsewhere in the system. So at time T , the
state of the system is a “multiple”, by the factor c/(1− c), of the state at time
0. This is the type of bound needed in (3.15) of Proposition 3.6. The bound
c ≥ 399/400, that we are assuming in (3.11), will be sufficient to derive (3.15)
when the above argument is carried out rigorously. (Presumably, the system
exhibits the same behavior when c > 1/2.)

We still need to demonstrate (3.16) of Proposition 3.6, which gives a lower
bound on |Z(t)| over [0, T ]. The previous reasoning in fact shows that, except
on a set of small probability, |Z(t)| will not drop much below M on [0, T ]. This
is because, up to time SK , most of the original M jobs at (1,1) remain in the
system, with there being approximately M/(1 − c) jobs in the system at time
SK . Since m1,2 = c, before most of these jobs have left the system, an additional
cM/2(1 − c) ≫M jobs enter the system, which are trapped at (1,1) until time
T . The bound in (3.16) follows from a rigorous version of this reasoning.
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We stated during the outline of the proof of Proposition 3.6 that the prob-
abilities of the exceptional events we neglected were exponentially small in M .
Here, we provide a short summary of the approach used in [Br94a] to show this,
referring the reader there for more detail.

Let X1, X2, X3, . . . be i.i.d. mean-1 exponentially distributed random vari-
ables, with Yn = X1 + · · ·+Xn. Then, for each α > 0, there exists β > 0, such
that for n ≥ 1,

P (|Yn − n|/n > α) ≤ e−βn. (3.19)

This is a simple large deviations bound that can be demonstrated in the usual
way, by applying Markov’s Inequality to the moment generating function of Yn.
It extends immediately to i.i.d. exponentially distributed random variables with
other means. The variables Yn can also be inverted to obtain analogous expo-
nential bounds on the number of exponentially distributed random variables
occurring by a given time.

For a given class (j, k), one can write

Zj,k(t) = Zj,k(0) + Aj,k(t) −Dj,k(t), (3.20)

where Aj,k(t), respectively Dj,k(t), are the total number of jobs arriving at,
respectively departing from, (j, k) over (0, t]. By applying (3.19) repeatedly, one
can derive upper and lower bounds on Aj,k(t) and Dj,k(t), and hence on Zj,k(t),
over the times S1, S2, . . . , S2K , T defined earlier. For instance, replacing 1/50 by
η for readability, the first bounds employed in [Br94a] are exponentially small
upper bounds in M for the probabilities that

S1 > 2ηM, A1,1(S1) > 3ηM, D2,1(S1) > 3ηM,

with the first of these bounds together with (3.19) being used for the last two
bounds. The last two bounds are then applied to obtain exponentially small
upper bounds on

Z2,1(S1) < (1 − 3η)M, Z1,1(S1) + Z2,1(S1) > (1 + 4η)M,

Z+
2,1(S1) +D1,2(S1) > 4ηM.

Similar bounds, such as on

Z+
2,k(Sk) +D1,2(Sk) > 4ηM, k = 2, . . . , K,

are then obtained. These last bounds limit the rate at which jobs can move
through the system. Together with further estimates, these bounds enable one
to rigorously justify the reasoning employed in Steps 1-4.

Another unstable FIFO example

The following unstable FIFO reentrant line is given in [Se94]. It consists of
four stations, each visited three times, with route given in Figure 3.4. As in
Section 3.1, class k denotes the kth class along the route.
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Fig. 3.4. The service time for a class is given along the route immediately after the class.

The model is a continuous, deterministic analog of a queueing network, whose
state at each class is given by a nonnegative real number representing the quan-
tity of “mass” there. As time evolves, this mass is served in a continuous and
deterministic manner. This model is an example of a fluid network. Fluid net-
works were mentioned briefly in Section 1.3 and are similar to the fluid models
that are considered in detail in Chapter 4; we omit a systematic discussion here.
We denote by Zk(t) the amount of mass at class k at time t, by Z(t) the corre-
sponding vector, and by |Z(t)| its magnitude. In analogy with our definition for
queueing networks, we will say this fluid network is unstable if for some initial
state, |Z(t)| → ∞ as t → ∞.

As indicated in the figure, each station has one “slow” class and two “quick”
classes. The “slow” classes have service times c1 and c2, which are assumed to
satisfy

2(c1)
2 < c2 < 1, c1 > 1/2; (3.21)

the “quick” classes have 0 service times. The service rates are given by the re-
ciprocals 1/ci and ∞; service at the “quick” classes is therefore instantaneous.
The presence of the “quick” classes nonetheless affects the flow of mass through
the system since, according to the FIFO discipline, mass at such a class must
wait until earlier arriving mass at the station’s “slow” class is served. As with
previous reentrant lines, we assume mass enters the system (in this case, de-
terministically) at rate 1. These features are similar to those in [KuS90] and
[LuK91].

It is easy to see that this network is subcritical, since the sum of service times
at each station is less than 1. The amount of mass in the network goes to ∞ as
t → ∞, however, for appropriate initial states. Such a state is given by

Z2(0) = 2c1M, Z8(0) = M, Z10(0) =
c2 − 2(c1)

2

2c1c2
M, (3.22)

Z12(0) =
c2 − 2(c1)

2

4(c1)2c2
M, Zk(0) = 0 elsewhere,
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where the mass at class 12 is understood to have arrived before that at class 10.
(Since the service at both classes 2 and 8 is instantaneous, the ordering there is
not important.) From this, one obtains:

Theorem 3.7. The FIFO fluid networks defined above are unstable.

As with the networks considered so far in this chapter, the proof consists of
an iterative argument, with the state of the system returning to a geometrically
growing “multiple” of the original state after each iteration. As before, |Z(t)|
will grow linearly in t.

[Se94] also considers the variant of the above model with mass leaving the
system after classes 3, 6, and 9 (as well as after class 12), and mass, at unit
rate, entering the system at classes 4, 7, and 10 (as well as at class 1). Since the
analog of Theorem 3.7 for this variant is somewhat easier to show, this is done in
[Se94] and the proof of Theorem 3.7 is summarized. In both cases, replacement
of “instantaneous” classes by “quick” classes, with service times δ > 0, and the
fluid network by the corresponding queueing network considerably complicates
the bookkeeping necessary for keeping track of jobs. Although not published,
this stochastic version is presumably doable.

An unstable FIFO network with quick service times

The examples of unstable subcritical networks given so far all have at least
one class with mean service time greater than 1/2. In each of these examples,
it follows that the traffic intensity ρj is greater than 1/2 at some station j.
What happens when ρj is uniformly small at all stations? Must all such FIFO
queueing networks be stable? The following example from [Br94b] shows this is
not the case.

Jobs are assumed to follow one of two nearly identical routes, the “upper”and
“lower” routes, at the end of which they exit from the system. As illustrated
in (3.23), there are J stations along each route. (Because of space considerations,
we label only the stations but not the classes along each route.)

→ 1 → 2 → · · · → 2 → 3 → · · · → 3 → · · · → J → · · · → J →
(3.23)

→ 1 → 1 → 2 → · · · → 2 → 3 → · · · → 3 → · · · → J → · · · → J → 1 →

Jobs are assumed to enter each route at rate 1/2. Along each route, the stations
j = 2, . . . , J are each visited seven times; at each such station, the first visit is
“slow” and the remaining six visits are “quick”. Only the visit to station 1 at
the end of the lower route is “slow”; the three earlier visits to station 1 along
both routes are “quick”.

We now give a precise description of the network depicted in (3.23). We
employ the notation (i, j, k) for a class, with i = u, ℓ denoting its route, j =
1, . . . , J denoting its station, and k denoting the order this class is visited, among
classes of its station along this route. One has k = 1, . . . , 7 for j = 2, . . . , J ; k = 1
for i = u and j = 1; and k = 1, 2, 3 for i = ℓ and j = 1. The two types of jobs
are assumed to enter the system according to independent rate-1/2 Poisson
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processes. Service times of jobs are independent and exponentially distributed,
with means

c at (i, j, 1), for i = u, ℓ and j = 2, . . . , J,

c at (ℓ, 1, 3), (3.24)

δ at (i, j, k), for i = u, ℓ, j = 2, . . . , J and k = 2, . . . , 7,

δ at (u, 1, 1), (ℓ, 1, 1) and (ℓ, 1, 2).

We assume that

0 < c ≤
1

100
, 0 < δ ≤ c8, J = ⌊2c−1 log(c−1)⌋. (3.25)

Each of the stations 2, . . . , J therefore has one comparatively slow and six (very)
quick classes for each type of job; station 1 has only the single quick class for the
upper jobs, and two quick classes and one slow class for lower jobs. The choice of
parameters is made for technical reasons. (The coefficient 2 in the definition of
J has been chosen so that (1 − c)−J ∼ c−2. The bound c ≤ 1/100 is somewhat
arbitrary.) One can think of this family of networks as being constructed by
piecing together J copies of the middle section of networks of the type in (3.10).
(We only need K = 7 here, although K ≥ 7 can instead be used.)

Under (3.25),
ρj ≤ c + 6δ ≤ 2c for j = 1, . . . , J.

So, by choosing c small, the traffic intensity can be chosen as small as desired
for each j. Nonetheless, the following is true.

Theorem 3.8. FIFO queueing networks with the routing in (3.23) and mean
service times in (3.24)–(3.25) are unstable.

To demonstrate Theorem 3.8, one employs an appropriate analog of Proposi-
tion 3.6. One can then argue exactly the same way as immediately after Proposi-
tion 3.6 to finish the proof of Theorem 3.8. The spirit of the proof of this analog
is similar to that of Proposition 3.6, although details are more involved. The
purpose of the upper jobs is solely to restrict the flow of the lower jobs. Because
of the multiple stations employed here, the same reasoning that shows, in the
previous network, that the main body of jobs remains close together, cannot be
applied directly. However, with the control resulting from the upper jobs, one
can analyze the flow of lower jobs much as was done in Proposition 3.6. For
more details, the reader is referred to [Br94b] or [Br95]. Presumably, the analog
of Theorem 3.8 holds for an appropriate reentrant line, most likely with a route
corresponding to that of the lower jobs in (3.23), although the reasoning given
in [Br94b] no longer suffices.

Theorem 3.8 has the following interesting consequence. One can compare
any FIFO queueing network satisfying (3.24)–(3.25) with the network that is
obtained from it by replacing (3.24) with the assumption that the mean service
time mi,j,k = c at every class. The lengths of the mean service times for the
new network are, of course, everywhere at least as great as those of the original
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network. This new network is a subcritical FIFO network of Kelly type with
ρj ≤ 7c for all j. Such a FIFO network has a stationary distribution that is
given by (2.4) and (2.9). In particular, the stationary probability of there being
n jobs at a given station is at most (1 − 7c)(7c)n, n ≥ 1, which means that
the network is in fact “very stable” for small c. This comparison shows that
decreasing the mean service times within a queueing network may result in
making it unstable.

At present, there is a lack of general criteria for the stability of FIFO queueing
networks. The difficulties are illustrated by the previous examples. They do not,
however, rule out two possible criteria for stability. Set mmin

j (mmax
j ) equal to

the minimum (maximum) over all mk, k ∈ C(j), where j is fixed, and set
mR

j = mmin
j /mmax

j .

The first criterion is that, for given mR > 0, there exists an r > 0, so that if
a FIFO network satisfies mR

j ≥ mR and ρj ≤ r, for all j, then it is stable. The

second criterion is that, for given r < 1, there exists an mR < 1, so that if a
FIFO network satisfies mR

j ≥ mR and ρj ≤ r, for all j, then it is stable.
According to the first criterion, if the mean service times at a given station

are not too different, then small enough traffic intensities suffice for stability
independently of the specific structure of the network. Similarly, according to
the second criterion, a subcritical network, with ρj ≤ 1 − ǫ for all j and given
ǫ > 0, is stable as long as the ratios mR

j are close enough to 1. Networks of Kelly

type, with mR
j ≡ 1, make up the limiting case in the latter scenerio. Note that

the first criterion becomes elementary if the routing of the network is instead
specified before r is chosen, since the total number of classes is then fixed. In
that setting, r can be chosen small enough so that Σjρj < 1, which implies the
network is stable by the example at the end of Section 4.4. No progress has been
made toward justifying or disproving these criteria.

3.3. Other examples of unstable networks

In the previous two sections, we have given a number of examples of subcritical
queueing networks that are unstable. Here, we give several other examples of
unstable queueing networks. In some of these cases, more can be said about the
region of stability as the traffic intensity ρ varies.

The first example we consider is from [DaWe96]. It consists of a subcritical
SBP reentrant line of Kelly type that is unstable. (Recall that a network is of
Kelly type if all classes at a given station have the same mean service time.)
This contrasts, of course, with the stability of FIFO networks of Kelly type that
was shown in Chapter 2.

The second example is from [Du97]. It exhibits a family of SBP networks for
which the region of stability is nonmonotone in the parameter ρ, behavior that
is shared with the last example in the previous section. The region of stability
is, moreover, explicitly calculated and is not convex.

The last example is from [BaB99]. The family of networks given there is
FIFO, but with the added feature that the number of jobs on one of the given
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routes in the network is bounded at any given time. The region of stability here
is also calculated explicitly and is neither monotone nor convex. The boundary
is, moreover, self-similar around one of its boundary points.

An unstable network of Kelly type

In contrast to FIFO networks, it is not sufficient for a subcritical queueing
network to be of Kelly type for it to be stable. It is not difficult to produce a
reentrant line, with an appropriate SBP discipline, that exhibits this behavior.
Such an example is provided in [DaWe96].

This example consists of two stations, with each station being visited three
times, and is depicted in Fig 3.5. The priority scheme is (6,5,1) at station 1
and (3,2,4) at station 2, e.g., the last class visited at station 1 has the highest
priority and the first class visited there has the lowest priority. The discipline
is preemptive. We assume, as usual, that jobs enter the network according to a
rate-1 Poisson process. We also assume that the service times are exponentially
distributed, with mean 0.3 at each class. The network is clearly subcritical, with
ρ = (.9, .9).

Theorem 3.9. The static priority reentrant line of Kelly type in Figure 3.5 is
unstable.

We motivate Theorem 3.9 by comparing the evolution of the reentrant line
there with the evolution of the Lu-Kumar network; a rigorous argument can
be given by mimicking the proof of Theorem 3.2. First note that if one both
“combines” the last two classes of station 1, k = 5 and k = 6, into a single class
and “combines” the first two classes of station 2, k = 2 and k = 3, into a single
class, one obtains the four-class reentrant line whose route and mean service
times are given in Figure 3.6.

We assign to the classes of the new reentrant line the same priority scheme
as in the Lu-Kumar network, with k′ = 4 having priority over k′ = 1, and
k′ = 2 having priority over k′ = 3. Adding the service times at the combined
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Fig. 3.5. This reentrant line has priority scheme (6,5,1) at station 1 and (3,2,4) at station
2. All service times have mean 0.3.
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Fig. 3.6. “Combining” classes k = 5 and k = 6 into a single class and k = 2 and k = 3

into a single class produces this reentrant line, with the above mean service times.

classes produces service times having gamma distributions with means 0.6, in
both cases.

Some thought shows that this new network is a natural “projection” of that
in Figure 3.5, in the sense that there is a pathwise correspondence between the
evolution of jobs in the two networks, with the understanding that jobs at k = 5
and k = 6, respectively at k = 2 and k = 3, in the old network are combined
into k′ = 4, respectively k′ = 2, in the new network. This correspondence
relies on the assigned priority scheme for the old network: both classes 5 and
6, respectively classes 2 and 3, have higher priority than class 1, respectively
class 4, and so the information lost in the projection is immaterial in assigning
the priority of service to jobs in the combined class with respect to the other
remaining class. Moreover, since class 6 has higher priority than class 5 and
class 3 has higher priority than class 2 in the old network, jobs currently in
service in the new network at class 4 and at class 2 will not be preempted in
the middle of their service by other jobs there. This allows us to maintain the
pathwise correspondence between jobs in the two networks.

Because of the above relationship between the two networks, instability of one
network implies instability of the other. The projected network is the same as the
Lu-Kumar network in Theorem 3.2, except that the exponentially distributed
service times at classes 2 and 4 are replaced by service times with gamma
distributions there, each with mean 0.6. As mentioned after the statement of
Theorem 3.2, the assumption that service times are exponential is not needed
there, if one is willing to allow a more general state space. Since 0.6 > 0.5, as
required in the theorem, it will follow that the network in Figure 3.6 is unstable.
One can also show Theorem 3.9 without referencing Theorem 3.2, but instead
by mimicking its proof; the setup there has some similarity with the “method
of stages” employed in Section 2.4.

Two examples with nonconvex regions of stability

The first example is an SBP queueing network from [Du97]. As in the Rybko-
Stolyar network of Section 3.1, jobs travel along one of two routes that are
oriented in opposite directions. In the present setting, there are three stations
having two classes each, with the classes labelled according to the route and
position along the route, as in Figure 3.7. Jobs of the second route are assumed
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Fig. 3.7. The priority scheme favors the classes (2,3), (2,2), and (1,3), respectively, at the
stations 1, 2, and 3.

to have priority over jobs of the first route at each of the first two stations, with
this being reversed at the third station. The discipline is preemptive. Jobs enter
the routes according to independent rate-αk Poisson processes, i = 1, 2, and
have independent exponentially distributed service times with means mi,k.

Consider the functions F1(ρ), F2(ρ), and F3(ρ) defined by

F1(ρ) = (ρ1,1 + ρ2,3 − 1) ∨ (ρ1,2 + ρ2,2 − 1) ∨ (ρ1,3 + ρ2,1 − 1) ∨ (ρ1,3 + ρ2,2 − 1),

F2(ρ) = (ρ1,3 + ρ2,3 − 1)(1 − ρ1,2 − ρ2,2) − (ρ1,2 + ρ2,3 − 1)(1 − ρ1,3 − ρ2,1),

F3(ρ) = (ρ1,3 + ρ2,3 − 1) ∧ [(ρ1,3 − ρ1,2) ∨ F2(ρ)],

where ρi,k = αkmi,k. (Recall that a∨ b = max(a, b) and a∧ b = min(a, b)). Also,
set F (ρ) = F1(ρ) ∨ F3(ρ). The regions of stability/instability for the network
can be explicitly written in terms of these functions.

Theorem 3.10. The SBP network in Figure 3.7 is stable if F (ρ) < 0 and
unstable if F (ρ) > 0.

The reader should not focus too much on the specifics of F (ρ). For our pur-
poses, it is enough to observe that the regions of stability/instability are explicit
and are considerably more complicated for this relatively elementary network
than for either the Lu-Kumar or Rybko-Stolyar network. Moreover, (a) the re-
gion of stability F (ρ) < 0 is not convex and (b) stability is not monotone in ρ,
i.e., one can find ρ < ρ′ with F (ρ) > 0 and F (ρ′) < 0. Both properties follow
from Theorem 3.10 by setting ρ1,1 = ρ2,2, ρ1,2 = ρ2,3, and ρ1,3 = ρ2,1, and
restricting F (ρ) < 0 to this three dimensional subspace. Slices of this region at
fixed values of ρ1,1 can then be analyzed. As a quick check on the consistency
of the instability condition F (ρ) > 0, note that F1(ρ) > 0 if any of the three
stations is supercritical.

In order to show both directions of Theorem 3.10, [Du97] employs ergodic/
transience criteria developed in [MaM81] for reflected random walks on Zd

+,0.
Motivation for the definition of F (ρ) is provided by fluid equations that cor-
respond to the original network. These equations are related to fluid models,
which will be studied in the next chapter.

The second example we discuss is from [BaB99] and examines a family of
networks consisting of a single route with controlled jobs and multiple transverse
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. . . 

Fig. 3.8. The controlled jobs move horizontally and the cross jobs move vertically. The number
of controlled jobs in the network at a given time is restricted, with excess controlled jobs
required to wait at the outside buffer on the left. There are currently 3 jobs waiting at the
outside buffer.

routes with cross jobs. ([BaB99] employs the terms controlled customers and
cross customers.) Controlled jobs moving along their route visit each of the J
stations in the network once; the cross jobs each visit only a single station before
exiting the network. No more than L controlled jobs are allowed in the network
at a given time; when there are more than L such jobs, the excess jobs wait at
an outside buffer until a controlled job leaves the network, at which point the
first such job enters the network. There is no such restriction on cross jobs. (See
Figure 3.8.) All jobs are served according to the FIFO discipline at each station.
These networks can be thought of as a simple model with window flow control
for packet-switched communication networks.

Detailed analysis of such a system is possible under certain restrictive as-
sumptions. Set J = 2 and L = 1, and assume that the service times for all jobs
(both controlled and cross) are deterministic and take value 1. Also, assume
that the interarrival times of the cross jobs at station 1 are deterministic and
take value τ , with τ ≥ 1, and that there are never any cross jobs at station 2.
There are only minimal assumptions on the interarrival times for the controlled
jobs, namely that they define a stationary and ergodic point process with some
intensity λ.

On account of the outside control on jobs, this network differs from the other
examples considered in this chapter. Also, because of the deterministic aspects
of this model, it is more appropriate to weaken the definition of stable used
elsewhere, and only require here that the model support a stationary process
(that need not be ergodic). The definition of unstable remains the same as
before.

This network is interesting because of how its region of stability depends on τ .
For fixed τ , stability is monotone in the parameter λ, and does not otherwise
depend on the arrival process for the controlled jobs; there is a λ̄ so that for
λ < λ̄, the network is stable, while for λ > λ̄, it is unstable. In Figure 3.9, λ̄ is
graphed as a function of λ1 = τ−1, with the heavy line being both the graph of
λ̄ and the boundary between the stable and unstable regions.

As in the example in Figure 3.7, the region of stability of the network is not
convex. Also, as in previous examples, it is not monotone. (This nonmonotonic-
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Fig. 3.9. This is the graph of λ̄ as a function of λ1 = τ−1, which is the boundary between the
stable and unstable regions. (The heavy line is the graph of λ̄; the dotted lines help one track
the piecewise linear increments of λ̄.)The graph of λ̄ is self-similar around (0, 1
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). (Example

reprinted from [BaB99] with permission from Baltzer.)

ity is in terms of the intensity of the cross traffic, though, instead of in terms
of the mean service times, as in the previous examples.) Moreover, the graph of
λ̄ is self-similar around (0, 1

2 ), as is indicated in Figure 3.9. An open question
is what part of this behavior remains when the deterministic interarrival and
service times in the model are randomized.

Two other families of networks with nonmonotone regions of stability are
given in[Br98a] and [DaHV99]. In both cases, decreasing the service time dis-
tributions can destabilize the network. In [Br98a], this is done by showing a
network can be stabilized by inserting a single class station immediately be-
fore the visit to each class. (Related deterministic work was done in [Hu94].) In
[DaHV99], this is done in the context of global stability, which is discussed in
Section 5.4.



Chapter 4

Stability of queueing

networks

In Chapter 2, we demonstrated the stability of several families of queueing
networks by explicitly computing their stationary distributions. For queueing
networks with other disciplines, or with nonexponential interarrival and service
times, one cannot expect such explicit expressions. So, in order to investigate
the stability of more general queueing networks, another approach is needed.
Such an approach should be more qualitative and less computational in na-
ture.

The approach we employ in this chapter to study the stability of queueing
networks employs fluid limits and fluid models. Fluid models were discussed
briefly in Section 1.3; we will examine both fluid limits and fluid models in detail
here. Employing these tools, one can reduce the study of queueing networks to
their simpler deterministic analogs. The basic theory is given here; applications
will be given in Chapter 5.

In the next several paragraphs, we give some background on previous re-
sults on the stability of queueing networks. We recall that a queueing network
is defined to be stable if its underlying Markov process is positive Harris re-
current. As mentioned earlier, when the state space is countable and all states
communicate, this definition reduces to the usual definition of positive recur-
rence. Results in earlier works are typically stated within this more restrictive
framework.

Interest in whether general families of queueing networks are stable has de-
veloped since the 1980’s. Most early work was restricted to single class networks
(see, e.g., [Bo86], [Si90], [BaF94], [ChTK94], and [MeD94]). Work on multiclass
networks usually dealt with deterministic systems, with either discrete or con-
tinuous job mass (see, e.g., [PeK89], [KuS90], [LuK91], and [Ku93]); examples
of both types of systems were given in Chapter 3. “Stability” for such determin-
istic systems was shown in various cases in the above literature, with stability,
in this context, typically meaning that the quantity of job mass in the system

243
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converges to 0 or remains bounded over time. As in the stochastic setting, ρ < e
is the natural requirement for stability.

Examples of unstable deterministic networks, with ρ < e, were given in
[KuS90] and [LuK91]. An example of an unstable network in the stochastic
setting was given in [RyS92]; these and other examples were discussed in Chap-
ter 3. Such examples illustrate the importance of the discipline in determining
whether a queueing network is stable.

It has long been believed that queueing networks should be stable under
general assumptions. Inclusive conditions for stability are not known (and likely
do not exist). Instead, stability is typically shown in the context of a specific
discipline, under ρ < e and perhaps other constraints. The approach we present
in this chapter, using fluid limits and fluid models, reduces the study of such
problems to a simpler, deterministic setting.

The foundation for this approach was given in [RyS92]. For a two station
FIFO queueing network, with the same routing as in Figure 3.2 and with expo-
nential interarrival and service times, the authors showed stability when ρ < e.
Their argument involved showing the “stability” of solutions of a related de-
terministic system, and showing that rescaled solutions of the random system
remain close to those of the deterministic system. As pointed out in [RyS92],
this procedure is, in principle, quite general in nature. However, for all but
the simplest systems, technical problems arise when comparing solutions of the
random and deterministic systems.

Independently, [St95] and [Da95] developed criteria for the stability of queue-
ing networks, in terms of the stability of limits of rescaled solutions of the net-
work. (In the terminology of this chapter, [St95] used fluid limits and [Da95] used
both fluid limits and fluid models.) [St95] assumed exponential distributions for
the interarrival and service times; [Da95] considered more general distributions,
but at the price of requiring the use of Markov processes with general state
space. Applications illustrating this approach are given in [Da95].

The material in this chapter is based on the approach taken in [Da95]. The
main theorem of the chapter, Theorem 4.16, corresponds to Theorem 4.2 in
[Da95]. Our approach here is a modification of that in [Br98a]. Care has been
taken to give a detailed presentation of the material, including that cited in
[Da95]. As a consequence, the chapter is quite long; in the remainder of the
introduction, we summarize its contents.

Summary of chapter

Chapter 4 consists of five sections. In Section 4.1, we present the foundations
for the Markov processes we will need. We first give a detailed construction of
the underlying Markov process for an HL queueing network. We next summarize
relevant results from general Markov process theory. The third part of the section
defines Harris recurrence and positive Harris recurrence, and gives an alternative
formulation, in Theorem 4.1, that we will use.

We recall that a queueing network is e-stable, if its underlying Markov process
is ergodic. In the last part of Section 4.1, we give general conditions under which



M. Bramson/Stability of queueing networks 245

ergodicity holds. At the end of Section 4.4, we will use this to give criteria under
which a queueing network is e-stable. In the continuous time, countable state
space setting, positive Harris recurrence and ergodicity are equivalent.

Much of the material in Section 4.1 may be unfamiliar to readers. We point
out that concepts such as positive Harris recurrent and petite are motivated
by similar concepts in both the discrete time and countable state space set-
tings. Various proofs either rely on, or are motivated by, similar results in these
settings. Those readers who are interested in further background can refer to
Section 4.5, which serves as an appendix to this section.

When the interarrival and service times are exponentially distributed, the un-
derlying Markov process of the queueing network can, for many disciplines, be
constructed on a countable state space. This considerably simplifies the prepara-
tion that is required to derive Theorem 4.16. In particular, one does not require
the general machinery that is introduced in Section 4.1. For readers wishing such
a “shortcut”, we present a summary, at the end of the different sections, saying
how the general approach presented here can be modified. (In Section 4.4, the
summary is instead presented after Theorem 4.16.) Here in the introduction, we
will also point out these shortcuts.

In Section 4.2, we present two results on bounded sets that we will need later
on. The first, Proposition 4.6, is a variant of Foster’s Criterion, which we refer
to as the Multiplicative Foster’s Criterion. The main condition is that, off of
a bounded set, the Markov process X(·) have a uniformly negative drift on an
appropriate time scale. One also requires that the bounded set be either petite
or uniformly small, which are defined in Section 4.1. (In essence, petite means
that all sets, weighted according to some measure, are “equally accessible” from
any point in the petite set. Uniformly small is a somewhat stronger concept that
is defined similarly.) One concludes that X(·) is positive Harris recurrent when
the condition petite is assumed and ergodic when uniformly small is assumed.
In the countable state space setting, the petite and uniformly small conditions
can be dropped, since the empty state will be equally accessible from all points
in the bounded set. Moreover, Theorem 4.1, from Section 4.1, is not needed for
the proof of the Multiplicative Foster’s Criterion in the countable state space
setting.

The other result from Section 4.2, that we will need later, is Proposition 4.7.
It says that when the interarrival times of a queueing network satisfy certain
conditions, bounded sets will be uniformly small, and hence also petite; this
enables us to employ the Multiplicative Foster’s Criterion. The proposition is
not needed in the countable state space setting.

Section 4.3 introduces fluid models and fluid limits. The first part of the
section recalls the queueing network equations that were discussed briefly in
Section 1.3; we provide more detail here. Fluid model equations are the deter-
ministic analogs of the queueing network equations. They were also discussed
briefly in Section 1.3; we provide further detail in the second part of Section 4.3.
There, emphasis is placed on the basic fluid model equations, which are the fluid
model equations that do not depend on a specific discipline. Proposition 4.11, in
the subsection, presents several elementary results on fluid models that will be
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used later. Two examples are given that illustrate nonuniqueness of fluid model
solutions and instability when the system is subcritical.

Fluid limits are introduced in the last part of Section 4.3. They provide a
rigorous connection between the queueing network and fluid model equations,
with the latter being satisfied by limits of solutions of the former, under a
“law of large numbers” scaling. Variants of fluid limits have been present in the
literature at least since [Ne82] (see also [ChM91]).

The use of fluid limits, as in Proposition 4.12 of this section, makes the re-
lationship between queueing network and fluid model equations precise. The
connection between queueing network and fluid model equations will be impor-
tant in Section 4.4, where we use the stability of fluid models (and, indirectly, of
fluid limits) to show the stability of queueing networks. The approach taken in
this section remains essentially the same when employed in the countable state
space setting.

In Section 4.4, we demonstrate Theorem 4.16, which is the main result on
the stability of queueing networks. As assumptions, one needs bounded sets to
be petite and the fluid limits to be stable. Proposition 4.7, from Section 4.2,
gives sufficient conditions for the former property to hold. The Multiplicative
Foster’s Criterion will be used, in conjunction with Proposition 4.7 and the
bounds given in Section 4.4, to demonstrate Theorem 4.16. The work required
for this simplifies considerably in the countable state space setting.

After the theorem, we provide various commentary, such as on modifica-
tions of its assumptions. One such modification, substituting uniformly small
for petite, suffices for the stronger conclusion that the network is e-stable. The
result, Theorem 4.17, follows by applying Theorem 4.3 from Section 4.1, and
otherwise reasoning as in the proof of Theorem 4.16. As mentioned earlier, in
the continuous time, countable state space setting, stability and e-stability are
equivalent.

4.1. Some Markov process background

In this section, we first introduce the Markov processes that are associated with
HL queueing networks. We next consider these Markov processes in an abstract
setting, in which we define positive Harris recurrence. We then present a useful
alternative characterization of positive Harris recurrence which will be applied
to queueing networks in the following sections. Some of the background for
this material is relegated to Section 4.5, which serves as an appendix to this
section.

We note that in the countable state space setting, the material that is needed
from this section is minimal. The construction of the Markov process simplifies,
since sample paths are piecewise constant with finite jump rates. Moreover, stan-
dard recurrence concepts from Markov chain theory apply, and so the discussion
of Harris recurrence that is given here is not needed. More detail is given at the
end of the section.
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Definition of the Markov process

In this subsection, we give a careful construction of the Markov process that
is associated with a given HL queueing network. Readers are encouraged to
consider this material, but those who are not interested in the technical details
should feel free to skip ahead to the next subsection. If the reader does so, he/she
should keep in mind that we are defining continuous time Markov processes,
on an appropriate space and with dynamics that correspond to the queueing
networks of interest. One should note the “norm” |x| of a state x, which is given
in (4.3): it is the sum of components corresponding to the queue lengths, and
residual interarrival and service times of the state. It will be employed later on
in the chapter.

We begin by defining the state space (S,S ) of the Markov process. In order
to motivate the different components of states of the space, we will repeatedly
allude to the various queueing network quantities they will correspond to.

The state of the Markov process, at any time, will be given by a point x =
(y, r), where

y ∈ (Z ×R)∞ ×R|A| ×RK and r ∈ RK, (4.1)

and the coordinates are subject to appropriate positivity restrictions. Recall
that A is the set of classes at which external arrivals are allowed. It is assumed
that only a finite number of the pairs of coordinates of (Z × R)∞, indexed by
i, are nonzero. For such a pair, the first coordinate ki, ki = 1, . . . , K, is to
be interpreted as the current class of a job in the network, with the second
coordinate si, si ≥ 0, measuring how long ago the job entered this class, where
si is given in descending order. The job with the largest second coordinate,
among those with first coordinate k, is thus the first or “oldest” job of class k.
(For “ties” where two or more pairs have the same second coordinate, order the
job with the smaller k coordinate first.)

We denote by z = (z1, . . . , zK) the number of jobs in each class, and set |z| =
∑K

k=1 zk. The vector r is assumed to have coordinates rk ∈ [0, 1], k = 1, . . . , K,
with rk = 0, for zk = 0, and which sum to 1 over each nonempty station j.
For each nonempty class k, the coordinate rk is to be interpreted as the service
rate of the oldest job of this class, with other jobs receiving no service. (This
is the HL property.) The coordinates uk, uk > 0, of R|A| are to be interpreted
as the residual interarrival times for classes k, with k ∈ A. (That is, uk is the
remaining time before the next arrival at k of a job from outside the network.)
The coordinates vk of RK , for the y component, are the residual service times
for the oldest job at each class k, k = 1, . . . , K, with vk > 0 except when zk = 0,
in which case we set vk = 0. We denote by u and v the corresponding vectors,
and set |u| =

∑

k∈A |uk| and |v| =
∑K

k=1 |vk|.
We denote by S the space given by (4.1) and the above restrictions on the

coordinates. We wish to specify a metric on S. For this, it is convenient to denote
by r̃i the service rate assigned to the ith job, i = 1, . . . , |z|. The metric is defined
by adding up the contribution of each of the coordinates in (4.1), after taking
differences for individual terms. Specifically, for x, x′ ∈ S, with corresponding
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coordinates as denoted above, we set

d(x, x′) =

∞
∑

i=1

((|ki − k′i| + |si − s′i| + |r̃i − r̃′i|)∧ 1)

+
∑

k∈A

|uk − u′k| +
K
∑

k=1

|vk − v′k|. (4.2)

For most purposes, we will not require the full metric, but just the associated
“norm” | · |, with

|x| = |z| + |u|+ |v|. (4.3)

(|x| can be interpreted as the distance from x to the “origin”, which is not in the
space, however.) Note that |x| is continuous as a function of x. We also equip S
with the standard Borel σ-algebra inherited from the metric, which we denote
by S .

Since only a finite number of the coordinate pairs in (Z ×R)∞ are nonzero,
it is not difficult to see that the metric d(·, ·) is separable. It is also locally
compact; with a bit of work, one can show this by showing that an open ball
around a point x is homeomorphic to a finite product of intervals of the form
(0, 1) and [0, 1). (Half-closed intervals are needed when either si = 0, si = si′

for some i 6= i′, or the coordinates rk of r corresponding to a given station j are
on the boundary of the simplex

∑

k∈C(j) rk = 1.) The metric is not complete,
since one can choose Cauchy sequences xn, with un → 0 or vn → 0 as n → ∞,
that have no limit in S. It is, however, homeomorphic to the complete metric
d′(·, ·) obtained by replacing the term

∑

k∈A |uk − u′k| in (4.2) by

∑

k∈A

(

|uk − u′k| +

∣

∣

∣

∣

1

uk
−

1

u′k

∣

∣

∣

∣

∧ 1

)

,

and
∑k

k=1 |vk−v′k| by the analogous term (where we set 1
0 −

1
0 = 0). We prefer to

work with the simpler metric d(·, ·), since we will not require S to be complete.
We now formally define the Markov process underlying an HL queueing net-

work as the stochastic process X(t), t ≥ 0, on S that undergoes the following
evolution. We continue to use the same suggestive queueing vocabulary that was
employed in motivating the construction of S.

We set X(t) = (Y (t), R(t)), with Y (t) and R(t) taking values y and r as
in (4.1). (The coordinates si of y are allowed to exceed t, and so jobs may,
in effect, arrive before time 0.) The evolution of X(t), in between arrivals and
departures of jobs at classes, is given by the service rates Rk(t), which are
constant over such intervals. Upon an arrival or departure somewhere in the
network at time t, the stochastic process is continued by assigning new ser-
vice rates R(t) = f(Y (t)), where f is a measurable function. The choice of f
corresponds to the discipline of the corresponding HL queueing network.

In order to describe the transition of X(t) upon the arrival or departure of
a job at a class, we introduce the sequences of positive i.i.d. random variables
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ξk(i), k ∈ A, and γk(i), k = 1, . . . , K, with i = 1, 2, 3, . . . , which correspond to
the interarrival and service times of the queueing network. We will also need the
sequence of i.i.d. random vectors φk(i), i = 1, 2, 3, . . . , with φk(i) = eℓ for some
ℓ = 1, . . . , K or φk(i) = 0, which give the routing of a job upon completion of
its service at a class. (Here, eℓ ∈ RK is the unit vector in the positive ℓ direc-
tion.) We assume the sequences ξ, γ, and φ are mutually independent. These
sequences, together with the function f and the initial state x, will determine
the evolution of X(·) for all times along each sample path.

The process X(t) can be constructed inductively as follows. At times t be-
tween arrivals and departures, R(t) = r gives the rate of decrease of each com-
ponent of the residual service time vector V (t) = v. When Vk(t−) = 0 occurs for
some k, service at k for the oldest job of that class is assumed to be completed,
with the job being routed to another class ℓ, if φk(i) = eℓ, and leaving the net-
work, if φk(i) = 0, where φk(i− 1) is the previous routing vector applied at k.
When this occurs, one sets Vk(t) = γk(i) if class k is then nonempty, and sets
Vk(t) = 0, if k is empty. Until a job leaves its class, its age Si(t) = si continues
to increase at rate 1. (The label i of a job will typically change as it moves from
one class to another.)

The components of the residual interarrival time vector U(t) = u always
decrease at rate 1 until hitting 0. At the time t for which this occurs at a given
k, one includes the pair (k, 0) in the state Y (t) and sets U(t) = ξk(i), where i
is the index of the first unused interarrival time at k at time t. If the class k is
empty at time t−, and hence Vk(t−) = 0, one sets Vk(t) = γk(i′), where i′ is
the index of the first unused service time at time t.

In various cases, the state space S can be simplified for queueing networks
with specific HL disciplines, or specific interarrival and service time distribu-
tions. For instance, when the interarrival and service times are exponentially
distributed, one can drop the u and v coordinates from the description of the
state (unless r is chosen to depend on them).

Preemptive static buffer priority disciplines were introduced in Chapter 1.
Such networks are HL, with r̃i = 1 automatically holding for the oldest job of
the highest ranked nonempty class at each station. One can therefore drop the
age of jobs from the state space descriptor. As mentioned above, the residual
interarrival and service times can also be dropped from the descriptor when
the corresponding variables are exponentially distributed. The state space can
then be reduced to points in ZK with nonnegative coordinates, if one implicitly
assumes the given priority scheme that orders classes at each station, since one
is able to drop the coordinate r that governs service.

Networks with the FIFO discipline are also HL, since the oldest job at a
station is always served first. If one chooses, one can drop the age of jobs from
the state space descriptor, by instead ordering the ages at each station; one can
also drop the coordinate r. As before, coordinates can also be eliminated when
the interarrival and service times are exponentially distributed. The resulting
state space will then be countable.

The state space S is large enough to contain the information needed for
the queueing networks we will investigate. It can, however, be modified if one



M. Bramson/Stability of queueing networks 250

has other applications in mind. For instance, a state space descriptor for how
long ago a job entered the network can be appended. This is needed for the
FISFO networks mentioned briefly in Section 1.2 (see, e.g., [Br01]). Also, one
can associate with each job in a class a residual service time, instead of with
just the class itself (see, e.g. [Wi98]). The definitions (4.2) and (4.3) then need
to be modified accordingly.

Foundations and terminology

It is not difficult to see that the process X(·) just defined is time homoge-
neous and Markov, and that its sample paths are right continuous. Although
X(·) is not a jump process, it evolves in a simple manner, having only isolated
discontinuities and evolving deterministically in between. In particular, after a
jump, the state of X(·) is explicitly known until its next jump, with its evolution
being linear in its coordinates.

The process X(·) is an example of a piecewise-deterministic Markov process
(PDP). Such processes are discussed in [Da84] and [Da93] in detail; we will rely
on the latter in our discussion. In [Da93], PDPs are the more general family
of processes whose evolution in between jumps, rather than being linear, is
determined by a locally Lipschitz continuous vector field. Also, “killing” at a
rate dependent on the position is allowed in [Da93]; after such killing, the process
jumps according to a given random rule. In our setting, there is no such killing.
Since, in between jumps, X(·) lives in a subset of S which is homeomorphic to
an open ball in Rd, for some d, one can append a “boundary” ∂S to S, which
X(·) hits at a time t− immediately before a jump. For the setting in [Da93],
this approach is useful in assigning the jump rule for the process, and it also
allows one to define the process on the space DS = DS [0,∞) of right continuous
paths on S with left limits. However, since the process jumps instantly upon
hitting ∂S, the introduction of ∂S has its own inconveniences. We avoid these
complications and just stick with the space S, referring the reader to Sections 24
and 25 of [Da93] for the technical details in the more general setting.

So far, we have not defined the filtration for the process X(·). We let F0
t

denote the natural filtration

F0
t = σ(X(s), 0 ≤ s ≤ t) (4.4)

and let F0
∞ be the σ-algebra generated by F0

t , for t ≥ 0. Rather than employing
F0

t and F0
∞ directly, we will use appropriate completions. As in [Da93], for

each initial probability measure µ on S, one can define a measure Pµ on the
sample space corresponding to the process. Letting Fµ

t be the completion of F0
t

obtained by including all Pµ-null sets of F0
∞, one sets

Ft =
⋂

µ

Fµ
t , (4.5)

and denotes by F∞ the σ-algebra generated by Ft, for t ≥ 0. We henceforth
employ {Ft, t ≥ 0} as the filtration for the process X(·), and use Pµ to denote
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the corresponding probability measures. This setup is typical of general Markov
process theory.

In addition to being complete in the sense of (4.5), the family {Ft, t ≥ 0} is
right continuous, that is,

Ft = Ft+
def
=
⋂

ǫ>0

Ft+ǫ. (4.6)

Because X(·) is a PDP, this is not difficult to show. (See Theorem 25.3 in
[Da93].) The properties (4.5) and (4.6) will be needed shortly for the Debut
Theorem and the strong Markov property.

For t ≥ 0, x ∈ S, and A ∈ S , set

P t(x, A) = Px(X(t) ∈ A).

It is shown in [Da93] that P ·(·, ·) is a probability transition kernel on (S,S ).
That is, for fixed t and A, P t(·, A) is S -measurable; for fixed t and x, P t(x, ·)
defines a probability measure on S; and P s+t = P s ◦ P t, for s, t ≥ 0, defines
a semigroup. However, X(·) need not be a Feller process. (Recall that X(·) is
a Feller process if, in addition, P t : C(S) → C(S), where C(S) denotes the
continuous bounded functions on S.) This may be the case even when X(·)
corresponds to a queueing network with a FIFO or SBP discipline, since even
a small change in the future arrival time of a job may cause it to be served
after another job instead of before. This can induce a major change in the
future evolution of X(·), which will imply that for f ∈ C(S), P tf need not be
continuous. Nevertheless, as shown in [Da93], X(·) is strong Markov.

In the next subsection, we will summarize the recurrence theory for Markov
processes that we will use for queueing networks. Part of the appropriate litera-
ture assumes that these processes are Borel right. The intent there is to employ
a well-studied general framework, but this comes at the cost of implicitly as-
suming some familiarity with a technical theory. Such knowledge will not be
relevant for our applications, and so we relegate to Section 4.5 a brief discussion
of the material. We summarize it here, noting that for a Borel right process,
the σ-algebras satisfy (4.5) and (4.6), the process X(·) is defined on a “rea-
sonable” state space, has a transition semigroup, is right continuous, and the
process (f ◦ X)(·) is right continuous when f is an α-excessive function. The
last assumption can be replaced by the strong Markov property.

Harris recurrence of Markov processes

We discuss here basic criteria for positive recurrence of Markov processes
on general state spaces. Since little is a priori assumed about either the state
space or the process itself, one must provide some structure to be able to say
anything of interest. There is a developed theory for the corresponding discrete
time Markov processes that goes back to Doeblin (see [Do53] for an account),
was developed in [Ha56], and includes contributions by [Or71], [AtN78], and
[Nu78] among others. Standard references are [Nu84] and [MeT93d]. The basic
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approach in the discrete time setting is to formulate conditions that are general,
but nonetheless enable one to mimic the machinery for discrete time Markov
chains. With the aid of resolvents, problems in the continuous time setting can
be reformulated in discrete time, which is the approach we summarize here.

Following [MeT93a; MeT93b; MeT93c] and [KaM94], we will assume that
the Markov processes X(·) are Borel right processes on a locally compact and
separable metric state space (S,S ), where S is the Borel σ-algebra generated
by the metric. The process X(·) will have a transition semigroup P t acting
on bounded measurable functions, its paths will be right continuous, and the
process will be strong Markov. (These properties follow from the assumption
that the processes are Borel right.) When working with discrete time Markov
processes, we will assume the state space satisfies the same properties.

One wishes to formulate concepts that are the analogs of those for Markov
chains, although there will be aspects not present in the countable state space
theory. For A ∈ S , let

τA = inf{t ≥ 0 : X(t) ∈ A}, ηA =

∫ ∞

0

1{X(t) ∈ A} dt. (4.7)

By the Debut Theorem (see e.g., [Sh88]), τA is a stopping time. A Markov
process is said to be ϕ-irreducible, for a nontrivial σ-finite measure ϕ on (S,S ),
if

ϕ(A) > 0 implies Ex[ηA] > 0 for all x ∈ S; (4.8)

ϕ is called an irreducibility measure.
If for some nontrivial σ-finite measure ϕ,

ϕ(A) > 0 implies Px(ηA = ∞) = 1 for all x ∈ S, (4.9)

then X(·) is Harris recurrent. (This definition goes back to [AzKR67].) It is not
difficult to show that it is equivalent to the condition that

ϕ(A) > 0 implies Px(τA <∞) = 1 for all x ∈ S (4.10)

(see [KaM94] or [MeT93a]), although the choice of ϕ satisfying (4.10) need not
satisfy (4.9). (Consider, for example, the process X(t) = eit on the unit circle,
where ϕ is concentrated at a point.) Both formulations are useful in practice.

A σ-finite measure π on (S,S ) satisfying

π(A) = πP t(A)
def
=

∫

P t(x, A)π(dx) for A ∈ S , t ≥ 0, (4.11)

is stationary (or invariant). (Note that the definition does not involve ϕ.) It
was shown in [Ge79] that if X(·) is Harris recurrent, then there is a unique
stationary measure, up to a constant multiple. (We will discuss this result in
Section 4.5.) If the stationary measure π is finite, it may be normalized to a
probability measure. Harris recurrent processes with such π are positive Harris
recurrent.



M. Bramson/Stability of queueing networks 253

The reader should be aware that Harris recurrence and positive Harris re-
currence have somewhat different implications than recurrence and positive re-
currence, in the countable state space setting. For instance, if ϕ is concentrated
at a point x, then a Markov chain can have x as an absorbing point and still
be positive Harris recurrent. When all states communicate, the definitions are
equivalent.

For discrete time Markov processes, ϕ-irreducibility, Harris recurrence, and
positive Harris recurrence are defined by the analogs of (4.8), (4.9) and (4.11).
(In this setting, (4.9) and (4.10) are clearly equivalent by the strong Markov
property.) Since there is a wealth of theory available for such Markov processes,
it is fruitful to be able to translate continuous time problems into the discrete
time setting. This can be done by using the resolvent of the continuous time
Markov process,

R(x, A)
def
=

∫ ∞

0

e−tP t(x, A) dt for x ∈ S, A ∈ S . (4.12)

The Markov process X̃(n), n = 0, 1, 2, . . ., with one-step transition probability
given by R(·, ·), is known as an R-chain. The R-chain X̃(·) can also be con-
structed directly from X(·) by setting

X̃(n) = X(σn), n = 0, 1, 2, . . . , (4.13)

where the sequence σ0, σ1, σ2, . . . of random variables, with σ0 = 0, is indepen-
dent of X(·) and has i.i.d. mean-1 exponentially distributed increments. (One
enriches the sample space so as to include such a sequence.) It is easy to check
that X̃(·) is ϕ-irreducible if and only ifX(·) is. One can also show that the same
is true for Harris recurrence and positive Harris recurrence, and that the same
stationary measure is shared by both processes. The arguments are fairly quick
although not immediate; they are given in Section 4.5.

Although the irreducibility measure for a given process X(·) is not unique,
there exists a maximal irreducibility measure ψ, i.e., an irreducibility measure
for the process such that ϕ ≪ ψ for any other irreducibility measure ϕ, and
such that

ψ({x : Px(ηA 6= 0) > 0}) = 0 (4.14)

for ψ(A) = 0 and A ∈ S . (ϕ ≪ ψ means that ϕ is absolutely continuous with
respect to ψ.) The measure ψ is equivalent to

ψ′(A)
def
=

∫

S

R(x, A)ϕ′(dx) for x ∈ S, A ∈ S , (4.15)

for any irreducibility measure ϕ′. (That is, ψ ≪ ψ′ and ψ′ ≪ ψ.) Since the
existence of a stationary measure π does not depend on the choice of ϕ, one is
free to assume that ϕ is maximal when addressing such questions.

Maximal irreducibility measures are frequently used in discrete time, where
(4.14) and (4.15) are replaced by

ψ({x : Px(τA <∞) > 0}) = 0 (4.16)
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and

ψ′(A)
def
=

∞
∑

n=0

2−(n+1)

∫

S

P n(x, A)ϕ′(dx) for x ∈ S, A ∈ S . (4.17)

The existence of such a measure ψ and its equivalence to ψ′ in the latter setting
can be found on, e.g., page 88 of [MeT93d]. One can check that (4.14) and (4.15)
hold for the process X(·) for a given irreducibility measure ψ if and only if (4.16)
and (4.17) hold for its R-chain X̃(·), since the right side of (4.17) is equivalent
to ψ′′(A) =

∫

S P (x, A)ϕ′(dx) in this case.
The above definitions of Harris recurrent and positive Harris recurrent, while

elegant, can be difficult to apply in practice. For applications, the following
alternative formulation involving petite sets is very useful. A nonempty set A ∈
S is said to be petite if for some fixed probability measure a on (0,∞) and some
nontrivial measure ν on (S,S ),

ν(B) ≤

∫ ∞

0

P t(x, B)a(dt) (4.18)

for all x ∈ A and all B ∈ S ; ν is then called a petite measure. A petite set A
has the property that each set B is “equally accessible” from all points x ∈ A
with respect to the measure ν . Note that any nonempty measurable subset of
a petite set is also petite. When (4.18) holds, with a being concentrated at a
single point m0, A is said to be small, and ν is called a small measure. Petite
and small sets are defined analogously in the discrete time setting.

Let
τA(δ) = inf{t ≥ δ : X(t) ∈ A}.

Theorem 4.1 below gives practical alternative characterizations of Harris recur-
rence and positive Harris recurrence in terms of petite sets. Versions of Theo-
rem 4.1 are stated in [MeT93a; MeT93b; MeT93c], with that in [MeT93a] being
used here. Discrete time analogs of the different parts of Theorem 4.1 are known.
(See, e.g., [Or71], [Nu84], and [MeT93d].)

Theorem 4.1. (a) A Markov process X(·) is Harris recurrent if and only if
there exists a closed petite set A with

Px(τA <∞) = 1 for all x ∈ S. (4.19)

(b) Suppose the Markov process X(·) is Harris recurrent. Then, X(·) is positive
Harris recurrent if and only if there exists a closed petite set A such that for
some δ > 0 (or, equivalently, for any δ > 0),

sup
x∈A

Ex[τA(δ)] <∞. (4.20)

We next make some general comments about Theorem 4.1. We then indicate
how the theorem will be applied and discuss its proof. More detail on the proof
will be supplied in Section 4.5.
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We note that the irreducibility measure ϕ in (4.8) and the measure ν in (4.18)
employed in the definitions of Harris recurrence and petite sets are different in
general. In [MeT93a], petite sets rather than closed petite sets are employed
for Harris recurrence, although closed petite sets are needed for positive Harris
recurrence. We assume the sets are closed in both cases; this simplifies the proof
of one of the steps. We note that the more useful direction (and the only one used
in these lectures) is that Harris recurrence and positive Harris recurrence follow
from (4.19) and (4.20), respectively. If one wishes, one can base the definition of
Harris recurrence on (4.19), rather than on the irreducibility measure as in (4.9);
this is done, for instance, in [As03] (and in [Dur96], in discrete time). This will
simplify the work in showing the existence of a stationary measure.

Theorem 4.1 will prove very useful in conjunction with Section 4.2. There, we
will show that for the underlying Markov process X(·) of a queueing network,

A = {x : |x| ≤ κ} is a closed small set for each κ > 0, (4.21)

where |x| is given by (4.3), if appropriate conditions hold for the distributions of
the interarrival times for the queueing network. In Section 4.4, we will show that
the conditions (4.19) and (4.20) in the theorem will follow from the stability of
the associated fluid limits, which are introduced in Section 4.3.

We next briefly discuss the proof of Theorem 4.1. The demonstration that
X(·) is Harris recurrent if (4.19) holds is elementary, if one sets ϕ = ν . We
summarize the argument here. Note that X(τA) ∈ A, since A is closed. Starting
from any x ∈ S and applying the strong Markov property, one can therefore
show that by a large enough fixed time T (depending on x), X(·) will, with
at least a given positive probability that depends on A, hit a specified set B
with ν(B) > 0. Repetition of this reasoning, using appropriate random times
Tn which depend on X(Tn−1), will imply that the probability B has not been
hit after n iterations decreases exponentially quickly in n. This implies (4.10),
and hence that X(·) is Harris recurrent. ([MeT93a] gives a different argument
that does not assume A is closed.)

The other direction in Part (a), and both directions in Part (b) of Theorem
4.1, require work. In Section 4.5, we will present a summary of the proofs. We will
state there a discrete time analog of Theorem 4.1 and indicate how Theorem 4.1
can be shown using this, and the correspondence mentioned earlier between
Harris recurrence, positive Harris recurrence, and the stationary measures for
the Markov process and its R-chain. We will also provide a summary of the proof
of the existence of a stationary measure for a discrete time recurrent Markov
process, since it helps illustrate the nature of the discrete time theory.

Ergodicity

A continuous time Markov process X(·) is said to be ergodic if it possesses a
stationary probability measure π for which

lim
t→∞

||P t(x, ·)− π(·)|| = 0 for all x ∈ S. (4.22)
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(Here, || · || denotes the total variation norm.) We recall from Section 1.2 that,
when the underlying Markov process of a queueing network is ergodic, the queue-
ing network is said to be e-stable. It is not difficult to see that positive Harris
recurrence follows from ergodicity. Frequently, because of the following results,
ergodicity of the Markov process also follows from positive Harris recurrence
without much additional effort.

The first result is from Theorem 6.1 of [MeT93b].

Theorem 4.2. Suppose that a Markov process X(·) is positive Harris recurrent.
Then, X(·) is ergodic if and only if some skeleton chain is ϕ-irreducible for some
measure ϕ.

By a skeleton chain, we mean the Markov process defined by restricting X(·)
to the times n∆, n = 0, 1, 2, . . ., for some ∆ > 0. The necessity of irreducibility
on some skeleton chain is clear. To show that this is also sufficient, one can
employ the corresponding result for discrete time Markov processes and the
fact that the norm of the difference in (4.22) is decreasing in t; we do not go
into details here.

For our purposes, it will be more useful to have a sufficient condition for
ergodicity in terms of small sets. When a set A ∈ S is small with respect to the
same measure ν at each m0 ∈ [s1, s2], for some 0 < s1 < s2, we will say that A
is uniformly small on [s1, s2], or, more briefly, uniformly small.

Theorem 4.3. Suppose that a Markov process X(·) is positive Harris recurrent,
and that some closed set A satisfies (4.19) and is uniformly small on [s1, s2],
for some 0 < s1 < s2. Then, X(·) is ergodic.

Theorem 4.3 follows from Theorem 4.2. One can show this by restarting X(·)
at τA and applying the strong Markov property. Note that since A is closed,
X(τA) ∈ A. Theorem 4.3 is also proved in [As03] as Part (iii) of Proposition
3.8 on page 203, although in a somewhat different setting. Theorem 4.3 will be
employed in Section 4.2.

Countable state space setting

As mentioned at the beginning of the section, the material that is needed
from this section simplifies enormously in the countable state space setting.
Since the interarrival and service times are exponentially distributed, one can
drop the u and v coordinates from the description of the state of the process in
the first subsection. The underlying jump process X(·) of the queueing network
can be defined in the natural way. It will be constant in between arrivals and
departures of jobs at the different classes, with arrivals occurring at rate αk

and departures at rate Rk(t)µk at class k. As before, the service rate vector
R(·) remains constant until the next arrival or departure, at which time the
new value R(t) = f(X(t)) is assigned, where the choice of f corresponds to the
discipline. (The service rate vector is not part of the state space here.) In this
setting, the norm in (4.3) is replaced by the simpler |x| = |z|, where z is the
queue length vector. The state space is assigned the discrete topology.
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The second subsection will no longer be needed, since X(·) is now a Markov
chain, with bounded jump rates, and so standard Markov chain theory applies
(see, e.g. [Re92]). For consistency with the general case, we choose its filtration
to be {Ft, t ≥ 0} as in (4.5), although (4.4) could also be used. In either case,
the filtration will be right continuous and X(·) will be strong Markov.

The subsection on Harris recurrence can also be omitted. In the countable
state space setting, Harris recurrence is equivalent to the existence of a recurrent
state x that is accessible from all other states, i.e., Py(τx <∞) = 1 for each y ∈

S (where τx
def
= τ{x}). Positive Harris recurrence corresponds to Ex[τx(δ)] < ∞,

for some δ > 0. So, standard Markov chain theory can be applied. The concepts
petite and small are no longer needed. They will be used later, in the general
setting, only in the context of Proposition 4.6 for the sets A = {x : |x| ≤ κ}, κ >
0. These concepts are not needed in the countable state space setting since the
state 0 will be uniformly accessible from A. We note that all points in a state
space are small sets, and that Theorem 4.1 is elementary in the countable state
space setting (in addition to no longer being needed).

In the countable state space, continuous time setting, it is routine to show
that positive Harris recurrence implies ergodicity. So, Theorems 4.2 and 4.3 are
no longer needed. (One can apply discrete time theory to any skeleton chain,
which will be aperiodic, and then apply the monotonicity of ‖P t(x, ·) − π(·)‖
in t.)

4.2. Results for bounded sets

Bounded sets will play an important role in Section 4.4 in showing the stability
of queueing networks. In Section 4.2, we show two results involving bounded
sets we will need there. Here and elsewhere in these lectures, a norm | · | denotes
a nonnegative function on a state space S. A set B ⊆ S is said to be bounded if
supx∈B |x| <∞.

The first of these two results, Proposition 4.6, is a generalization of Foster’s
Criterion. As background, we first state Foster’s Criterion, along with its proof.
Both versions give useful criteria for positive Harris recurrence when the Markov
process under consideration has a uniformly negative drift off of a bounded
subset of the state space. In Proposition 4.6, we also give an analogous condition
for ergodicity of the Markov process.

The second result, Proposition 4.7, gives criteria under which the bounded
sets are uniformly small for the Markov process X underlying a queueing net-
work. This condition is used in conjunction with Theorem 4.3 and Proposi-
tion 4.6 to show the Markov process is ergodic.

Foster’s Criterion

Foster’s Criterion is a simple, but very useful, criterion for demonstrating
positive recurrence of Markov chains with a norm. We state it in the original
discrete time context.
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Proposition 4.4 (Foster’s Criterion). LetX(n), n = 0, 1, 2, . . ., be a Markov
chain on which all states communicate. Suppose that

Ex|X(1)| <∞ for all x ∈ A, (4.23)

where A = {x : |x| ≤ κ} for some κ ≥ 0, and |A| < ∞. Also, suppose that for
some ǫ > 0,

Ex|X(1)| ≤ |x| − ǫ for all x 6∈ A. (4.24)

Then, X(·) is positive recurrent.

Foster’s Criterion states, in essence, that if a Markov chain has a uniformly
negative drift off of a bounded set, and if its behavior on the bounded set is
not too bad, then the Markov chain will be positive recurrent. [Fo53] gave a
computational proof when the state space is the nonnegative integers with the
corresponding norm and κ = 0. Foster’s Criterion is often employed in the above
slightly more general setting of Proposition 4.4.

Proof of Proposition 4.4. Since all states communicate and |A| < ∞, in order
to show that X(·) is positive recurrent, we claim it suffices to show Ex[τA] <∞
for x ∈ A. The claim is clear when A is a singleton. When A has more states,
one can show it by noting that, by the strong Markov property, the expected
number of returns to A grows linearly in n. The same is therefore true for at
least one state in A, which must be positive recurrent.

To show that Ex[τA] <∞ for x ∈ A, we set

M(n) = |X(n)| + ǫn for all n. (4.25)

On account of (4.24), M(n∧τA) is a nonnegative supermartingale on the natural
filtration of X(·). It follows by the Optional Sampling Theorem that

Ey[M(τA)] ≤ |y| for all y 6∈ A.

It follows from this and (4.25) that

Ey[τA] ≤
1

ǫ
Ey[M(τA)] ≤ |y|/ǫ for y 6∈ A.

Together with (4.23), this implies that for x ∈ A,

Ex[τA] ≤ 1 +
∑

y 6∈A

p(x, y)Ey[τA] ≤ 1 +
1

ǫ

∑

y 6∈A

|y|p(x, y) <∞,

where p(·, ·) denotes the one-step transitional probabilities. So, Ex[τA] <∞ for
x ∈ A, and X(·) is positive recurrent.

In various cases, one might not know that (4.24) holds for a given Markov
chain or Markov process, but rather that |X(·)| decreases linearly “on the aver-
age”, over a much longer time interval. In our applications in Section 4.4, this
will occur over time intervals of the form [t, t+ c|X(t)|], for large |X(t)|, where
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c > 0. To accommodate such a setting, we employ the following generalization
of Foster’s Criterion. Here, time is chosen to be continuous, although time could
also be chosen to be discrete, if one omits the conclusion on ergodicity. If time
is continuous and the state space is general, then X(·) is assumed to satisfy the
regularity conditions for Markov processes given in Section 4.1, in the second
paragraph of the subsection on Harris recurrence. Versions of Proposition 4.5
are given in [MaM81], [Fi89], [MeT94], and [FoK04].

Proposition 4.5 (Generalized Foster’s Criterion). Suppose that X(·) is a
continuous time Markov process, such that for some ǫ > 0, κ > 0, and measur-
able function g : S → R with g(x) ≥ δ > 0,

Ex|X(g(x))| ≤ (|x| ∨ κ) − ǫg(x) for all x. (4.26)

Then,

Ex[τA(δ)] ≤
1

ǫ
(|x| ∨ κ) for all x, (4.27)

where A = {x : |x| ≤ κ}. In particular, if A is a closed petite set, then X(·) is
positive Harris recurrent. If A is closed and is uniformly small on [s1, s2], for
some 0 < s1 < s2, then X(·) is ergodic.

One can check that Proposition 4.4 is a special case of the discrete time
version of Proposition 4.5, with g ≡ 1, since (4.23) and (4.24) follow from (4.26)
after a new choice of κ, and since any finite set will be petite if all states
communicate.

In these lectures, we will employ the following case of Proposition 4.5.

Proposition 4.6 (Multiplicative Foster’s Criterion). Suppose that X(·) is
a continuous time Markov process, such that for some c > 0, ǫ > 0, and κ > 0,

Ex|X(c(|x| ∨ κ))| ≤ (1 − ǫ)(|x| ∨ κ) for all x. (4.28)

If A = {x : |x| ≤ κ} is a closed petite set, then X(·) is positive Harris recurrent.
If A is closed and is uniformly small on [s1, s2], for some 0 < s1 < s2, then
X(·) is ergodic.

Setting g(x) = c(|x| ∨ κ), Proposition 4.6 follows immediately from Proposi-
tion 4.5. The proof of Proposition 4.5 uses an elementary martingale argument
together with Theorems 4.1 and 4.3 of the previous section. (This is the only
place in these lectures where we will use Theorems 4.1 and 4.3.)

Proof of Proposition 4.5. Suppose that (4.27) holds. Then, clearly so does (4.19)
of Theorem 4.1. Also by (4.27),

sup
x∈A

Ex[τA(δ)] ≤ κ/ǫ

must hold, and therefore so does (4.20). If A is assumed to be closed and petite,
it therefore follows from both halves of Theorem 4.1 that X(·) is positive Harris
recurrent. If A is assumed to be closed and uniformly small on some [s1, s2], 0 <
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s1 < s2, it follows from this and Theorem 4.3 that X(·) is ergodic. So, it suffices
to show that (4.27) holds.

Set σ0 = 0, and let σ1, σ2, . . . denote the stopping times defined inductively
by

σn = σn−1 + g(X(σn−1)).

By (4.26) and the strong Markov property,

Ex[|X(σn)| | F(σn−1)] ≤ (|X(σn−1)| ∨ κ) − ǫg(X(σn−1))

for all x, where F(T )
def
= FT is the σ-algebra corresponding to the stopping time

T . Set M(0) = |x| ∨ κ and

M(n) = |X(σn)| + ǫσn for n ≥ 1. (4.29)

Also, set Gn = F(σn) and note that σn ∈ Gn−1. One can check that

Ex[M(n) | Gn−1] ≤M(n− 1) for n ≤ ρ,

where ρ is the first time n > 0 at which M(n) ∈ A. So, M(n∧ρ) is a nonnegative
supermartingale on Gn.

It follows by the Optional Sampling Theorem that

Ex[M(ρ)] ≤ |x| ∨ κ.

Note that τA(δ) ≤ σρ. Therefore, by (4.29) and the above inequality,

ǫEx[τA(δ)] ≤ Ex[M(ρ)] ≤ |x| ∨ κ,

which implies (4.27), as desired.

Criteria for bounded sets to be petite or uniformly small

As mentioned earlier, we will employ Proposition 4.6 in Section 4.4 to estab-
lish criteria for when the Markov process X(·) underlying a queueing network is
positive Harris recurrent or is ergodic. In order to cite Proposition 4.6, we need
to be able to show bounded sets are petite or uniformly small. These conditions
will not automatically hold, since states need not “communicate” in general.
For instance, when the distributions of the interarrival times, at two classes k1

and k2 of a queueing network, are both integer valued, states x and x′ for which
the residual interarrival times satisfy

uk2
− uk1

6= (u′k2
− u′k1

) mod 1

cannot both be visited along the same sample path.
In order to rule out such behavior, the following two conditions on the dis-

tributions of the interarrival times ξk(1), k ∈ A, are often assumed. The first is
that ξk(1) is unbounded, that is, for each k ∈ A,

P (ξk(1) ≥ t) > 0 for all t. (4.30)
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The second is that for some ℓk ∈ Z+, the ℓk-fold convolution of ξk(1) and
Lebesgue measure are not mutually singular. That is, for k ∈ A and some
nonnegative qk(·) with

∫∞

0
qk(t) dt > 0,

P (ξk(1) + · · ·+ ξk(ℓk) ∈ [c, d]) ≥

∫ d

c

qk(t)dt (4.31)

for all c < d. When arrivals in the network are permitted at only one class, e.g.,
as in reentrant lines, it is enough to assume just (4.30) to show bounded sets
are petite.

It is annoying to need to assume either condition, especially the first, since
they rule out reasonable distributions for which one should expect the underlying
Markov process to be positive Harris recurrent. It appears difficult, however,
to formulate simple criteria that are robust over networks with general routing
structures and disciplines. For interarrival times not satisfying (4.30) and (4.31),
one needs to show the existence of a petite or uniformly small set directly.

Proposition 4.7 is the main result in this subsection. It states that when (4.30)
and (4.31) are satisfied for the interarrival times of a queueing network, then
bounded sets will be uniformly small. It follows immediately from this that
bounded sets are also petite. (No requirements are made on the service times.)
A related result is given in Lemma 3.7 of [MeD94].

Proposition 4.7. Assume that the interarrival times of an HL queueing net-
work satisfy (4.30) and (4.31). Then, for each κ > 0, the set A = {x : |x| ≤ κ}
is uniformly small on [s1, s2] for some 0 < s1 < s2.

When arrivals in the network are permitted at only one class, one can instead
use the following result to show bounded sets are petite.

Proposition 4.8. Assume that the interarrival times of an HL queueing net-
work, with |A| = 1, satisfy (4.30). Then, for each κ > 0, the set A = {x : |x| ≤
κ} is petite.

Since |x| is continuous in x, the above sets A are closed. Once (4.28) has
been verified, Proposition 4.8 can therefore be used in conjunction with Propo-
sition 4.6 to show that the underlying Markov process X(·) of the queueing
network is positive Harris recurrent, and hence that the queueing network is
stable. Similarly, Proposition 4.7 can be used with the proposition to show X(·)
is ergodic, and hence that the queueing network is e-stable.

We will prove Proposition 4.7, which requires some effort. The argument for
Proposition 4.8 is simpler, an outline of which goes as follows. Choose t1 > 0
and ǫ > 0, so that for all |x| ≤ κ, with κ fixed, the probability is at least ǫ
that the queueing network will be empty over some interval [t(x) − 1, t(x)) but
not remain empty over the entire interval [t(x), t1), where t(x) ∈ [1, t1]. It is
possible to do this because of (4.30). One can then show that the bounded set
A will be petite, by choosing the probability measure a in (4.18) to be uniform
over (0, t1), and choosing the petite measure ν to be uniform over the empty
states of the queueing network with residual interarrival times in (0, 1), so that
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its density is ǫ/t1 with respect to this set. Details are similar to parts of the
argument for the more complicated construction in the proof of Proposition 4.7.

Before beginning the proof of Proposition 4.7, we provide a summary of the
argument and introduce some notation. Let L0 = maxk∈A ℓk, where ℓk is as
in (4.31). Then, the distribution of Ξk(L0) =

∑L0

i=1 ξk(i) has an absolutely
continuous component for all k. If L is chosen large enough, then, for each k,
the distribution of Ξk(L) will uniformly cover some interval of length κ+3, say
[ak − κ, ak + 3], where κ is chosen as in the proposition. On account of (4.30),
ξk(L+ 1) can take arbitrarily large values, which we specify to be in [bk, bk + 1]
for some bk, with bk ≥ N for some large N . It follows that, for uk ≤ κ, the
distribution of uk + Ξk(L + 1) uniformly covers [ak + bk + 1, ak + bk + 3], with
no external arrivals at k occurring over the long time period [ā, N), where uk is
the initial residual interarrival time and ā = maxk{ak + 3}.

For large enough N , the network will be empty with positive probability
by time N/2, and hence remain empty until time N , with the probability not
depending on the initial state x, for |x| ≤ κ. When a state y is empty, it is
specified by its residual interarrival time vector u. The state is empty, with
positive probability, at the times s ∈ [N/2, N/2 + 1], and at these times, each
coordinate uk will have an absolutely continuous component covering

Jk = [ak + bk + 1 −N/2, ak + bk + 2 −N/2].

These bounds do not depend on the initial state x, for |x| ≤ κ. The set A =
{x : |x| ≤ κ} will therefore be uniformly small on [N/2, N/2+1], with the small
measure ν in (4.18) being uniformly distributed over the empty states y with
residual service times in the Cartesian product of Jk, for k ∈ A.

We proceed to demonstrate Proposition 4.7 along the lines outlined in the
last two paragraphs. On account of (4.31) we may choose L large enough so that
for some ǫ1 > 0 and ak > κ,

P (Ξk(L) ∈ [t1, t2]) ≥ ǫ1(t2 − t1) for [t1, t2] ⊆ [ak − κ, ak + 3],

for all k ∈ A. That is, Ξk(L) has density at least ǫ1 at all times in the interval
[ak − κ, ak + 3]. For |x| ≤ κ (and hence uk ≤ κ), this implies

P (uk + Ξk(L) ∈ [t1, t2]) ≥ ǫ1(t2 − t1) for [t1, t2] ⊆ [ak, ak + 3]. (4.32)

Also, by (4.30), for any N , there exist times bk ≥ N so that

P (ξk(L + 1) ∈ [bk, bk + 1]) ≥ ǫ2 (4.33)

for some ǫ2 > 0; we will specify N later. We introduce the following terminology,
setting

G1,k = {ω : uk + Ξk(L) ∈ [ak, ak + 3]},

G2,k(t1,k, t2,k) = {ω : uk +Ξk(L + 1) ∈ [t1,k, t2,k]},

G1 =
⋂

k∈A

G1,k, G2(t1, t2) =
⋂

k∈A

G2,k(t1,k, t2,k),

G = G1 ∩G2(t1, t2),

where ti = (ti,k, k ∈ A). Also, set Ik = [ak + bk + 1, ak + bk + 3].
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We break most of the work in proving Proposition 4.7 into two lemmas. The
first gives the following lower bound on P (G), for ti having coordinates ti,k ∈ Ik.

Lemma 4.9. For given ti, i = 1, 2, with t1,k ≤ t2,k and ti,k ∈ Ik, for k ∈ A,

P (G) ≥ (ǫ1ǫ2)
|A|
∏

k∈A

(t2,k − t1,k). (4.34)

Proof. One has

P (G) = P (G1 ∩G2(t1, t2)) =
∏

k∈A

P (G1,k ∩G2,k(t1,k, t2,k))

≥
∏

k∈A

∫ bk+1

bk

P (uk + Ξk(L) ∈ [t1,k − s, t2,k − s])P (ξk(L + 1) ∈ ds)

≥ (ǫ1ǫ2)
|A|
∏

k∈A

(t2,k − t1,k).

The second equality follows from the independence of the interarrival times
ξk(i) for different k. The first inequality is gotten by writing Ξk(L + 1) as a
convolution of Ξk(L) with ξk(L + 1), and noting that for s ∈ [bk, bk + 1], G1,k

occurs when uk +Ξk(L) is contained in [t1,k −s, t2,k −s]. The second inequality
follows from the bounds in (4.32) and (4.33).

Let
σ = inf{t ≥ ā : Z(t) = 0},

where ā = maxk{ak + 3} and Zk(t) is the number of jobs at class k at time t.
The next result says that, given the event G, there is a uniform upper bound
on σ that does not depend on the initial state x.

Lemma 4.10. For given L and κ, and large enough N , there exists ǫ3 > 0 so
that

Px(σ ≤ N/2 | G) ≥ ǫ3 (4.35)

for all |x| ≤ κ, and ti, i = 1, 2, with t1,k < t2,k and ti,k ∈ Ik.

Proof. The reasoning behind (4.35) is not difficult. Since the notation that is
involved can become cumbersome, we avoid it as much as possible, and argue
in terms of basic queueing quantities.

We first note that for large enough M and small enough δ > 0, for any class
k, (a) There exist classes k1, k2, . . . , kn, with k1 = k, n ≤M , and

(

1 −
∑

ℓ

Pkn,ℓ

)

n−1
∏

i=1

Pki,ki+1
≥ δ.

That is, a job starting at any k has positive probability δ of following a desig-
nated route and leaving the network in at most M steps. (b) P (γk(1) ≤ M) ≥
1/2 for all k. That is, there is a uniform bound on the service time distributions.
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Let ζ be the total service time required by an arbitrary job that is either initially
in the network or later enters it. In the former case, we know that its residual
service time is at most κ. Therefore, by (a) and (b), and the independence of
the corresponding events,

P (ζ ≤M2 + κ) ≥ δ2−M . (4.36)

On the event G, (c) No jobs enter the network over (ā, N). (d) At most |A|L
customers enter the network over (0, N), for a total of Λ jobs in the network up
to time N , with

Λ ≤ |A|L+ |z| ≤ |A|L+ κ
def
= L′.

(c) and (d) follow from the definitions of G1, bk, Ik, and G2. Let ζ1, ζ2, . . . , ζΛ
denote the total service times of these Λ jobs. By (4.36),

Px

(

Λ
∑

ℓ=1

ζℓ ≤ L′(M2 + κ)

)

≥ (δ2−M)L′

. (4.37)

We now set

N = 4(L′(M2 + κ) ∨ ā) and ǫ3 = (δ2−M )L′

.

Then, (N/4, N/2] ⊆ (ā, N/2], and so under the event in (4.37) and (c), σ ≤ N/2.
Together with (4.37), this implies (4.35).

Proposition 4.7 follows from Lemmas 4.9 and 4.10.

Proof of Proposition 4.7. The bounds in (4.34) and (4.35) imply that

Px(σ ≤ N/2; G) ≥ (ǫ1ǫ2)
|A|ǫ3

∏

k∈A

(t2,k − t1,k) (4.38)

for |x| ≤ κ, and ti, i = 1, 2, chosen so that t1,k < t2,k and ti,k ∈ Ik. For
s ∈ [N/2, N/2 + 1], it follows that

Px(Z(s) = 0 and Uk(s) ∈ [t1,k − s, t2,k − s], k ∈ A)

≥ (ǫ1ǫ2)
|A|ǫ3

∏

k∈A

(t2,k − t1,k), (4.39)

since the event in (4.39) contains the event (4.38). To see this, note that if the
network is empty at time σ ≤ N/2, it will, on G, remain empty until at least
timeN ≤ mink∈A{ak+bk}. At the intermediate times s, the residual interarrival
times will be the shifts, by s, of the times at which the events uk +Ξk(L+ 1),
given in G2,k(t1,k, t2,k), occur.

When a state y is empty, it is specified by its residual interarrival time vector
u = {uk, k ∈ A}. This is the case at time s for the event on the left side of (4.39).
The inequality (4.39) states that, for |x| ≤ κ, the distribution of the residual
time U(s), for s ∈ [N/2, N/2+1], has a component that is absolutely continuous,
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with density ǫ = (ǫ1ǫ2)
|A|ǫ3, with respect to |A|-dimensional Lebesque measure

λ that is restricted to the rectangle

∏

k∈A

[ak + bk +1−N/2, ak + bk +2−N/2] ⊆
∏

k∈A

[ak + bk +1− s, ak + bk +3− s].

It follows that, for all s ∈ [N/2, N/2 + 1], the set A is small with respect to the
measure ν = ǫλ.

Countable state space setting

The work required in this section simplifies considerably in the countable
state space setting. One still needs to demonstrate Proposition 4.5. The proof
of (4.27) proceeds as before. In this setting, one can conclude directly from (4.27)
that X(·) is ergodic (or is positive Harris recurrent), if |A| <∞, by using

inf
x∈A

Px(τ0 ≤ 1) > 0;

the expected number of returns to the empty state 0 therefore grows linearly in t,
which implies 0 is positive recurrent. (As before, A = {x : |x| ≤ κ}.) So, neither
petite nor uniformly small is needed as an assumption for the proposition. Since
Proposition 4.6 is a direct consequence of Proposition 4.5, the same is also true
there.

The concepts petite and uniformly small will be used later only in the context
of Proposition 4.6. This, in particular, makes Propositions 4.7 and 4.8 unneces-
sary. The propositions are easy to show, however, since

inf
x∈A

Px(X(s) = 0) ≥ ǫ(s)

for appropriate ǫ(s) > 0, where ǫ(s) is uniformly bounded away from 0 on
[s1, s2], for 0 < s1 < s2 .

4.3. Fluid models and fluid limits

In Section 1.3, we discussed fluid models and their connection with queueing
network equations. The purpose there was to give a preview of these concepts.
We return now to this material, this time giving a thorough presentation. The
section consists of three subsections, covering queueing network equations, fluid
models, and fluid limits, as well as a short comment on the countable state space
setting.

Fluid models and fluid limits are studied in [Da95]. Modifications are given in
[Ch95], [DaM95], [Br98a], and [Br98b] among other places. The approach taken
here is closest to [Br98a], but with some further modification in the approach
and in some of the definitions.

The fluid models of main interest to us will be subcritical. Fluid models are
also an important tool in the study of heavy traffic limits, where the fluid models
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that are employed are critical; we will not discuss fluid models in the latter
context here. (See [Br98b], [Wi98], and [BrD01] for background and further
references.)

Queueing network equations

In the construction, in Section 4.1, of the Markov process X(·) underlying an
HL queueing network, we introduced sequences of positive i.i.d. random variables
ξk(i), k ∈ A, and γk(i), k = 1, . . . , K, with i = 1, 2, 3, . . ., which correspond to
the interarrival and service times of the queueing network. We also introduced
the sequence of i.i.d. random vectors φk(i), i = 1, 2, 3, . . ., which give the routing
of a job upon completion of its service at a class. The corresponding sequences
ξ, γ, and φ were assumed to be mutually independent. Here, we will find it
convenient to also denote by ξk(0) and γk(0) the initial residual interarrival
and service times of the queueing network; they are included in the initial state
X(0) = x.

We will employ the random quantities E(·), Γ (·), and Φ(·), which are defined
in terms of the partial sums of ξ, γ, and φ. The external arrival process E(t) =
{Ek(t), k = 1, . . . , K}, t ≥ 0, counts the number of arrivals at each class from
outside the network. That is, for k ∈ A,

Ek(t) = max{n : Ξk(n) ≤ t},

where

Ξk(n) =

n−1
∑

i=0

ξk(i).

The cumulative service time process Γ (n) = {Γk(nk), k = 1, . . . , K}, n =
(n1, . . . , nK) with nk = 1, 2, . . . , is given by

Γk(nk) =

nk−1
∑

i=0

γk(i).

The routing process Φ(n) = {Φk(n), k = 1, . . . , K}, n = 1, 2, . . . , is given by

Φk(n) =
n
∑

i=1

φk(i).

As mentioned in Section 4.1, the sequences ξ, γ, and φ, together with the initial
state x and the discipline rule, determine the evolution of the process X(·) for all
times along each sample path. The same is therefore true for (E(·), Γ (·), Φ(·)),
which is referred to as the primitive triple of the queueing network.

As in Section 1.2, we will employ the means αk mk, and Pk,ℓ that are defined
from ξ, γ, and φ. They are given by

αk = 1/E[ξk(1)] for k ∈ A, mk = E[γk(1)] for k = 1, . . . , K,

Pk,ℓ = P (φk(1) = eℓ),
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with α = {αk, k = 1, . . . , K} being the external arrival rate, M being the
diagonal matrix having the mean service times mk at its diagonal entries, and
P = {Pk,ℓ, k, ℓ = 1, . . . , K} being the mean transition matrix (or mean routing
matrix). As before, µk = 1/mk is the service rate. Throughout these lectures,
we will implicitly assume that E[ξk(1)] < ∞ for k ∈ A and E[γk(1)] < ∞

for k = 1, . . . , K, and so αk, mk, µk ∈ (0,∞). As in (1.2), Q
def
= (I − P T )−1 =

∑∞
n=0(P

T )n, which is finite since the network is open. Also, the total arrival
rate λ = Qα and the traffic intensity ρ, with ρj =

∑

k∈C(j)mkλk, are defined

as in (1.5) and (1.7).
Queueing network equations tie together random vectors that describe the

evolution of a given queueing network. Examples of such equations, with the
vectors A(t), D(t), T (t), and Z(t), were given in Section 1.3. In the present more
general setting, it will be more convenient to employ the 6-tuple

X(t) = (A(t), D(t), T (t),W (t), Y (t), Z(t)). (4.40)

Here, the vector W (t) = (W1(t), . . . ,WJ(t)) is the immediate workload. That
is, Wj(t) is the amount of time required to serve all jobs currently at sta-
tion j, j = 1, . . . , J , if all jobs arriving after time t are ignored. The vector
Y (t) = (Y1(t), . . . , YJ(t)) is the cumulative idle time, that is, the cumulative time
that each of the stations j = 1, . . . , J is not working. Note that A(t), D(t), T (t),
and Z(t) are class-level vectors, whereas W (t) and Y (t) are station-level vec-
tors. From our perspective, X(·) contains all of the essential information on
the evolution of the queueing network; it will be used as the starting point for
our computations. With a slight abuse of notation, we will refer to X(·) as the
queueing network process.

We note that T (·) and Y (·) are continuous and that A(·),D(·), W (·), and Z(·)
are right continuous with left limits. All of the variables are nonnegative in each
component, with A(·), D(·), T (·), and Y (·) being nondecreasing. By assumption,
one has

A(0) = D(0) = T (0) = 0 and Y (0) = 0. (4.41)

One can check that the components of X(·) satisfy the queueing network
equations

A(t) = E(t) +
∑

k

Φk(Dk(t)), (4.42)

Z(t) = Z(0) + A(t) −D(t), (4.43)

W (t) = CΓ (A(t) + Z(0)) − CT (t), (4.44)

CT (t) + Y (t) = et, (4.45)

Yj(t) can only increase when Wj(t) = 0, j = 1, . . . , J, (4.46)

for all t ≥ 0. Here, C is the constituency matrix,

Cj,k =

{

1 if k ∈ C(j),

0 otherwise,

and e = (1, . . . , 1)T .
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The equations (4.42)–(4.46) are not difficult to verify. Equations (4.42) and
(4.43) are the same as (1.8) and (1.9), and hold for the same reasons as before.
The equality (4.44) states that the amount of current work at each station is
equal to the sum of the cumulative amount of work having arrived at all of its
classes less the sum of the cumulative service rendered at these classes. Equation
(4.45) can be taken as the defining relation for the idletime Y (t). In (4.46), we
mean that Yj(t2) > Yj(t1) implies Wj(t) = 0 for some t ∈ [t1, t2], which reflects
the nonidling property. Since Y (·) is continuous, it can also be written as

∫ ∞

0

Wj(t)dYj(t) = 0, j = 1, . . . , J.

The equations (4.42)–(4.46) hold for all disciplines. One can check that HL
queueing networks also satisfy

Γ (D(t)) ≤ T (t) < Γ (D(t) + e), (4.47)

where the inequalities are componentwise and e denotes the K-vector of all 1’s.
(Whether e denotes a K-vector or J-vector will be clear from the context.)
The equations (4.42)–(4.47) will be referred to as the basic queueing network
equations.

Equations (4.42)–(4.47) do not specify the discipline of the queueing network.
For multiclass queueing networks, there is consequently not enough information
to solve for X(·). Later, when working with specific examples, an additional
equation (or equations) will be introduced that correspond to the discipline.
Such an equation will be referred to as an auxiliary queueing network equation.
For example, for FIFO networks, this additional equation is

Dk(t+Wj(t)) = Zk(0) +Ak(t) for k = 1, . . . , K. (4.48)

For SBP networks with preemption, the equation is

t− T+
k (t) can only increase when Z+

k (t) = 0 for k = 1, . . . , K. (4.49)

Here, Z+
k (t) denotes the sum of the queue lengths at the station j = s(k) of

classes having priority at least as great as k, and T+
k (t) denotes the correspond-

ing sum of cumulative service times. The order of the priorities is given by the
specific SBP discipline.

As mentioned in Section 1.3, there is some flexibility in the choice of the
components of X(·) and the corresponding queueing network equations. For
specific disciplines, one typically eliminates one or more of these components.
For instance, for HL queueing networks, it is generally not necessary to employ
both D(·) and T (·). Since different variables will be more natural in different
settings, we employ the flexible formulation given above.

The discerning reader might note that in Section 1.3, we employed equation
(1.10) rather than (4.47) to relate D(t) and T (t). This has the advantage of
leading to the formula in (1.11), but does not incorporate the HL property.
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Both formats lead to the same fluid model equation (4.55) given below, if the
HL property is implicitly assumed in conjunction with (1.10).

Fluid models

Fluid model equations were discussed in Section 1.3. They are the determinis-
tic analog of queueing network equations, with the random quantities E(·), Γ (·),
and Φ(·) being replaced by their respective means α,M , and P . The fluid model
equations corresponding to (4.42)–(4.46) are

A(t) = αt+ P TD(t), (4.50)

Z(t) = Z(0) + A(t) −D(t) (4.51)

W (t) = CM(A(t) + Z(0)) −CT (t), (4.52)

CT (t) + Y (t) = et, (4.53)

Yj(t) can only increase when Wj(t) = 0, j = 1, . . . , J, (4.54)

for all t ≥ 0. In the HL setting, one includes

T (t) = MD(t), (4.55)

which corresponds to (4.47). For a given choice of α,M , and P , the fluid model
equations (4.50)–(4.55) will be referred to as the basic fluid model equations.
Similarly, the fluid model consisting of the equations (4.50)–(4.55) will be re-
ferred to as the basic fluid model.

Equations (4.50)–(4.55) do not specify the discipline of the corresponding
queueing network. So, as was the case for the queueing network equations, an
additional fluid model equation (or equations) still needs to be added. Such
an equation will be a deterministic expression involving A(·), D(·), T (·), W (·),
Y (·), and Z(·), and will be referred to as an auxiliary fluid model equation. For
networks with FIFO and SBP disciplines, the auxiliary fluid model equations
are given by (4.48) and (4.49); two examples involving particular SBP networks
will be given shortly. In these lectures, a fluid model will be a set of fluid model
equations that includes the basic fluid model equations (4.50)–(4.55). Solutions
of such equations are fluid model solutions. In Section 1.3, we were a bit vague
on what is meant by a fluid model corresponding to a queueing network. We
will make this precise in the next subsection where fluid limits are introduced.

The same notation was used in equations (4.50)–(4.55) as in (4.42)–(4.47) for
the unknown variables A(·), D(·), T (·), W (·), Y (·), and Z(·). When convenient,
we will employ the same vocabulary for the fluid model analogs of queueing
network quantities, such as the immediate workload W (·) and the queue length
Z(·). We will employ X(t), given in (4.40), for solutions of fluid models of (4.50)–
(4.55) and the auxiliary equations that may be added. The use of the same
notation for the queueing network and fluid model variables is in general helpful;
the one that is meant will be clear from the context.

Equations such as (4.50)–(4.55) are also referred to as fluid model equations
without delay, since one is, in effect, setting u = v = 0 here, where u and v are
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the residual interarrival and service times of the initial state x that were intro-
duced in Section 4.1. For general residual times, the corresponding equations
are referred to as fluid model equations with delay. In that setting, one needs to
modify (4.50), (4.52) and (4.55). The resulting equations are a bit awkward to
work with. We will not require these more general equations here, and unless
indicated to the contrary, the fluid model equations considered here will always
be assumed to be without delay.

We will assume that all of the components of X(·) are nonnegative, with
A(·), D(·), T (·), and Y (·) being nondecreasing. Using (4.50)–(4.53), one can
check that

A(0) = D(0) = T (0) = 0 and Y (0) = 0, (4.56)

which is the analog of (4.41). Employing (4.51), (4.52), and (4.55), one can also
show the useful relationship between the queue length and immediate workload
vectors,

W (t) = CMZ(t) for all t. (4.57)

Using the basic fluid model equations, it is not difficult to check that knowledge
of any of D(t), T (t), or Z(t), at a given t, and knowledge of Z(0) are enough to
determine all of the components of X(t). Simple examples show this is not true
for either A(t),W (t), or Y (t).

Starting first with T (·) and Y (·) in (4.53), it is easy to show that A(·), D(·),
T (·),W (·), Y (·), and Z(·) are all Lipschitz continuous. That is, for some N > 0
(depending on the triple (α,M, P )),

|f(t2) − f(t1)| ≤ N |t2 − t1| for all t1, t2 ≥ 0, (4.58)

if f(·) is any of the above functions. (Recall that, when dealing with vectors,
we always employ the sum norm, although this is a matter of convenience.)
Consequently, these functions are absolutely continuous, and so f ′(t) exists a.e.,
with

f(b) − f(a) =

∫ b

a

f ′(t)dt for all a, b. (4.59)

Times at which the derivative exists for all of the components of X(·) will be
referred to as regular points.

The representation in (4.59) will be quite useful later on. Assume, for in-
stance, that the dot product (Z′(t), w) ≤ −ǫ, for some fixed ǫ > 0 and fixed
vector w with nonnegative coordinates, whenever Z(t) 6= 0 and t is a regular
point. Then, it is not difficult to see, using (4.59), that

Z(t) = 0 for t ≥ (Z(0), w)/ǫ. (4.60)

In analogy with queueing networks, one can envision the components of X(·)
for fluid models in terms of continuous “job mass” flowing through the system.
Also in analogy with queueing networks, for the prescribed triple (α,M, P ),
stations are defined as subcritical or critical, if ρj < 1 or ρj = 1, where ρj is
given by (1.7), for Q and λ defined as in (1.2) and (1.5). The fluid model is
labelled correspondingly if all stations are of the same type.
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We recall from (1.18) that a fluid model is stable if there exists an N > 0, so
that for any solution of its fluid model equations, the Z(·) component satisfies

Z(t) = 0 for t ≥ N |Z(0)|. (4.61)

The main result in Section 4.4, Theorem 4.16, gives general criteria for the sta-
bility of the corresponding queueing network. An important condition is that its
fluid model be stable. (Other conditions involve the interarrival time distribu-
tions of the queueing network.) Ascertaining whether a fluid model is stable is
itself not an elementary problem in general, and will be discussed in Chapter 5.

The following results are easy to derive using our present machinery, and
will be useful for showing analogous results for queueing networks. Parts (a),
(b), (c) and (d) of Proposition 4.11 will be used, respectively, for Example
1 of Section 4.4, Corollaries 1 and 2 of Proposition 4.12 of this section, and
Proposition 5.21 on Section 5.5. As usual, the inequalities in Part (b) are to be
interpreted componentwise.

Proposition 4.11. (a) Any fluid model with
∑

j ρj < 1 is stable. (b) For any
solution of a fluid model,

lim inf
t→∞

Y (t)/t ≥ e− ρ.

The rate of convergence is uniform over bounded |Z(0)| for these solutions.
When Z(0) = 0, Y (t) ≥ (e − ρ)t for all t. (c) Suppose that for some solution
of a fluid model, Zk(t) < Zk(0) for some t and all k. Then, ρ < e. (d) Suppose
that for a fluid model, ρj > 1 for some j. Then, for some ǫ > 0, |Z(t)| ≥ ǫt for
all t and all fluid model solutions.

Proof. By (4.50) and (4.51),

Z(t) − Z(0) = αt− (I − P T )D(t).

Multiplying both sides by CMQ gives

CMQ(Z(t) − Z(0)) = ρt − CMD(t) = ρt −CT (t). (4.62)

The first equality employs ρ = CMλ = CMQα, which follows from (1.5)
and (1.7), and the second equality follows from (4.55). By (4.53), (4.62) can
be rewritten as

CMQ(Z(t) − Z(0)) = (ρ− e)t+ Y (t). (4.63)

Parts (c) and (d) follow quickly from the resulting inequality

CMQ(Z(t) − Z(0)) ≥ (ρ− e)t. (4.64)

Under the assumption in (c), the left side of (4.64) is negative in each coordinate
for that t, and so ρ < e. (Note that Q ≥ I.) Let ρj > 1 for a given j, as in (d).
The j coordinate of the left side of (4.64) is bounded below by (ρj − 1)t, and
the matrix CMQ is constant. So, (d) holds for an appropriate choice of ǫ > 0.
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The display in Part (b) follows from (4.63), after dividing both sides by t and
taking limits. Since CMQZ(0)/t→ 0 as t → ∞, the rate of convergence for the
lim inf in (b) is also uniform over bounded |Z(0)|. The case where Z(0) = 0 is
an immediate consequence of (4.63).

For Part (a), multiplication of both sides of (4.62) by eT and taking deriva-
tives gives

eTCMQZ′(t) = eT (ρ−CT ′(t))

at all regular points. By (4.53), for each choice of j, this is

≤
∑

j′

ρj′ −
∑

k∈C(j)

T ′
k(t) =

∑

j′

ρj′ − 1 + Y ′
j (t).

By (4.54) and (4.57), Y ′
j (t) = 0 for at least one choice of j when Z(t) 6= 0.

Setting ǫ = 1 −
∑

j′ ρj′ > 0, it follows that

eTCMQZ′(t) ≤ −ǫ

at such points. By the bound in (4.60),

Z(t) = 0 for t ≥ eTCMQZ(0)/ǫ,

and so the fluid model is stable.

Even though fluid model equations are simplifications of the corresponding
queueing network equations, we will need to exercise some caution in their ap-
plication. In particular, a fluid model need not have a unique solution for given
initial data. This is not surprising for the basic fluid model equations, since the
solutions may depend on the discipline, which is not included in these equations.
However, it is not difficult to show this is also sometimes the case when either
equation (4.48) (corresponding to the FIFO discipline) or equation (4.49) (corre-
sponding to an SBP discipline) is added to the basic queueing network equations.
So, nonuniqueness can persist even when the discipline has been specified.

We conclude this subsection with two examples of fluid models which ex-
hibit this nonuniqueness. Both examples employ fluid models that correspond
to certain parameter values for the Rybko-Stolyar network that was introduced
in Section 3.1. The routes, which are given in Figure 3.2, each possess two sta-
tions, which are each visited once along the route. The discipline is preemptive
SBP, with priority at each station given to the class of jobs that are about to
leave the network. Classes are labelled by (i, k), where i = 1, 2 denotes the route
and k = 1, 2 denotes the sequential ordering of the class along the route. The
fluid model is assumed to consist of the basic fluid model equations (4.50)–(4.55)
together with (4.49). The routing matrix P here is given by the above routing.
The external arrival rates are given by

α1,1 = α2,1 = 1, α1,2 = α2,2 = 0;

and the service times are assumed to satisfy

m1
def
= m1,1 = m2,1 > 0, m2

def
= m1,2 = m2,2 > 0,
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which will be further specified in the examples. The SBP equation (4.49) is
assumed to incorporate the above priority scheme.

Example 1. A fluid model with nonunique solutions. In this example, we assume
that m1 < m2 and assign the initial data

Z1,1(0) = Z2,1(0) = 1, Z1,2(0) = Z2,2(0) = 0.

On account of the discipline, when either Z1,2(t0) 6= 0 or Z2,2(t0) 6= 0, this
is enough to uniquely determine the evolution of X(t) for small times after t0.
This is not the case for the given initial data since, as one can check, there exist
distinct solutions over t ∈ [0, 1/(1− µ1)], with

Zi,1(t) = 1 + (1 − µ1)t, Zi,2(t) = (µ1 − µ2)t, (4.65)

Zi′,1(t) = 1 + t, Zi′,2(t) = 0,

for either i = 1 or i = 2, where i′ denotes the other route. (As usual, µk = 1/mk.)
One can interpret the above evolution of the fluid model as follows. The initial

job mass in route i “gets an infinitesimal lead” over that in route i′, with job
mass starting to flow into the class k = 2 along the route before this starts to
occur along route i′. Once this flow begins, since µ2 < µ1, there will be mass
at class (i, 2). The mass at (i, 2) has priority of service over that at (i′, 1). This
prevents service at (i′, 1), and so the class (i′, 2) remains empty. Mass from (i, 1)
continues to flow to (i, 2) until at least time 1/(µ1−1), after which class (i, 1) is
empty, and so the rate at which mass enters (i, 2) slows to αi,1 = 1. Over these
times, there will be mass at (i, 2) and no service at (i′, 1).

In addition to the solutions of the fluid model with Z(t) given by (4.65), there
is the symmetric solution over t ∈ [0, (µ1 + µ2)/(µ1µ2 − µ1 − µ2)], with

Zi,1(t) = 1 + (1 − µ1µ2/(µ1 + µ2))t, Zi,2(t) = 0, (4.66)

for i = 1, 2. Here, the fraction of effort allocated to the classes with k = 1 is
µ2/(µ1 + µ2), with the fraction allocated to k = 2 being µ1/(µ1 + µ2). This
allocation of effort keeps the high priority classes with k = 2 empty, and so
allows continual service at both classes with k = 1.

The solution given by (4.66) is unstable in the sense that, at any time t0,
there are other solutions emanating from it. This occurs when the classes along
one of the routes start to “monopolize” the service at their stations. After time
t0, these solutions evolve as in (4.65), except for the lag in time and the different
starting mass at the classes with k = 1. With a bit of effort, one can check that
all of the solutions of the fluid model in a neighborhood of time 0 and with
the assigned initial data are given by the above solutions. That is, the solution
in (4.66) is followed until some assigned time, after which the solutions evolve
as in (4.65).

We point out that for m1 + m2 < 1/2, one has ρ1 + ρ2 < 1, and so the
assumptions of Part (a) of Proposition 4.11 are satisfied. Therefore, under this
additional condition, the above fluid model is stable. As mentioned above the
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proposition, this is sufficient for the corresponding queueing networks to be
stable (under appropriate conditions on the interarrival time distributions). So,
the nonuniqueness of solutions for the fluid model is not connected with the
stability of either the fluid model or the corresponding queueing network.

We also point out that, although we have not bothered to construct the above
fluid model solutions for all time, these solutions can always be extended past
the times that are given. One way of doing this is to employ fluid limits, which
are introduced in the next section.

Example 2. A fluid model that has a nonzero solution with Z(0) = 0. In this
example, we assume that m1 < 1/3 and m2 = 2/3. (We fix m2 in order to sim-
plify the coefficients in our computations.) By Theorem 3.4, the corresponding
queueing network is unstable, if the interarrival and service times are exponen-
tially distributed. The fluid model exhibits similar behavior, which we show for
Z(0) = 0. We do this by constructing a self-similar solution, in the spirit of the
proof of Theorem 3.1. We give the values of T (·) and Z(·); using (4.50)–(4.55),
the other components of X(·) can be calculated from these. (T (·) and Z(·) can
also be calculated from each other.)

We proceed in two steps. We first construct a solution X̃(·) of the fluid model
on [0, 2], with |Z̃(0)| = 1 and |Z̃(2)| = 2, where all the mass at t = 0 is at
class (1, 1) and that at t = 2 is at class (2, 1). Because of the symmetry of the
network and the doubling of mass by t = 2, the same reasoning allows us to
extend the solution up until t = 6, when the total mass is 4 and all the mass is
again at class (1, 1). We then piece together scaled versions of this solution so
that the resulting solution is defined over [0,∞), and grows linearly starting at
Z(0) = 0. We note that since ρ1, ρ2 < 1, Z(t) ≡ 0 gives another solution of the
fluid model. So, this construction gives another example of the nonuniqueness
of fluid model solutions under an SBP discipline.

Set b1 = 1/(µ1 − 1) = m1/(1 − m1). We construct T̃ (t) and Z̃(t), with
t ∈ [0, 2], piecewise over the time intervals [0, b1] and [b1, 2]. We choose T̃ ′(t) so
that it is constant over each interval, with

T̃ ′
1,1(t) =

{

1 for t ∈ (0, b1),

m1 for t ∈ (b1, 2),
(4.67)

T̃ ′
1,2(t) = 1 for t ∈ (0, 2),

T̃ ′
2,1(t) = T̃ ′

2,2(t) = 0 for t ∈ (0, 2).

Integration then gives T̃ (t). The function Z̃(t) will be linear over these intervals,
with values at the endpoints given by

Z̃1,1(0) = 1, Z̃1,1(b1) = Z̃1,1(2) = 0, (4.68)

Z̃1,2(0) = 0, Z̃1,2(b1) = b1(µ1 − 3/2), Z̃1,2(2) = 0,

Z̃2,1(0) = 0, Z̃2,1(2) = 2, Z̃2,2(0) = Z̃2,2(2) = 0.

Note that the value of µ1, for µ1 > 3/2, does not affect the value of Z̃(2).
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The choice of T̃ (·) and Z̃(·) as in (4.67)–(4.68) corresponds to the assignment
of all effort at both stations to the classes along the first route. This is consistent
with the discipline, because class (1, 2) has priority over (2, 1), and there is never
any mass at (2, 2) to impede service at (1, 1). The time interval is divided into
two parts, with the latter beginning when class (1, 1) first becomes empty. As
claimed earlier, all of the 2 units of mass at t = 2 is at class (2, 1). A repetition
of this reasoning, this time over the interval [2, 6], shows that at t = 6, all of the
mass is again at class (1, 1), with

Z̃1,1(6) = 4.

The second step consists of piecing together scaled versions of the above
construction. For t ∈ [ 124i+1, 1

24i+2], set

T (t) = 4i(T̃ (4−it− 2) + U), Z(t) = 4iZ̃(4−it− 2), (4.69)

where U is the constant vector with

U1,1 = m1, U2,1 = 2m1, U1,2 = U2,2 = 4/3,

and set T (0) = Z(0) = 0. It is straightforward to check that over [ 124i+1, 1
24i+2],

with i ∈ Z, T (·) and Z(·) give a solution of the fluid model, since the effect
of the scaling terms 4i and 4−i cancel each other out and since the translation
terms do not affect the evolution of solutions. (i = 0 corresponds to the solution
X̃(·), after a time shift.) By (4.68), Z̃(6) = 4Z̃(0); therefore, Z(·) is consistently
defined at the endpoints 1

2
4i. One can also check that the same is true for T (·).

So, T (·) and Z(·) define a solution over (0,∞). Since

lim
t↓0

T (t) = lim
t↓0

Z(t) = 0,

T (·) and Z(·) are continuous at 0, which implies that T (·) and Z(·) define a
solution over [0,∞), as desired.

It follows from |Z(2)| = |Z̃(0)| = 1 and (4.69), evaluated t = 1
24i, i ∈ Z+,

that
lim sup

t→∞
|Z(t)|/t ≥ 1/2.

One can, in fact, check with a little more work that limt→∞ |Z(t)|/t = 1/2.

Fluid limits

The basic fluid model equations (4.50)–(4.55) are obtained from the corre-
sponding queueing network equations (4.42)–(4.47) by substituting the means
α,M , and P for E, Γ , and Φ. Auxiliary equations that specify the discipline,
such as (4.48) and (4.49), are obtained similarly from the corresponding queue-
ing network equations. In addition to being obtained by this formal substitution,
fluid model equations can be derived from a “law of large numbers” scaling of
the form X(st)/s as s→ ∞. This interpretation will be important in Section 4.4
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when we use the stability of fluid models to show the stability of the correspond-
ing queueing networks. Fluid limits make this limiting procedure precise.

We first define the set G on which we will take fluid limits. Let G be the set
on which the strong law of large numbers holds for the external arrivals, service
times, and routing of a queueing network. That is, for ω ∈ G,

lim
n→∞

1

n

n
∑

i=1

ξk(i) = 1/αk, lim
n→∞

1

n

n
∑

i=1

γk(i) = mk, (4.70)

lim
n→∞

1

n
(Φk(n))ℓ = Pk,ℓ,

where k ∈ A in the first term and k = 1, . . . , K elsewhere, and ℓ = 1, . . . , K
in the last term. One has P (G) = 1. (Other sets G′, with P (G′) = 1 and
satisfying (4.70), can also be used.)

We define fluid limits as follows. Let (an, xn) be a sequence of pairs, with

lim
n→∞

an = ∞, lim sup
n→∞

|zn|/an <∞, (4.71)

lim
n→∞

|un|/an = lim
n→∞

|vn|/an = 0.

Here, an ∈ R+ and xn ∈ S, with zn, un, and vn denoting the queue length,
residual interarrival time, and residual service time vectors, with |xn| = |zn| +
|un| + |vn| as in (4.3). (Throughout the remainder of this section and the next,
we will employ subscripts for terms in sequences as well as for coordinates of
vectors; which one is meant will be clear from the context.) A fluid limit of the
queueing network, with queueing network process X(·), is any limit

X̄(t) = lim
n→∞

1

an
X

xn(ant), (4.72)

for any choice of ω ∈ G and any sequence (an, xn) satisfying (4.71). Convergence
is required to be uniform on compact sets (u.o.c.), and is to be interpreted
componentwise with respect to each of the six components of X̄(·). Here and
later on, the superscript gives the initial state of a process, e.g., X

x(·) indicates
that X

x(0) = x.
We will say that the family of these fluid limits is associated with the queueing

network. Such a family will be stable if there exists an N > 0, so that for any
of its fluid limits, the Z̄(·) component satisfies

Z̄(t) = 0 for t ≥ N |Z̄(0)|. (4.73)

This definition of stability is the analog of that for fluid models in (4.61). (The
scaled sequences {Xxn(ant)/an, n ∈ Z+} that are obtained from a queueing
network process, and their limits are frequently referred to as a fluid limit model.
We do not use that terminology here.)

We next employ fluid limits to specify the relationship between queueing
networks and fluid models that we will use in the succeeding sections. Let M
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be a fluid model, that is, a set of fluid model equations including the basic fluid
model equations (4.50)–(4.55). Then, M is associated with a queueing network
if, for ω ∈ G, each sequence (an, xn) satisfying (4.71) possesses a subsequence
(ain

, xin
) (depending on ω), on which the components of the scaled sequences

X
xin (ain

t)/ain
obtained from the queueing network process converge u.o.c., and

this limit satisfies the fluid model equations of M. Such a limit will automatically
satisfy (4.56) and the positivity and monotonicity properties given immediately
before (4.56).

We note that these limits are, by definition, fluid limits of the queueing
network. We are thus requiring here that each sequence possess a subsequence
with a fluid limit that satisfies the fluid model equations. It also follows from
this definition that every fluid limit must satisfy the fluid model equations. (The
definitions given here for fluid limits and associated fluid models differ somewhat
from those in the literature.)

Consider a fluid model whose triple (α,M, P ) corresponds to the triple (E(·),
Γ (·), Φ(·)) of a queueing network. (That is α,M , and P are the means corre-
sponding to E(·), Γ (·), and Φ(·).) In Proposition 4.12, we will show that, for
HL queueing networks, a converging subsequence always exists that satisfies the
basic fluid model equations. So, this basic fluid model is always associated with
the queueing network. Consequently, in order to show that a fluid model (with
corresponding triple (α,M, P )) is associated with a given queueing network, it
suffices to show that its auxiliary fluid model equations are also satisfied by all
fluid limits.

The basic fluid model for a given queueing network is uniquely specified. Typ-
ically, there will be a particular “canonical” fluid model that is associated with
the queueing network, which includes the basic fluid model equations, together
with an appropriate equation (or equations) that describe the discipline. The
choice of these auxiliary equations is usually fairly natural. We will, for exam-
ple, employ (4.48) as the auxiliary fluid model equation for the canonical fluid
model for FIFO queueing networks and (4.49) for SBP queueing networks. Note
that there exist other associated fluid models; for instance, the basic fluid model
for a queueing network is always associated with it. We will also use associated
in the opposite direction and say that a queueing network is associated with a
fluid model, although there will be many such queueing networks for a given
fluid model, since different choices of the distributions of ξ(1) and γ(1), with
the same means, are possible.

We now state Proposition 4.12, which was cited above.

Proposition 4.12. For each HL queueing network and ω ∈ G, every sequence
of pairs (an, xn) satisfying (4.71) possesses a subsequence (ain

, xin
) on which

the limit in (4.72) exists and is u.o.c. This limit satisfies the basic fluid model
equations (4.50)–(4.55) with the corresponding triple. Hence, each HL queueing
network is associated with its basic fluid model.

Proof. We need to show the existence of a limit X̄(·) that satisfies (4.50)–(4.55)
and is u.o.c. These properties will follow from the queueing network equa-
tions (4.42)–(4.47) and (4.70). First note that for a given ω ∈ G, one can restrict
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the sequence xn to a subsequence xin
, so that for some T̄ (·),

1

ain

T xin (ain
t) → T̄ (t) as n → ∞, (4.74)

on a dense set of t, say, the nonnegative rationals. On account of (4.45), the
terms on the left side of (4.74) are all Lipschitz continuous with coefficient 1,
and so the sequence is uniformly equicontinuous. The limit in (4.74) therefore
holds u.o.c. for all t, if T̄ (·) is replaced by its continuous extension to all of R+,0.
Applying (4.45) again, it follows that

Ȳ (t) = lim
n→∞

1

ain

Y xin (ain
t)

also exists, with convergence being u.o.c. Moreover, (4.53) is satisfied and both
T̄ (·) and Ȳ (·) are Lipschitz continuous.

To show (4.55), note that on account of (4.47),

1

ain

γk(0) +
1

ain

D
xin
k

(aint)−1
∑

i=1

γk(i) ≤
1

ain

T
xin

k (ain
t)

<
1

ain

γk(0) +
1

ain

D
xin
k

(aint)
∑

i=1

γk(i), (4.75)

for given k, t, and n. Since ω ∈ G, it follows from (4.70) that, for given ǫ > 0
and large n, the quantity to the right of the strict inequality is at most

1

ain

(mk + ǫ)D
xin

k (ain
t) + ǫ.

A similar lower bound, with ǫ replaced by −ǫ, holds for the quantity to the
left of the other inequality. Letting n → ∞, it follows that mkD

xin

k (ain
t)/ain

converges to the limit of T
xin

k (ain
t)/ain

, which is T̄k(t). Since T̄ (·) is continuous
and Dxin (·) is nondecreasing, this convergence is u.o.c. So,

D̄(t) = lim
n→∞

1

ain

Dxin (ain
t)

also exists, with convergence being u.o.c. and (4.55) holding. Since T̄ (·) is Lip-
schitz continuous, so is D̄(·).

We next show (4.50). Here, one uses the limits involving
∑n

i=1 ξ(i) and Φ(n)
in (4.70), and |un| in (4.71), as n → ∞. Together with the above limit D̄(·),
they imply that

1

ain

Exin (ain
t) → αt,

1

ain

∑

k

Φ(D
xin

k (ain
t)) → P T D̄(t) (4.76)
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for all t, as n → ∞. Consequently, the limit Ā(t) exists and (4.50) holds. Since
Exin (·) and Φk(·) are monotone and convergence to D̄(·) is u.o.c., convergence
to Ā(·) is also u.o.c. Since D̄(·) is Lipschitz continuous, so is Ā(·).

Equation (4.51) and convergence to Z̄(·) follow quickly from (4.43) and the
previous limits, on a further subsequence that is chosen so that Z̄(0) exists.
The derivation of (4.52) from (4.44) and convergence to W̄ (·) are similar to the
previous steps.

We still need to show (4.54). Suppose that for some j and all t ∈ [t1, t2],
W̄j(t) > 0. Since W̄j(·) is continuous, it is bounded away from 0 on the interval.
Convergence to W̄ (·) is u.o.c., and so for sufficiently large n, W

xin

j (ain
t) > 0

on [t1, t2] as well. Because of (4.46), one must have Y
xin

j (t1) = Y
xin

j (t2). Since
the same equality also holds in the limit as n → ∞, one obtains (4.54), as
desired.

Proposition 4.12 will be applied to Theorem 4.16 in Section 4.4. We mention
here the following quick applications of the proposition and Part (b) of Propo-
sition 4.11. The first application says that for a queueing network, the limiting
proportion of time is positive that a given subcritical station j is empty. We note
that this, by itself, does not imply the queueing network is stable. As the exam-
ples in Chapter 3 show, different stations can be empty at nonoverlapping times,
with |Z(t)| → ∞ as t → ∞ nevertheless holding. The second application is a
modification of the one just described, and will be employed in Proposition 4.15
of Section 4.4.

Corollary 1. For each HL queueing network and any initial state x,

lim inf
t→∞

Y x(t)/t ≥ e− ρ on G. (4.77)

Moreover, for each ǫ > 0, there exists a c0, so that

lim inf
|x|→∞

Y x(c|x|)/c|x| ≥ (1 − ǫ)e− ρ on G, (4.78)

for all c ≥ c0.

Proof. We demonstrate (4.77). Suppose that for some ω ∈ G, the above limit is
false. That is, along some sequence of times an, with an → ∞ as n → ∞,

lim
n→∞

Y x
j (an)/an < 1 − ρj for some j. (4.79)

By Proposition 4.12,
X̄(t) = lim

n→∞
X

x(ain
t)/ain

exists along some subsequence ain
, and satisfies the basic fluid model equations.

Since Z̄(0) = 0, it follows from Part (b) of Proposition 4.11 that Ȳ (t) ≥ (e− ρ)t
for all t. Therefore,

lim inf
n→∞

Y x(ain
t)/ain

≥ (e− ρ)t, (4.80)

which contradicts (4.79).
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The argument for (4.78) is almost the same. In (4.79), one replaces an by
t|xn| and 1 − ρj by 1 − ǫ− ρj , for given ǫ > 0. The fluid limit will now satisfy
|Z̄(0)| ≤ 1. One obtains from Proposition 4.11 that Ȳ (t) ≥ ((1 − ǫ)e − ρ)t for
given ǫ and c ≥ c0, for large enough c0. Substitution of the limiting sequence
gives the analog of (4.80), which contradicts the analog of (4.79).

We also note that Proposition 4.12 provides a means for showing the existence
of fluid model solutions with given initial data X(0) = x. Suppose that (an, xn)
satisfies (4.71) and that zn/an → z as n→ ∞, where z denotes the queue length
vector for x. Then, for ω ∈ G, any fluid limit X̄(·) will satisfy the basic fluid
model equations (4.50)–(4.55), with Z̄(0) = z. The same conclusion will hold
for more general fluid models that are associated with some queueing network.

Similar reasoning, together with Part (c) of Proposition 4.11, leads to the
following elementary result, which will be used in the proof of Proposition 4.15.

Corollary 2. Suppose that the family of fluid limits associated with an HL
queueing network is stable. Then, the queueing network is subcritical.

Proof. Consider a sequence of pairs (an, xn) satisfying (4.71), where for each
coordinate (zn)k of zn, lim infn→∞(zn)k/an > 0. For any fluid limit X̄(·) of this
sequence, Z̄(0) > 0. Also, since the family of fluid limits is stable, Z̄(N |Z̄(0)|) =
0 for N chosen as in (4.73). By Proposition 4.12, such a fluid limit will exist
and will satisfy the basic fluid model equations. It therefore follows from Part
(c) of Proposition 4.11 that the fluid model is subcritical, and hence so is the
queueing network.

Countable state space setting

There are only minor simplifications in this section when the state space S
of a queueing network is countable. There are no changes in the approach to
queueing network equations and fluid models. The comment on fluid models
with delay is now vacuous, since the residual times u and v are no longer part
of the state space descriptor. A few statements in the subsection on fluid limits
simplify slightly. In (4.71), one omits the conditions on un and vn. Also, in the
proof of Proposition 4.12, the limits obtained from (4.75) and (4.76) no longer
depend on assumptions on the residual times.

4.4. Demonstration of stability

In this chapter, we have stated a number of results for Markov processes and
queueing networks. Here, we employ these results to demonstrate the stability
and e-stability of queueing networks in Theorems 4.16 and 4.17. Proposition 4.6
of Section 4.2 and Proposition 4.12 of Section 4.3 will be the main ingredients
for this. In addition, we will need two further results, Propositions 4.14 and
4.15, which we provide in this section. Our approach here is a modification of
that in [Br98a], which is based on that in [Da95].
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Bounds on |Z(t)|, |U(t)|, and |V (t)|

Proposition 4.6 of Section 4.2 is the Multiplicative Foster’s Criterion; it re-
quires bounds on the expectation of Ex|X(c(|x|∨κ))|, which are given in (4.28).
In order to obtain these bounds, we will need bounds on |Z(t)|, |U(t)|, and
|V (t)|, and their expectations. These bounds will be provided in Propositions
4.14 and 4.15. To obtain them, we will use the following lemma.

Lemma 4.13. Let β(1), β(2), β(3), . . . be i.i.d. positive random variables with

finite mean. Set B1(t) = 1
t max{n :

∑n−1
i=1 β(i) ≤ t}. Then,

sup
t≥1

E[B1(t);B1(t) ≥M ] → 0 as M → ∞. (4.81)

Set B2(t) = 1
t max{β(n) :

∑n−1
i=1 β(i) ≤ t}, and let Gβ denote the set on which

1
n

∑n
i=1 β(i) → m as n→ ∞. Then,

B2(t) → 0 on Gβ as t→ ∞, (4.82)

and
E[B2(t)] → 0 as t → ∞. (4.83)

Proof. We first show (4.81). For i = 1, 2, 3, . . ., set

β̃(i) =

{

δ for β(i) ≥ δ,

0 for β(i) < δ,

where δ ∈ (0, 1] is chosen small enough so that P (β(1) > δ) > 0. Define B̃1(t)
analogously to B1(t), but with respect to β̃(i) instead of β(i). Since B̃1(t) ≥
B1(t), to show (4.81), it suffices to show the analogous limit for B̃1(t).

For ℓ = 0, 1, 2, . . ., let ζ(ℓ) denote the number of indices n, n = 0, 1, 2, . . .,
for which

∑n
i=1 β̃(i) = δℓ. Then, ζ(0), ζ(1), ζ(2), . . . are i.i.d. random variables

with finite means and

B̃1(t) ≤
1

t

⌈t/δ⌉
∑

ℓ=0

ζ(ℓ). (4.84)

Using Markov’s Inequality, one can check that

sup
t≥1

P

(

1

t

⌈t/δ⌉
∑

ℓ=0

ζ(ℓ) ≥M

)

≤
3

δM
E[ζ(0)] → 0 as M → ∞. (4.85)

By (4.84) and the exchangeability of ζ(ℓ),

sup
t≥1

E[B̃1(t); B̃1(t) ≥M ] ≤ sup
t≥1

3

δ
E

[

ζ(0);
1

t

⌈t/δ⌉
∑

ℓ=0

ζ(ℓ) ≥M

]

.

Because of (4.85), this → 0 as M → ∞, which is the desired limit.
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To show (4.82), note that on Gβ,

1

n

⌊cn⌋
∑

i=1

β(i) → cm as n → ∞,

where convergence is uniform on c ∈ [0, 1]. Therefore, for given ǫ > 0 and large
enough n,

max
i∈[c1n,c2n)

β(i) ≤

⌊c1n⌋
∑

i=⌊c1n⌋

β(i) ≤ (c2 − c1 + ǫ)mn

for all 0 ≤ c1 ≤ c2 ≤ 1. Setting c2 = c1 + ǫ and n = ⌊2t/m⌋, one has, for large
enough t, that

B2(t) ≤
1

t
sup

c1∈[0,1]
max

i∈[c1n,(c1+ǫ)n)
β(i) ≤ 2ǫmn/t ≤ 4ǫ.

Since ǫ > 0 is arbitrary, (4.82) follows.
We will show that

sup
t≥1

E[B2(t);B2(t) ≥M ] → 0 as M → ∞. (4.86)

Together with (4.82), this will imply (4.83) since P (Gβ) = 1. For this, we
again choose δ ∈ (0, 1] small enough so P (β(1) > δ) > 0, and let β′(1), β′(2),
β′(3), . . . denote the subsequence obtained by restricting the original sequence
to terms with β(i) ≥ δ. Clearly, B2(t) ≤

1
t max1≤i≤⌈t/δ⌉ β

′(i). Also, by Markov’s
Inequality,

sup
t≥1

P

(

1

t
max

1≤i≤⌈t/δ⌉
β′(i) ≥M

)

≤ sup
t≥1

1

Mt
E

[

max
1≤i≤⌈t/δ⌉

β′(i)

]

≤
2

δM
E[β′(1)],

which → 0 as M → ∞, since β′(1) has finite mean. It follows that the left side
of (4.86) is at most

2

δ
sup
t≥1

E

[

β′(1);
1

t
max

1≤i≤⌈t/δ⌉
β′(i) ≥M

]

,

which → 0 as M → ∞. This shows (4.86) and hence (4.83).

By applying the first part of Lemma 4.13, it is easy to obtain uniform bounds
on the growth of the queue length Zx(t) of an HL queueing network. (The result
is not dependent on the HL property and so holds for more general networks,
once defined.) Recall that the set G is given in (4.70).
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Proposition 4.14. For each HL queueing network, c > 0, and ω ∈ G,

lim sup
|x|→∞

|Zx(c|x|)|/|x| ≤ c|α|+ 1. (4.87)

Moreover,

sup
t≥1

sup
|x|≤t

E[|Zx(t)|/t; |Zx(t)| ≥Mt] → 0 as M → ∞; (4.88)

in particular,
sup
t≥1

sup
|x|≤t

E[|Zx(t)|]/t <∞. (4.89)

Proof. At any time t,
|Zx(t)| ≤ |Ex(t)| + |z|, (4.90)

that is, the sum of the queue lengths is bounded by the number of external
arrivals plus the sum of the original queue lengths. Also, on G,

lim sup
|x|→∞

Ex
k (c|x|)/|x| ≤ cαk,

for any k, since the number of external arrivals will only be reduced, at k ∈ A,
as the initial residual interarrival time uk of x increases. Summation of the
components in this inequality and application of (4.90) implies (4.87), since
|z| ≤ |x|.

To obtain the uniform integrability bound in (4.88), set β(i) = ξk(i) in
Lemma 4.13, where ξk(1), ξk(2), . . . is the sequence of interarrival times at k ∈ A
defined earlier in the chapter. Since

Ex
k (t)/t ≤ B1(t)

for all t and x, it follows from (4.81) that

sup
t≥1

sup
x
E[Ex

k(t)/t; Ex
k (t) ≥Mt] → 0 as M → ∞.

This limit holds trivially for k 6∈ A. Since the sum of uniformly integrable
random variables is uniformly integrable,

sup
t≥1

sup
x
E[|Ex(t)|/t; |Ex(t)| ≥Mt] → 0 as M → ∞.

Together with (4.90), this implies (4.88). The limit in (4.89) is an immediate
consequence of (4.88).

By applying the last two limits in Lemma 4.13, one can obtain the following
bounds on the growth of the residual times Ux(t) and V x(t), as |x| → ∞.
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Proposition 4.15. For each subcritical HL queueing network, there exists a
c0 ≥ 1, so that for c ≥ c0,

1

|x|
|Ux(c|x|)| → 0,

1

|x|
|V x(c|x|)| → 0 on G as |x| → ∞. (4.91)

Moreover,

sup
t≥1

sup
|x|≤t

1

t
E|Ux(t)| <∞, sup

t≥1
sup
|x|≤t

1

t
E|V x(t)| <∞ (4.92)

and
1

|x|
E|Ux(c|x|)| → 0,

1

x
E|V x(c|x|)| → 0 as |x| → ∞. (4.93)

In particular, (4.91)–(4.93) all hold when the family of fluid limits that is asso-
ciated with the queueing network is stable.

Proof. The last assertion is an immediate consequence of Corollary 2 to Propo-
sition 4.12, which asserts that the queueing network is subcritical when the fluid
limits are stable.

For the first half of (4.91), we set β(i) = ξk(i) in Lemma 4.13, for a given
k ∈ A. Clearly, for all t > 0, x, and ω,

1

t
Ux

k (t) ≤ B2(t) ∨
1

t
uk. (4.94)

For c ≥ 1 and t = c|x|, one has

1

|x|
Ux

k (c|x|) ≤ cB2(c|x|), (4.95)

since uk ≤ |x| ≤ c|x|, and so the initial interarrival residual times have expired
by then. The first half of (4.91) follows from (4.82) and (4.95), since G ⊆ Gβ.

Taking expectations in (4.94) implies

1

t
E[Ux

k (t)] ≤ E[B2(t)] +
1

t
uk.

Summing over k ∈ A implies the first half of (4.92), since
∑

k∈A uk = |u| ≤ x ≤
t, for |x| ≤ t, and supt≥1E[B2(t)] <∞ because of (4.83). The first half of (4.93)
follows from (4.83) and (4.95).

The argument for the second half of (4.91) is similar to that just given for
the first half, but with β(i) = γk(i) in Lemma 4.13, for any k. For all x and ω,

1

t
V x

k (t) ≤ B2(t) ∨
1

t
vk. (4.96)

Setting t = c|x|, for given c, this implies that

1

|x|
V x

k (c|x|) ≤ cB2(c|x|) on σx
k ≤ c|x|, (4.97)

where σx
k is the time at which the initial service residual time expires.
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The time at which this occurs is not obvious, since the amount of service
that class k receives will depend on the discipline. Note, however, that for large
enough c and |x| (where the latter depends on ω), and for ω ∈ G, (4.78) of the
first corollary to Proposition 4.12 implies that the station j = s(k) is idle, and
hence empty, at some time before c|x|. Here, ǫ > 0 is chosen small enough so
that ρj < 1 − ǫ, which is possible since the network is subcritical. So,

σx
k ≤ c|x| for large enough |x|,

for ω ∈ G. Consequently, (4.97) will eventually hold onG, without the restriction
that σx

k ≤ c|x|. The second half of (4.91) follows from this and (4.82), since
G ⊆ Gβ.

The argument for the second half of (4.92) is the same as that for the first half
of (4.92), where one uses (4.96) instead of (4.94). We still need to demonstrate
the second half of (4.93). Taking expectations in (4.97), after restricting to the
set σx

k ≤ c|x|, and applying (4.83) gives

1

|x|
E[V x

k (c|x|)1{σx
k ≤ c|x|}] → 0 as |x| → ∞.

On the other hand, V x
k (c|x|) ≤ vk ≤ |x| on σx

k > c|x|. So, by (4.91) and bounded
convergence, one also has

1

|x|
E[V x

k (c|x|)1{σx
k > c|x|}] → 0 as |x| → ∞.

Together, these limits imply that E[V x
k (c|x|)]/|x| → 0 as |x| → ∞, which im-

plies (4.93).

The main theorem

We now have the needed background to show the main result on stability for
queueing networks, Theorem 4.16. A similar result for e-stability will be shown
at the end of the section.

Theorem 4.16. For a given HL queueing network, suppose that A = {x : |x| ≤
κ} is petite for each κ > 0. If the family of fluid limits that is associated with the
queueing network is stable, then the queueing network is stable. In particular,
the queueing network is stable whenever an associated fluid model is stable.

Before proving the theorem, we first provide some motivation for its assump-
tions. After the proof, we discuss the theorem further and provide some exten-
sions.

Petite was defined in the last part of Section 4.1, and says, in essence, that
each set, after being weighted according to some measure ν , is “equally accessi-
ble” from all states in a petite set A. We require the above sets A = {x : |x| ≤ κ}
to be petite in order to be able to apply Proposition 4.6 in the proof of the
theorem. On account of Proposition 4.7, the assumptions (4.30) and (4.31) on
the distributions of the interarrival times suffice for these sets to be petite. By
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Proposition 4.8, (4.30) suffices when |A| = 1. For the sake of concreteness, re-
sults on the stability of queueing networks in the literature have often made
these assumptions, rather than assuming the sets A are petite. It is not clear
what broader conditions might replace them.

In the statement of the theorem, one also needs to assume that either the
associated fluid limits or associated fluid model is stable. Demonstration of either
of these conditions requires most of the effort, in practice, when applying the
theorem. The assumption on the stability of fluid limits is more general than
the corresponding assumption on fluid models.

The latter assumption is the more tractable version, and is the one typically
used in applications. It reduces a random problem, the stability of a queueing
network, to a (presumably simpler) deterministic problem, the stability of a
fluid model. This problem consists of analyzing the solutions of the deterministic
equations that constitute the fluid model. In the first three sections of Chapter 5,
we will present several examples that illustrate the power of this approach. In
such applications, one also needs to show that a specific fluid model is associated
with a given queueing network. This is typically routine, with the argument for
justifying the auxiliary fluid model equations proceeding along the same lines
as the proof of Proposition 4.12.

Unfortunately, there is no satisfactory converse to Theorem 4.16, where the
stability of an appropriately chosen fluid model follows from the stability of the
queueing network. This will be discussed in Section 5.5.

Proof of Theorem 4.16. We first note that the family of fluid limits that is as-
sociated with a queueing network is a subset of the solutions of any associated
fluid model. This is an immediate consequence of the definition of an associated
fluid model. Stability of an associated fluid model therefore implies stability of
the associated fluid limits. So, the second claim in the statement of the theorem
follows from the first.

Recall that for any x in the state space, |x| = |z| + |u| + |v|. Setting t =
c(|x| ∨ 1), with c ≥ 1, in (4.89) of Proposition 4.14 and (4.92) of Proposition
4.15, one has

Ex|X(c(|x| ∨ 1))| ≤ bc(|x| ∨ 1) (4.98)

for some b and any x. We will demonstrate here that for large enough c,

1

|xn|
Exn

|X(c|xn|)| → 0 as n→ ∞, (4.99)

for any sequence xn, with xn → ∞ as n→ ∞. This is equivalent to

1

|x|
Ex|X(c|x|)| → 0 as |x| → ∞. (4.100)

Together, (4.98) and (4.100) imply (4.28) for an appropriate choice of κ. This is
the basic assumption for the Multiplicative Foster’s Criterion (Proposition 4.6).

Since |x| is continuous in x, the set A = {x : |x| ≤ κ} is closed. By assumption,
A is petite. So, it will follow from (4.28) that the underlying Markov process
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X(·) is positive Harris recurrent, and hence the queueing network is stable. The
remainder of the proof is devoted to the demonstration of (4.99).

We break the demonstration of (4.99) into two main steps. Step 1 con-
sists of translating the condition (4.73), for fluid limit stability, into a related
limit (4.104) on the expected value of |Z(·)| for the queueing network. We restrict
our attention here to sequences of pairs (an, xn) as in (4.71), since this condition
is assumed for fluid limits. In Step 2, we start the process at general xn. After
restarting it at times c1|xn| where (4.71) is satisfied, we employ (4.104) from
Step 1 to get (4.110). Using Proposition 4.15, we finish the proof by showing
the corresponding limit, but with |X(·)| replacing |Z(·)|, which gives us (4.99).

Step 1. Assume that the sequence of pairs (an, xn) satisfies (4.71), and choose
ẑ so that ẑ ≥ lim supn→∞ |zn|/an. We first show that

1

an
|Zxn(Nẑan)| → 0 on G as n → ∞, (4.101)

for appropriate N > 1 not depending on the sequence.
By Proposition 4.12, any subsequence X

xin (·) of X
xn(·) has a fluid limit X̄(·)

along some further subsequence (aℓn
, xℓn

), as in (4.72). Since the family of fluid
limits that is associated with the queueing network is assumed to be stable and
ẑ ≥ |Z̄(0)|, this implies

Z̄(t) = 0 for t ≥ Nẑ (4.102)

and appropriate N , where we can assume N > 1. Restating the limit in terms
of the original process, after setting t = Nẑ, one obtains

1

aℓn

|Zxℓn (Nẑaℓn
)| → 0 as n→ ∞. (4.103)

Since a subsequence (aℓn
, xℓn

) satisfying (4.103) exists for every subsequence
(ain

, xin
) of (an, xn), the limit holds along the entire sequence as in (4.101).

We claim that
1

an
E|Zxn(Nẑan)| → 0 as n→ ∞. (4.104)

On account of (4.101), it suffices to show that the sequence there is uniformly
integrable for large enough n. This follows from (4.88) of Proposition 4.14, since
lim supn→∞ |xn|/an < Nẑ.

Step 2. We now allow xn to be arbitrary, assuming only that |xn| → ∞ as
n → ∞. We wish to restart the processes Xxn(·) at times c1|xn|, where c1 ≥ 1
is nonrandom, and at which the following three limits hold for ω ∈ G:

lim sup
n→∞

1

|xn|
|Zxn(c1|xn|)| ≤ c1|α|+ 1, (4.105)

1

|xn|
|Uxn(c1|xn|)| → 0 as n → ∞, (4.106)

1

|xn|
|V xn(c1|xn|)| → 0 as n→ ∞. (4.107)
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The first limit follows from (4.87) of Proposition 4.14, with arbitrary c1, and
the last two limits follow from (4.91) of Proposition 4.15, with c1 ≥ c0, where
c0 is given in Proposition 4.15.

We set

a′n = |xn|, x′n = Xxn(c1|xn|), z′n = Zxn(c1|xn|),

u′n = Uxn(c1|xn|), v′n = V xn(c1|xn|).

On account of (4.105)–(4.107), the random sequence (a′n, x
′
n) satisfies (4.71) on

the set G. For ẑ′
def
= c1|α| + 1, one has ẑ′ ≥ lim supn→∞ |z′n|/a

′
n on all such

sequences. It follows from (4.104) that

1

|xn|
Ex′

n
|Z(Nẑ′|xn|)| → 0 on G as n → ∞. (4.108)

(In (4.108), we write the initial state x′n outside the expectation since x′n is
random; for nonrandom initial states as in (4.104), the two formulations are of
course equivalent.)

Set c = c1 +Nẑ′ = c1 +N(c1|α|+ 1). Since X(·) is Markov and P (G) = 1,
it follows from (4.108) that

1

|xn|
Exn

[Z(c|xn|) | σ(X(c1|xn|))] → 0 as n → ∞ (4.109)

holds a.s. It is not difficult to check that, because of (4.109),

1

|xn|
|Zxn(c|xn|)| → 0 as n → ∞

holds in probability. On account of (4.88) of Proposition 4.14, the sequence is
uniformly integrable. So, in fact,

1

|xn|
E|Zxn(c|xn|)| → 0 as n→ ∞. (4.110)

On the other hand, by (4.93) of Proposition 4.15,

1

|xn|
E|Uxn(c|xn|)| → 0,

1

|xn|
E|V xn(c|xn|)| → 0 as n→ ∞. (4.111)

Together with (4.110), these two limits imply that

1

|xn|
E|Xxn(c|xn|)| → 0 as n → ∞,

which is (4.99). This completes the proof of Theorem 4.16.
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The reader should note that, in the proof of Theorem 4.16, the only places
where the stability of the fluid limits is used are (a) in (4.102), and (b) where
Proposition 4.15 is applied. Stability is used in (b) only to conclude the queueing
network is subcritical. The latter use of stability can of course be avoided by
directly assuming the queueing network is subcritical. The condition in (a) is
the major “given” in the theorem, with verification of the stability of the fluid
limits, as needed in (4.102), being left to specific applications.

The definition of fluid limit, that is given in Section 4.3, differs somewhat
from that given in [Da95]. There, one sets an = |xn|, and, unlike (4.71), makes
no assumptions on un and vn. This permits the limiting residual times ū and v̄
to be different than 0. The argument for deriving (4.99) is then essentially that
given in Step 1 of the above proof together with the limits in (4.111), except that
one now requires the stability of the corresponding fluid limits with delay (which
will satisfy the corresponding fluid model equations with delay). The approach
used here and in [Br98a] allows one to avoid dealing with fluid limits and fluid
models with delay altogether. (An intermediate approach for fluid models was
given in [Ch95].)

As noted at the end of the preceding sections, analyzing the Markov process
X(·) becomes easier when the state space is countable. We point out that the
same is true here, although in this context, the absence of coordinates corre-
sponding to the exponential residual times, rather than countability, is what
is important. In this simpler setting, the last two displays in Lemma 4.13 are
not needed, nor is Proposition 4.15. The proof of Theorem 4.16 simplifies, with
Step 2 no longer being needed. In Step 1, one can instead set an = |xn| = |zn|.
Then, (4.104) immediately implies (4.99), with c = N .

The stability assumptions in Theorem 4.16 are sufficient for most applica-
tions. On occasion, somewhat greater flexibility in the definition of fluid limits
is helpful. One can, for instance, replace the assumption of fluid limit stability
with

1

an
|Zxn(Nẑan)| → 0 in probability as n → ∞, (4.112)

for all pairs of sequences (an, xn) satisfying (4.71). This generalizes pointwise
convergence in (4.101), at the beginning of Step 1 in the proof of the theorem,
to convergence in probability. The conclusion (4.104), in Step 1, follows as be-
fore from the uniform integrability condition on |Z(t)| in (4.88). In [Br99], the
concept asymptotic stability is used; this is a weaker variant of fluid limit stabil-
ity that implies (4.112). As in the previous paragraph, matters simplify in the
exponential setting when employing (4.112).

Throughout this chapter, we have assumed that queueing networks are head-
of-the-line. If one wishes, one can replace this assumption by the assumption
that only a bounded number of jobs at any class and time have already received
some service there. The approach is then essentially the same as before, with only
the obvious modifications being made at certain points. One needs to replace
the residual service time vector, in the construction of the state space and the
Markov process in the first part of Section 4.1, by a vector with correspondingly
more components. Under the corresponding new definition of the norm |x|,
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the same results leading up to Theorem 4.16 hold as before. The basic fluid
model equations (4.50)–(4.55) are still valid. (The queueing network inequality
(4.47) leading to (4.55) needs to be modified, though.) Other results where the
reasoning proceeds as before include Proposition 4.12, where the fluid limits
satisfy the basic fluid model equations, and Proposition 4.15, where the bounds
on |V x(·)| continue to hold.

This approach fails when the number of jobs that have received partial ser-
vice is allowed to become unbounded. In particular, the bounds on |V x(·)| in
Proposition 4.15 can fail, and |V x(c|x|)| can be of the same order of magni-
tude as |x|. Changing the sum norm on |v| to the max norm does not help,
since the relationship between fluid limits and the basic fluid model equations
in Proposition 4.12 need not continue to hold.

e-stability

By strengthening the assumptions in Theorem 4.16 so that the sets A there
are uniformly small, one can show, in Theorem 4.17, that the queueing network is
e-stable. Theorem 4.17 follows by using the same argument as in Theorem 4.16,
but instead applying the last part of Proposition 4.6 to it. A similar result is
given in [Du96].

Theorem 4.17. Assume that an HL queueing network satisfies the same con-
ditions as in Theorem 4.16, except that the condition that A = {x : |x| ≤ κ} be
petite is replaced by the condition that, for each κ > 0, A be uniformly small on
an interval [s1, s2], with 0 < s1 < s2. Then, the queueing network is e-stable.

Proof. Whenever a set is small, it is also petite. So, all of the assumptions in
the statement of Theorem 4.16 are satisfied. Consequently, all steps in the proof
remain valid, which include the bound and limit given in (4.98) and (4.100). As
before, they together imply the basic assumption (4.28) for the Multiplicative
Foster’s Criterion (Proposition 4.6), for some choice of κ.

Since |x| is continuous in x, the set A is closed. By assumption, it is uniformly
small. Employing the last part of the Multiplicative Foster’s Criterion, it follows
that X(·) is ergodic. Hence the queueing network is e-stable.

Under the assumptions (4.30) and (4.31) on the interarrival times, it follows
from Proposition 4.7 that the sets A = {x : |x| ≤ κ}, κ > 0, are uniformly small.
It therefore follows from Theorem 4.17 that, under (4.30) and (4.31), a queueing
network will be e-stable if either its associated fluid limits or associated fluid
model is stable.

In Chapter 5, we will employ Theorems 4.16 and 4.17 to demonstrate the
stability/e-stability for queueing networks with different disciplines. In each
case, the main part of the argument consists of showing the stability of an
associated fluid model. The amount of work involved depends on the discipline.
Here, as an elementary illustration of the procedure, we show the following.

Example 1. Assume that (4.30)–(4.31) holds for an HL queueing network with
∑

j ρj < 1. Then, the queueing network is e-stable.
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Proof. By Proposition 4.7 and Theorem 4.17, it suffices to show that an asso-
ciated fluid model is stable. We do this for the basic fluid model, which, by
Proposition 4.12, is always associated with the network. By Part (a) of Propo-
sition 4.11, this fluid model is stable. Consequently, the queueing network is
e-stable.

The assumption
∑

j ρj < 1 is sufficiently strong so that the above example
can be proven directly, with a bit of work. For this, one can apply the Multi-
plicative Foster’s Criterion to the total workload of the queueing network. (The
total workload consists of all future work required of all jobs currently in the
network.) As one should expect, the assumption that the discipline be HL is
not necessary here, although one then needs to reformulate the definition of
the underlying Markov process given in Section 4.1 and its accompanying state
space. For less elementary examples, a direct proof of stability or e-stability will
be quite tedious, if feasible.

4.5. Appendix

The purpose of this section is to serve as an appendix for Section 4.1 and
to go into more detail on background material that was omitted there. We
cover here four topics. We first discuss the connection between Borel right pro-
cesses and piecewise-deterministic Markov processes, which was only mentioned
briefly in Section 4.1. We then go into more detail on three topics connected
with recurrence that were mentioned in the subsection on Harris recurrence.
In Proposition 4.18, we show the equivalence of Harris recurrence and of posi-
tive Harris recurrence for a Markov process X and its R-chain X̃ , and that X
and X̃ have the same stationary measures. We next summarize how one can
demonstrate Theorem 4.1 for a process X by employing its R-chain. We then
summarize the argument showing the existence of a stationary measure for a
discrete time Markov process with a petite set A that satisfies the discrete time
analog of (4.19).

Borel right processes and PDPs

We first state the definition of a Borel right process, and then show that the
class of PDPs that are associated with HL queueing networks are Borel right
processes. For the definition of Borel right, we follow Section 27 of [Da93]. Other
references are [Ge79], [Kn84], and [Sh88]; [Da93] relies on the approach given in
[Sh88].

We assume that the σ-algebras associated with the continuous time Markov
process X satisfy the completeness and right continuity conditions given in (4.5)
and (4.6). The conditions on page 77 of [Da93] state that X(·) is Borel right if,
in addition:

(a) The state space S is a Lusin space.
(b) X has a semigroup P t that maps B(S) into B(S).
(c) The sample paths t 7→ X(t) are a.s. right continuous.
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(d) If f is an α-excessive function for P t, for some α ≥ 0, then the sample
path t 7→ f(X(t)) is a.s. right continuous.

We proceed to explain the terms that are employed above, and show that
these four conditions are satisfied for the Markov processes X underlying the
HL queueing networks we have introduced. The first three conditions are quite
general, and do not pose any serious constraints. Condition (d) is needed for
the regularity of the process. In our setting, none is difficult to show.

A topological space is called a Lusin space if it is homeomorphic to a Borel
subset of a compact metric space. As pointed out in [Sh88], a locally compact
Hausdorff space with countable basis is a Lusin space, since its one point com-
pactification is compact and metrizable. The space S introduced in Section 4.1
satisfies these properties, and so is a Lusin space. In (b), B(S) denotes the
bounded measurable functions on S. The property holds since P t is a proba-
bility transition kernel. As mentioned in Section 4.1, this is showed in [Da93].
The argument consists of writing P tf , f ∈ B(S), as the limit of the n-fold
iterates of Gtf , where Gt is the truncated operator obtained by stopping X at
the time of its first jump, and employing the measurability of Gt. In (c) and
(d), “a.s.” means almost surely with respect to all initial probability measures
µ. Since the sample paths of X are right continuous by construction, property
(c) is automatic.

A function f is α-super-mean-valued, for some α ≥ 0, if f(x) ≥ 0 and
e−αtP tf(x) ≤ f(x) for all t ≥ 0 and x ∈ S. The function f is α-excessive
if it is α-super-mean-valued and e−αtP tf(x) ↑ f(x) as t ↓ 0. In our setting, it is
easy to see that (d) holds for the larger family of functions where P tf(x) → f(x)
as t ↓ 0. To see this, let t < s be close enough so that no jumps occur in (t, s]
along a given sample path. Then, since X(·) is piecewise deterministic,

f(X(s)) = f(P s−t(X(t))) = f(P s−t(x)),

for x = X(t). As s ↓ t, the last quantity converges to f(x) = f(X(t)), which
shows f(X(·)) is right continuous, and hence shows (d).

By (i) of Theorem 9.4 of [Ge79], under the conditions (a)–(c), the assumption
that X is strong Markov is equivalent to condition (d). So, (d) may be replaced
by

(d′) The process X is strong Markov.

As mentioned in Section 4.1, PDPs are strong Markov, and therefore so are our
processes X that are associated withHL queueing networks. The demonstration
of (d) is of course quicker than (d′) for such processes, but most readers will
presumably find the latter condition more familiar.

Recurrence for a Markov process and its R-chain

Let X(t), t ≥ 0, be a Markov process and X̃(n), n = 0, 1, 2, . . . , be its
R-chain. The process X inherits certain properties from X̃ , which we used in
Section 4.1. We demonstrate them now in Proposition 4.18. For this, we employ
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the following standard result from discrete time Markov process theory, which
can be found, for instance, in Chapter 10 of [MeT93d]: if a Markov process
Y (n), n = 0, 1, 2, . . ., is Harris recurrent, then it has a stationary measure, and
this measure is unique up to a constant multiple. (We will outline part of the
argument in the last subsection.) Much of the proof for the proposition is from
[MeT93a].

Proposition 4.18. The process X is Harris recurrent, respectively positive Har-
ris recurrent, if and only if X̃ is. In either case, X and X̃ have the same sta-
tionary measures. Consequently, X has a stationary measure, which is unique
up to a constant multiple.

Proof. The existence and uniqueness of a stationary measure for X follows im-
mediately from the preceding statement in Proposition 4.18, and the comment
before the proposition about discrete time Markov processes.

It is immediate from the characterization of recurrence in (4.10) that when X̃
is recurrent with respect to the measure ϕ, then so is X. For the other direction,
it suffices to show that for ϕ(A) > 0,

Px(τ̃A <∞) = 1 for all x,

where τ̃A is the hitting time of A for X̃ constructed as in (4.13). This follows
immediately from (4.9) and the formula

Px(τ̃A <∞) = 1 − Ex[e−ηA ], (4.113)

which is given in Theorem 2.3 of [MeT93a]. Intuitively, (4.113) is not difficult
to see since, conditioning on the process X, the number of indices n, at which
X̃(n) = X(σn) ∈ A, will be Poisson with mean ηA, and so

Px(τ̃A = ∞ | σ(X)) = e−ηA for all x.

Suppose now that a measure π is stationary for P t. Then, πP t = π, and
integration against e−t on both sides gives πR = π. So, π is also stationary
for R.

It remains to show that if π is stationary for R, then it is also stationary for

P t. Assuming π is stationary for R, we first show that πt def
= πP t, t > 0, is also

stationary for R, that is,
πt = πtR. (4.114)

Arguing as in Theorem 3.1 of [MeT93a], for A ∈ S , one has

πP tR(A) =

∫ ∞

0

e−sπP tP s(A)ds =

∫ ∞

0

e−sπP sP t(A)ds

= πRP t(A) = πP t(A),

where the first and third equalities come from reversing the order of integration,
and the fourth holds since π is stationary for R. So, (4.114) also holds.
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Since the stationary measure for R is unique up to a constant multiple, and
both π and πt are stationary for R, one has

πt = c(t)π for t ≥ 0,

for some measurable function c(t) ≥ 0. Since mass is conserved, one must have
πt = π when X̃ is positive Harris recurrent (and hence π(S) < ∞). So, in this
case, π is stationary for P t. The same holds in general, because P s+t = P s ◦P t,
and so c(s + t) = c(s)c(t), which implies c(t) = eCt for some C. Therefore, for
A ∈ S ,

π(A) = πR(A) =

∫ ∞

0

e−tπt(A)dt = π(A)

∫ ∞

0

e(C−1)tdt,

which implies C = 0, and so, in fact, πt = π, as desired.

The following proposition is a variant of Proposition 4.18, and will be used
in the last subsection. It employs the resolvent

K(x, A) =

∞
∑

n=1

2−nP n(x, A) for x ∈ S, A ∈ S , (4.115)

for a discrete time Markov process Y . (Typically, summation is chosen to start
at n = 0, with the coefficients modified accordingly.) The corresponding discrete
time Markov process, with transition function K, will be referred to as a K-
chain. On account of Proposition 4.19, it will be easier to work with the K-chain
than with Y directly.

Proposition 4.19. Suppose that a discrete time Markov process Y has a small
set A that satisfies

Px(τA <∞) = 1 for all x ∈ S. (4.116)

Then, A also satisfies (4.116) for the K-chain, with respect to which A will
be small with m0 = 1. Moreover, Y and its K-chain have the same stationary
measures.

Proof. The argument that uses (4.113) can also be used to show (4.116) holds
for the K-chain. (The number of indices in A, after conditioning on Y , will now
be binomial instead of Poisson.) It is easy to see that A will also be small for
the K-chain: one can choose m0 = 1 and small measure ν = 2−m′

0ν ′, where ν ′

is the small measure for Y and m′
0 is the time at which it is employed.

Suppose now that a measure π is stationary for P . Then, πP = π, and
summation against 2−n on both sides gives πK = π, so π is also stationary for
K. For the other direction, assume that πK = π. One has the string of equalities

πP = πKP = 2πR− πP = 2π − πP.

Comparison of the first and last terms then implies πP = π, as desired. The
first and third equalities follow from the stationarity of π with respect to K,
and the second equality follows quickly from the definition of K.
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Proof of Theorem 4.1

We summarize here the proof of Theorem 4.1. Our approach will be to first
state a discrete time analog of Theorem 4.1, Theorem 4.20, and say a little
about how it is shown. We will then summarize how Theorem 4.1 follows from
a slight modification of Theorem 4.20 and Proposition 4.18. At various points,
this subsection relies on ideas from [MeT93a].

Theorem 4.20 is similar to Theorem 4.1. Differences are that the set A is no
longer required to be closed and, in (4.118), τA(δ) is replaced by τA. (These
simpler quantities suffice since Y (τA) ∈ A is automatic and τA(δ) = τA for
δ ≤ 1.) In one direction of Part (a), the set A is chosen to be small (rather
than just petite), since this is needed in the next subsection. The state space
(S,S ) is not assumed to have a topological structure, although the σ-algebra
S is assumed to be countably generated.

Theorem 4.20. (a) If a discrete time Markov process Y is Harris recurrent,
then there exists a small set A with

Px(τA <∞) = 1 for all x ∈ S. (4.117)

Conversely, if (4.117) holds for a petite set A, then Y is Harris recurrent. (b)
Suppose the discrete time Markov process Y is Harris recurrent. Then, Y is
positive Harris recurrent if and only if there exists a petite set A for which

sup
x∈A

Ex[τA] <∞. (4.118)

We discuss briefly the reasoning for the different parts of Theorem 4.20. As
in the case of Theorem 4.1, the argument for the converse direction of Part (a)
is elementary. It consists of repeatedly restarting Y at an increasing sequence of
random times, between which Y has at least some probability ǫ > 0 of hitting
a specified set B, for which ϕ(B) > 0, where ϕ is the irreducibility measure.
Here, in the discrete time setting, less theoretical justification is required, since
the strong Markov property and the measurability of hitting times of sets are
elementary.

The argument for the other direction of Theorem 4.20(a), namely the con-
struction of a small set satisfying (4.117), is longer, and requires cleverness. It
is sometimes referred to as Orey’s C-Set Theorem. For a proof, one can consult
pages 18-19 in [Nu84] or Theorem 5.2.1, on page 107 of [MeT93d]. The construc-
tion involves setting ν = ψ1{D}, where ψ is a maximal irreducibility measure
for Y with total mass 1, and D is an appropriately defined “high density” set.
We note here that in the setting of Section 4.1, where S is generated by a locally
compact, separable metric, one can choose the set A so that it is also closed.
(By Proposition 5.2.4(iii) of [MeT93d], there is a small set A′ with ψ(A′) > 0,
for the maximal irreducibility measure ψ, and therefore a closed subset A of A′

for which ψ(A) > 0 as well.)
In Part (b) of Theorem 4.20, the argument that positive Harris recurrence

follows from the existence of a petite set A satisfying (4.118) is quite quick, if one
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assumes the following formula in (4.119). It is of interest in its own right, and
says that the stationary measure π of a Harris recurrent discrete time Markov
process Y satisfies

π(B) =

∫

A

Ex

[

τA−1
∑

n=0

1{Y (n) ∈ B}

]

π(dx) for B ∈ S , (4.119)

for any A ∈ S with ψ(A) > 0. Often, the indices in the sum are taken from
n = 1 to τA (as in Theorem 10.0.1 in [MeT93d]). Setting B = S, we will employ
the special case,

π(S) =

∫

A

Ex[τA]π(dx). (4.120)

The formula (4.119) may be motivated by the following informal argument.
For x ∈ S and A,B ∈ S , with ψ(A) > 0, set

πA(B) = π(A ∩B) and AP (x, B) = P (x, B ∩Ac). (4.121)

Then, (4.119) may be rewritten as π = πA

∑∞
n=0

AP n. Assume that
(I −AP )−1 =

∑∞
n=0

AP n exists. Then, this is equivalent to

π(I −AP ) = πA,

that is,
π AP = πAc ,

which follows immediately from the definition in (4.121) and the stationarity
of π.

In order to employ (4.120), we first note that π(A) < ∞ must hold if the
set A is petite with respect to any measure ν . Otherwise, it is not difficult to
check that, from the definition of petite, π(B) = ∞ must hold for any B with
ν(B) > 0. Since π is assumed to be σ-finite, this is not possible. Applying (4.118)
to (4.120), one therefore obtains

π(S) ≤ π(A) sup
x∈A

Ex[τA] <∞.

So, Y is positive Harris recurrent, as desired.
The argument for the other direction of Theorem 4.20(b), which involves the

construction of a petite set satisfying (4.118) is, not surprisingly, longer. The
result is stated in Theorem 11.0.1 of [MeT93d]. It involves the use of regular sets,
with Theorem 11.1.4 providing the key decomposition of S. We note here again
that, in the topological setting of Section 4.1, one can choose A so that it is also
closed. (In Theorem 11.0.1, one can choose a regular set A′ with ψ(A′) > 0, and
therefore a closed regular subset A of A′ for which ψ(A) > 0; both A′ and A
will be petite.)

This completes our discussion of Theorem 4.20. We now summarize how
Theorem 4.1 follows from a slight modification of Theorem 4.20 and Propo-
sition 4.18. As in Theorem 4.20, there are two parts to show, each with two
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directions. Recall that X denotes a continuous time Markov process as in Sec-
tion 4.1 and X̃ denotes the corresponding R-chain.

The argument that the Harris recurrence of X follows from the existence of a
petite set satisfying (4.19) is elementary, and was summarized in Section 4.1. To
show the other direction of Theorem 4.1(a), we first note that, by Proposition
4.18, if X is Harris recurrent, then so is X̃ . By Theorem 4.20(a), there exists a
small set A for X̃ , with corresponding time m0, for which (4.117) is satisfied.
As mentioned in the outline of the proof of Theorem 4.20, A can be chosen so
that it is also closed. Choosing a in (4.18) to be the m0-fold convolution of the
exponential distribution, it follows that A is petite for X. Using (4.13), it is easy
to see that since (4.117) holds for X̃ , its analog (4.19) holds for X. So, A has
the properties stated in Theorem 4.1(a).

In order to show Part (b) of Theorem 4.1, we again employ Theorem 4.20 and
Proposition 4.18. We also need the following comparisons between the bounds
on the hitting times of petite sets A, in (4.20) and (4.118), for the processes X
and X̃ . These comparisons are taken from Section 4 of [MeT93a].

Proposition 4.21. (a) Suppose that for the continuous time Markov process
X, (4.20) is satisfied for some closed petite set A. Then, there is a petite set A′

for X, such that (4.118) is satisfied for the R-chain X̃. (b) Suppose that for the
R-chain X̃ of X, (4.118) is satisfied for some petite set A of X̃. Then, there is
a closed petite set A′ for the process X which satisfies (4.20).

We note that, in [MeT93a], it is shown that the set A in Part (b) is regular
for X, with ψ(A) > 0 for the maximal irreducibility measure ψ. The existence
of a closed petite subset A′ satisfying (4.20) then follows. (This application of
regularity is analogous to that mentioned at the end of the discussion of the
proof of Theorem 4.20.)

Using Proposition 4.21, we now show Theorem 4.20(b). Suppose that (4.20)
is satisfied for some closed petite set A. Then, the petite set A′ in Part (a)
of the proposition must have π(A′) < ∞, for the reasons mentioned in the
demonstration of Theorem 4.20(b). Here, π is the stationary measure for both
X and X̃ . Since A′ satisfies (4.118), one may apply the formula (4.120), as in
the demonstration of Theorem 4.20(b), to conclude that π(S) < ∞. Hence, X
is positive Harris recurrent, as desired.

For the other direction of Theorem 4.1(b), we assume thatX is positive Harris
recurrent. By Proposition 4.18, X̃ is also positive Harris recurrent, and so by
Theorem 4.20(b), there is a petite set A of X̃ that satisfies (4.118). Applying
Proposition 4.21(b), it follows that there exists a closed petite set A′, for the
process X, which satisfies (4.20). This completes our discussion of Theorem 4.1.

Existence and uniqueness of stationary measures

One of the fundamental properties of discrete time Harris recurrent Markov
processes is the existence of a stationary measure that is unique up to a constant
multiple. This is a standard result in discrete time Markov process theory and
can be found in a number of places, such as [Nu84] and [MeT93d]. A short
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account is given in [Dur96], which we follow here in summarizing the ideas
behind the proof. Because of Proposition 4.18, this result immediately extends
to continuous time Markov processes.

On account of Part (a) of Theorem 4.20, in order to show the existence
of a stationary measure for a discrete time Harris recurrent Markov process, it
suffices to show the following result. We will discuss uniqueness of the stationary
measure afterwards.

Theorem 4.22. Suppose that Y is a discrete time Markov process with a small
set A satisfying (4.117). Then, there exists a stationary measure π.

The reasoning for Theorem 4.22 can be broken into two main steps. The
first step consists of showing that the conclusion of the theorem holds when S
contains a recurrent atom α for the process Y . By this, we mean that Py(τα <

∞) = 1 for all y, where τα
def
= τ{α}. (The use here of the term recurrent atom

is not standard.) The second step shows that there is an appropriate “lumping
together” of points (sometimes referred to as “splitting” in the literature) that
allows one to construct a process Ȳ with such an atom and which has the same
recurrence behavior as Y .

Before beginning, we note that, because of Proposition 4.19, one can assume
without loss of generality that m0 = 1 for the small set A. Also, by scaling
the corresponding small measure ν by ǫ = 1/ν(S), one can replace the inequal-
ity (4.18) by

ν(B) ≤ ǫP (y, B) for y ∈ A, B ∈ S , (4.122)

where ν is now a probability measure.
For the first step, we assume that S has a recurrent atom α. Then, Pα(τα <

∞) = 1, and it is not difficult to show that the measure π defined by

π(B) = Eα

[

τα−1
∑

n=0

1{Y (n) ∈ B}

]

(4.123)

is σ-finite. (See Exercise 6.8 on page 331 of [Dur96].)
We claim that π is stationary for the process Y . The proof is essentially the

same as that for Markov chains, which is given for Theorem 4.3, on page 303 of
[Dur96]. It can be motivated by using the “cycle trick”, noting that the number
of visits to any y ∈ S over the time set {0, . . . , τα − 1} is always the same as
over {1, . . . , τα}, and taking expectations over both sides. It follows from this
that πP = π. Formula (4.123) is a special case of (4.119), with A = {α}. (Note
that the representation of π in (4.119) is not explicit, whereas the right side
of (4.123) does not involve π.)

For the second step of the proof, one wishes to compare the given Markov
process Y with one having a recurrent atom. The small set A will be used to
construct the atom, and (4.117) will be used to show the atom is recurrent. We
begin by appending a point α to the state space S, thus creating a new space
S̄ and a corresponding Borel σ-algebra S̄ ,

S̄ = S ∪ {α} and S̄ = {B,B ∪ {α} : B ∈ S }.
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One can define a probability transition kernel P̄ on (S̄, S̄ ) by

P̄ (y, {α}) =

{

ǫ for y ∈ A,

0 for y ∈ S − A,

P̄ (y, B) =

{

P (y, B) − ǫν(B) for y ∈ A, B ∈ S ,

P (y, B) for y ∈ S − A, B ∈ S ,
(4.124)

P̄ (α,B) =

∫

P̄ (y, B)ν(dy) for B ∈ S̄ ,

where ν and ǫ > 0 are chosen as in (4.122). We denote by Ȳ the corresponding
Markov process.

We also find it convenient to introduce the probability transition kernel V on
(S̄, S̄ ), with

V (y, {y}) = 1 for y ∈ S, V (α,B) = ν(B) for B ∈ S . (4.125)

Note that V (y, α) = 0 for all y ∈ S̄. One can check that

V P̄ = P̄ and (P̄V ) |S = P. (4.126)

Here, |S denotes the restriction to S in both the domain and range. As usual, we
are employing the convention that the transition kernel on the left is the first to
be applied to a given initial measure. We will demonstrate a version of (4.126)
below (4.128).

The construction of P̄ can be motivated as follows. One wishes to “lump
together” points in S in some way so as to form an atom α, while not changing,
in essence, the transition rule P . If one is to lump together points according to
some weight ν , transitions to and from α, by the new transition rule P̄ , must
both be done in a manner consistent with this weight. Since A is assumed to
be small, with m0 = 1 and with (4.122) holding, one can choose P̄ (y, {α}) as
on the top two lines of (4.124); the bottom line of (4.124) respects the weight
ν . The third and fourth lines of (4.124) define P̄ according to the old transition
rule P on the mass that has not been directed to α.

To develop some feel for (4.124), one can consider the case where S is dis-
crete. (In this case, there is of course no need to lump together points to cre-
ate an atom.) Denoting the transition densities by p(y, y′) and setting q(y) =
ν({y}), (4.124) becomes

p̄(y, α) =

{

ǫ for y ∈ A,

0 for y ∈ S −A,

p̄(y, z) =

{

p(y, z) − ǫq(z) for y ∈ A, z ∈ S

p(y, z) for y ∈ S −A, z ∈ S,
(4.127)

p̄(α, z) =
∑

i

p̄(yi, z)q(yi) for z ∈ S̄.
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Here {yi} denotes an enumeration of the points in S. Similarly, one can define
v by

v(y, y) = 1, v(α, y) = q(y) for y ∈ S.

The equations in (4.126) become

(vp̄)(y, z) = p̄(y, z) and (p̄v)(y, z) = p(y, z), (4.128)

with y, z ∈ S̄ in the first equation and y, z ∈ S in the second. The first equation
follows from the invariance of v on y ∈ S and

(vp̄)(α, z) =
∑

i

p̄(yi, z)q(yi) = p̄(α, z).

For the second equation, one has

(p̄v)(y, z) =
∑

i

p̄(y, yi)v(yi, z) + p̄(y, α)v(α, z),

= p̄(y, z) + p̄(y, α)q(z)

for y, z ∈ S. For both y ∈ A and y ∈ S − A, it follows from the definition of
p̄ that the last line equals p(y, z), as desired. The equations in (4.126) can be
derived similarly.

We still need to show that the atom α is recurrent. For this, it suffices to
show

∑

n

P̄ n(x, {α}) = ∞ for all x ∈ S̄. (4.129)

We employ the string of inequalities

∑

n

P̄ n(x, {α}) =
∑

n

V (P̄ V )n−1P̄ (x, {α}) ≥ ǫ
∑

n

V (P̄ V )n−1(x, A)

≥ ǫ min
x∈S

∑

n

(P̄V )n−1(x, A) ≥ ǫ min
x∈S

∑

n

P n−1(x, A) = ∞.

The first equality follows from the first half of (4.126), the first inequality follows
from the first line of (4.124), and the second inequality follows from (4.125). The
last inequality is a consequence of the second half of (4.126), since restricting the
domain decreases the corresponding integrals. (Because of (4.125), one actually
has equality.) The equality at the end follows from Borel-Cantelli and (4.117),
since A will be hit infinitely often with probability 1. So, (4.129) holds.

We now tie together the two previous steps involving the creation and ma-
nipulation of the atom α. If one assumes that the Markov process Y given in
Theorem 4.22 has a petite set A satisfying (4.117), it follows that the process Ȳ
defined by (4.124) has a recurrent atom at α. The measure π̄ given in (4.123) for

Ȳ is then stationary for Ȳ . We claim that the measure π
def
=(π̄V ) |S , given by the

restriction of π̄V to S, is stationary for Y . Theorem 4.22 follows immediately
from this.
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To show the claim, it suffices to verify the string of equalities

πP = (π̄V ) |S P = (π̄P̄ V ) |S = (π̄V ) |S = π. (4.130)

Here, the third equality follows from the stationarity of π̄ and the first and
fourth follow from the definition of π. The second equality follows from

(π̄V ) |S P = (π̄V ) |S (P̄V ) |S = (π̄V P̄ V ) |S = (π̄P̄V ) |S , (4.131)

where one applies first the second half of (4.126) and last the first half of (4.126).
The middle equality in (4.131) holds since π̄V (α) = 0, and so no mass is lost by
the restriction (π̄V ) |S . This demonstrates (4.131), and hence (4.130) and the
stationarity of π, as desired.

One can also show that the stationary measure of a discrete time Harris
recurrent Markov process is unique, up to a constant multiple. As before, on
account of Part (a) of Theorem 4.20, it suffices to show the following version.

Theorem 4.23. Suppose that Y is a discrete time Markov process with a small
set satisfying (4.117). Then, up to a constant multiple, the stationary measure
of Y is unique.

We note that some sort of condition, corresponding to (4.117), is of course
necessary. Without it, as in the countable state space setting, states may not
communicate and there may be many stationary measures.

We summarize here the argument for Theorem 4.23. As in the demonstration
of the existence of a stationary measure, we can assume without loss of generality
that m0 = 1 for the small set A, because of Proposition 4.19. The following
argument, for m0 = 1, can be found in Theorem 6.7, on page 331 of [Dur96].

As before, one employs the process Ȳ corresponding to (4.124), which has
a recurrent atom. Let ρ be a σ-finite measure on (S,S ), and denote by ρS̄ its
extension to (S̄, S̄ ) given by

ρS̄(B) = ρ(B ∩ S) for B ⊆ S̄.

If ρ is stationary for Y , one can show that ρ̄ = ρS̄P̄ is stationary for the process
Ȳ . This is done in Lemma 6.6, on page 331 of [Dur96].

In the countable state space setting when all states communicate, it is not
difficult to show that ρ̄ = ρ̄(α)π̄, where π̄ is the stationary measure for Ȳ
defined in (4.123). This is done in Theorem 4.4, on page 305 of [Dur96], and
the argument in the general state space setting is essentially the same. Set
π = (π̄V ) |S. One then has

ρ = ρP = ρ((P̄ V ) |S) = (ρS̄ P̄V ) |S (4.132)

= (ρ̄V ) |S = (ρ̄(α)π̄V ) |S = ρ̄(α)π.

Here, the first equality follows from the stationarity of ρ, the fourth and sixth
equalities from the definitions of ρ̄ and π, and the second equality from the
second half of (4.126). The third equality holds since ρ̄({α}) = 0. By (4.132),
ρ = ρ̄(α)π, which shows that ρ is a constant multiple of π, as desired.



Chapter 5

Applications and some

further theory

Theorem 4.16, from Section 4.4, gives conditions under which an HL queue-
ing network will be stable. Theorem 4.17, from the same section, gives similar
conditions under which a network will be e-stable. In the first three sections of
Chapter 5, we will demonstrate stability/e-stability for three families of queue-
ing networks by using these criteria. In Section 5.1, we do this for a family of a
networks that includes single class networks, and in Section 5.2, we do this for
two families of SBP reentrant lines, FBFS and LBFS. In Section 5.3, we apply
the same criteria to FIFO networks of Kelly type.

In Sections 5.4 and 5.5, we address other topics connected with stability.
Global stability is introduced in Section 5.4. The condition says that the net-
work is stable irrespective of the HL discipline that is employed. It will follow
directly from Theorem 4.16 that a sufficient condition for global stability is the
stability of the associated basic fluid model. For two stations, there is a devel-
oped theory for these fluid models, which we summarize. Important underlying
concepts include virtual stations and the push start phenomenon. We also dis-
cuss briefly rate stability and global rate stability for queueing networks, and
the corresponding concept of weak stability for fluid models.

In Section 5.5, we investigate the converse direction to Theorem 4.16. Namely,
does queueing network stability, under reasonable side conditions, imply fluid
model stability? In particular, are queueing network and fluid model stability in
some sense equivalent? Most of this section is spent on two examples that show
this is not always the case. Virtual stations and push starts are again useful
tools in this context.

Our approach in Sections 5.1–5.3 will be based on the following considera-
tions involving Theorems 4.16 and 4.17. The conditions in the theorems are of
two types, where (a) one needs the bounded sets A = {x : |x| ≤ κ}, κ > 0, to
be either petite or uniformly small and (b) one needs the fluid limits or fluid
model, which is associated with the queueing network, to be stable. As noted in

302
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Section 4.4, the latter of the two stability conditions is the more tractible one,
and is the one that is typically applied in practice. In the next three sections, we
will demonstrate the stability of fluid models that are associated with the queue-
ing networks there; the desired results then follow by applying Theorems 4.16
and 4.17. The first two cases are fairly quick, and the third takes a bit longer
to show.

In order to avoid repetition later on, we will, in each case, explicitly assume
that

A = {x : |x| ≤ κ} is petite for each κ > 0. (5.1)

This condition suffices, in Theorem 4.16, for stability of the queueing network,
once the fluid model has been shown to be stable. In order to conclude that the
queueing network is e-stable, by using Theorem 4.17, one needs to replace (5.1)
here with the assumption that, for each κ > 0,

A = {x : |x| ≤ κ} is uniformly small on [s1, s2], for some 0 < s1 < s2. (5.2)

Whether the above sets A are either petite or uniformly small may depend on
the discipline of the queueing network. We recall that the conditions (4.30) and
(4.31) on the interarrival times are sufficient for both (5.1) and (5.2) under all
HL disciplines, and that (4.30) alone is sufficient for (5.1) when |A| = 1. In this
chapter, as was the case in Chapter 4, it will be implicitly assumed that the
interarrival and service times have finite means.

We recall that in Section 4.3, we defined regular points of a fluid model so-
lution X(·) to be those times t at which the derivatives of all components of
X(·) exist. Since the components of X(·) are all Lipschitz continuous, the deriva-
tives at regular points determine X(·). In our computations in Sections 5.1–5.3,
we will often restrict our attention to regular points, without always explicitly
saying so.

The material in this chapter relies on a number of papers. The material in the
first three sections is mostly from [Br98a], [DaWe96], and [Br96a]. The material
in Section 5.4 is mostly from [DaV00], and that in Section 5.5 is mostly from
[Da96], [Br99], [DaHV04], and [GaH05].

5.1. Single class networks

In Section 2.5, we gave the explicit formula (2.44) for the stationary distributions
of subcritical single class HL queueing networks with exponentially distributed
interarrival and service times, which we referred to as Jackson networks. These
networks are stable (in fact, e-stable). Does stability still hold when the inter-
arrival and service times are not exponential? This was considered a difficult
question, and was answered in the affirmative in a number of papers under
various assumptions on the interarrival and service time distributions ([Bo86],
[Si90], [BaF94], [ChTK94], [MeD94]). Fluid models, together with Theorem 4.16,
provide a quick proof of stability for these networks.
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To show stability of the associated fluid models, we employ the proof given in
[Br98a]; another argument was given in [Da95]. The proof relies on the inequality

D′
k(t) ≥ λk + ǫ (5.3)

for some ǫ > 0 and all k, at all regular points of the fluid model solutions X(·)
where Zk(t) > 0. It follows from (4.53) and (4.55) that (5.3) is satisfied for all
subcritical single class fluid models.

Since the restriction to one class per station is otherwise not used in the proof
of stability of the fluid model, we will instead assume that the HL queueing
networks we consider here satisfy the related condition

Rk(t) ≥ mk(λk + ǫ), (5.4)

for some ǫ > 0 and all k, whenever the kth class is not empty. Recall that, as
in the first part of Section 4.1, Rk(t) is the proportion of service at station j
allocated to the first job in class k. For subcritical single class networks, (5.4)
holds for small enough ǫ, since mkλk < 1. We will show shortly that (5.3), for
fluid limits, follows from (5.4). Needless to say, (5.4) is a severe restriction, and
is not satisfied by the usual multiclass disciplines. (In [Br98a], the condition is
used to show that any HL queueing network can be “stabilized” by inserting
sufficiently quick single class stations between visits to classes.)

The following theorem is the main result in this section.

Theorem 5.1. Any HL queueing network satisfying (5.1) and (5.4) is stable.
Consequently, any subcritical single class HL queueing network satisfying (5.1)
is stable.

We will employ Theorem 4.16 to show Theorem 5.1. As the associated fluid
model in Theorem 4.16, we choose the fluid model consisting of the basic fluid
model equations (4.50)–(4.55), together with (5.3). We already know, from
Proposition 4.12, that (on the set G) every fluid limit of the queueing net-
work satisfies the basic fluid model equations. So, in order to show the fluid
model is associated with the queueing network in Theorem 5.1, we only need to
verify that (5.3) is satisfied by all fluid limits.

The reasoning for (5.3) is analogous to that in Proposition 4.12 for the other
fluid model equations. By (5.4), for given x,

T x
k (t2) − T x

k (t1) ≥mk(λk + ǫ)(t2 − t1)

for all k and t1 ≤ t2, if Zk(t) > 0 on [t1, t2]. For the same reason,

1

an
T xn

k (ant2) −
1

an
T xn

k (ant1) ≥ mk(λk + ǫ)(t2 − t1) (5.5)

for any sequence of pairs (an, xn) satisfying (4.71), if Zxn

k (t) > 0 on [ant1, ant2].
On the other hand, for any fluid limit X̄(·), its component Z̄(·) is continuous.
So, if it is assumed that Z̄k(t) > 0 on an interval [t1, t2], then it is bounded away
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from 0 on this interval. Convergence to Z̄(·) is u.o.c., and so for sufficiently large
n, Zxn

k (t) > 0 on [ant1, ant2]. Together with (5.5), this implies

T̄k(t2) − T̄k(t1) ≥mk(λk + ǫ)(t2 − t1).

By (4.55), the inequality is equivalent to

D̄k(t2) − D̄k(t1) ≥ (λk + ǫ)(t2 − t1),

which is, of course, equivalent to (5.3).
Since the system of fluid model equations (4.50)–(4.55) together with (5.3) is

associated with the queueing network in Theorem 5.1, it suffices to demonstrate
the following result in order to show Theorem 5.1.

Theorem 5.2. Any fluid model satisfying (5.3) is stable.

We break the proof of Theorem 5.2 into two lemmas. The first lemma gives
a lower bound on the rate of departures from any class, empty or not.

Lemma 5.3. Assume that a fluid model satisfies (5.3). Then,

D(t2) −D(t1) ≥ λ(t2 − t1) (5.6)

for 0 ≤ t1 ≤ t2.

In order to show Lemma 5.3, we require some notation. At each time t ≥ 0,
let K0(t) denote those classes where Zk(t) = 0, let K+(t) denote its complement,
and let |K0(t)| and |K+(t)| be the number of elements in each set. The subscripts
0 and + will denote the restrictions to K0(t) and K+(t), respectively, for vectors
such as α, λ, D′(t), and Z′(t). Similarly, P0 and P+ will denote the |K0(t)| ×
|K0(t)| and |K+(t)| × |K0(t)| matrices obtained by these restrictions.

Proof of Lemma 5.3. By (5.3),

D′(t)+ ≥ λ+. (5.7)

In order to show (5.6), it therefore suffices to show

D′(t)0 ≥ λ0. (5.8)

First note that I0 − P T
0 is invertible, with

Q0
def
= (I0 − P T

0 )−1 = I0 + P T
0 + (P T

0 )2 + · · ·

having nonnegative entries. This is the analog of (1.2). Also, the analog of (1.6)
holds,

λ0 = α0 + P T
0 λ0 + P T

+λ+,

which implies
λ0 = Q0(α0 + P T

+λ+). (5.9)
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On the other hand, combining (4.50) and (4.51), and taking derivatives, one
gets

Z′(t) = α+ (P T − I)D′(t).

Restriction of the coordinates to K0(t) implies

Z′(t)0 = α0 + (P T
0 − I0)D

′(t)0 + P T
+D

′(t)+.

Multiplying by Q0 and applying (5.9), one therefore gets

Q0Z
′(t)0 = λ0 −D′(t)0 +Q0P

T
+ (D′(t)+ − λ+).

Since Z(t)0 = 0, if t is a regular point, one must have Z′(t)0 = 0. Hence,
Q0Z

′(t)0 = 0 there. Applying this to the left side of the above equality, and (5.3)
to the last term on the right side of the equality, implies (5.8), as desired.

To show Theorem 5.2, we will employ the Lyapunov function

f(t) = eTQZ(t). (5.10)

The function f counts the “average” number of present and future visits within
the network, under the transition matrix P , for jobs already in the network at
time t. By combining (4.50) and (4.51), one has

Z(t) = Z(0) + αt− (I − P T )D(t),

which, after multiplying both sides by Q, gives

QZ(t) = QZ(0) + λt−D(t).

Substitution into (5.10) shows that

f(t) = f(0) + teTλ − eTD(t). (5.11)

By applying Lemma 5.3 to f(t), we will obtain the following result, Lemma 5.4.
Since f(t) and |Z(t)| are at most bounded multiples of one another, Theorem 5.2
follows immediately from Lemma 5.4.

Lemma 5.4. Assume that (5.3) is satisfied. Then,

f(t) ≤ [f(0) − ǫt]+ for all t ≥ 0. (5.12)

Proof. Lemma 5.3 implies that

eT (D(t2) −D(t1)) ≥ (t2 − t1)e
T λ

for 0 ≤ t1 ≤ t2. So, by (5.11), f(t) is nonincreasing. Consequently, if Z(t0) = 0
for a given t0, then f(t) = 0 for all t ≥ t0.

Consider now Z(t) for

t < t0
def
= inf{t : Z(t) = 0}.

By (5.3), D′
k(t) ≥ λk + ǫ for some k (which depends on t). Together with

Lemma 5.3, this implies that

eTD(t) ≥ t(eTλ + ǫ) for t < t0.

Plugging this into (5.11) implies (5.12) for t < t0 as well. (One can instead, if
one wishes, give a somewhat different proof by using (4.60).)
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5.2. FBFS and LBFS reentrant lines

The static buffer priority (SBP), first-buffer-first-served (FBFS), and last-buffer-
first-served (LBFS) disciplines were introduced in Chapter 1. We review their
definitions here. For SBP disciplines, classes at each station are assigned a strict
ranking, with jobs of higher ranked (or priority) classes always being served
before jobs of lower ranked classes, irrespective of when they arrived at the
station. In this section, we assume the disciplines are preemptive, so that arriving
higher ranked jobs interrupt lower ranked jobs currently in service; when the
service of such higher ranked jobs has been completed, service of the lower
ranked jobs continues where it left off. The first job of each class always receives
all of the service allocated to the class, so the discipline is HL.

We focus here on two SBP disciplines for networks that are reentrant lines,
FBFS and LBFS. For the FBFS discipline, jobs at earlier classes along the route
have priority over later classes. For the LBFS discipline, the priority is reversed,
with jobs at later classes along the route having priority over earlier classes. In
both cases, we assign classes the values k = 1, . . . , K according to the order
of their appearance along the route. With this ordering, classes with smaller k
have priority under FBFS and classes with larger k have priority under LBFS.

In order to specify the evolution of an SBP network, one requires another
equation in addition to the basic queueing network equations (4.42)–(4.47).
This is given by

t− T+
k (t) can only increase when Z+

k (t) = 0 for k = 1, . . . , K, (5.13)

for all t ≥ 0. Here, Z+
k (t) denotes the sum of the queue lengths at the station

j = s(k) of classes having priority at least as great as k, and T+
k (t) denotes the

corresponding sum of cumulative service times. It is easy to verify (5.13). (Recall
that the discipline is assumed to be preemptive.) Note that in this setting, (4.46)
is redundant, since it is equivalent to (5.13) when k is the lowest ranked class
at its station.

Arguing as in the last part of the proof of Proposition 4.12, it is not difficult
to show that (5.13) is satisfied for all fluid limits of SBP queueing networks. We
already know from Proposition 4.12 that the basic fluid model equations (4.50)–
(4.55) are satisfied by all fluid limits of the queueing network. So, the fluid
model given by the equations (4.50)–(4.55) and (5.13) is associated with the SBP
queueing network with corresponding parameters. We refer to these equations as
the SBP fluid model equations, and to the corresponding fluid model as the SBP
fluid model. When the priority scheme among the different classes at each station
corresponds to the FBFS or LBFS disciplines, we refer to these equations as the
FBFS fluid model equations or the LBFS fluid model equations, respectively. The
respective fluid models are defined analogously. We note that (5.13) is equivalent
to

(T+
k )′(t) = 1 when Z+

k (t) > 0 for k = 1, . . . , K, (5.14)

at all regular points t.
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We saw in Chapter 3 that there exist subcritical SBP reentrant lines that are
not stable. This is not the case for FBFS and LBFS reentrant lines. Our goal
in this section is to show the following two results. Both are done in [DaWe96],
whose reasoning we follow. [LuK91] showed analogous results for discrete deter-
ministic systems.

Theorem 5.5. Any subcritical FBFS reentrant line satisfying (5.1) is stable.

Theorem 5.6. Any subcritical LBFS reentrant line satisfying (5.1) is stable.

As in Section 5.1, we will use Theorem 4.16 to demonstrate stability for the
disciplines of interest. Since we have already shown that the FBFS and LBFS
fluid models are associated with the reentrant lines in Theorems 5.5 and 5.6, it
suffices to demonstrate the following two results.

Theorem 5.7. Any subcritical FBFS fluid model is stable.

Theorem 5.8. Any subcritical LBFS fluid model is stable.

The remainder of the section will be devoted to demonstrating Theorems 5.7
and 5.8. We observe that, in both cases, it suffices to show stability, as in (4.61),
but for fluid model solutions that also satisfy |Z(0)| = 1. This additional as-
sumption will simplify the bookkeeping somewhat. As is typically the case for

fluid models, X̃(t)
def
= X(ct)/c, c > 0, also satisfies the same fluid model equa-

tions as X(t). It follows from this that the conditions (4.61), with and without
|Z(0)| = 1, are equivalent.

For the proofs of both Theorem 5.7 and 5.8, we find it convenient to set
dk(t) = D′

k(t) for the departure rate from a class k in the fluid model. As
mentioned earlier, we only need to consider the behavior of solutions X(·) at
regular points t.

Proof of Theorem 5.7. We will use induction to prove that, for each k = 1, . . . , K,
there exists a tk ≥ 0 so that, for any fluid model solution with |Z(0)| = 1,

Zℓ(t) = 0 on [tk,∞), for ℓ = 1, . . . , k.

For the induction step, we assume that Zℓ(t) = 0 on [tk−1,∞) for ℓ =
1, . . . , k − 1. It follows that for t ≥ tk−1,

dk−1(t) = dk−2(t) = · · · = d1(t) = α1. (5.15)

Set Hk = {ℓ ≤ k : s(ℓ) = s(k)}. If Zk(t) > 0, then by (4.55) and (5.14),

∑

ℓ∈Hk

mℓdℓ(t) = (T+
k )′(t) = 1.

So, for Zk(t) > 0 and t ≥ tk−1,

dk(t) = µk

(

1 − α1

∑

ℓ∈Hk\{k}

mℓ

)

. (5.16)



M. Bramson/Stability of queueing networks 309

It follows from (5.15) and (5.16) that

Z′
k(t) = dk−1(t) − dk(t) = α1 − µk

(

1 − α1

∑

ℓ∈Hk\{k}

mℓ

)

.

Since α1

∑

ℓ∈Hk
mℓ < 1 by assumption, it is not difficult to see that the right

side of this equation is strictly negative. Setting

t′k = tk−1 +
Zk(tk−1)

µk(1 − α1

∑

ℓ∈Hk\{k}mk) − α1
,

it follows that Zk(t) = 0 for t ≥ t′k.
Since |Z(0)| = 1 is assumed, one has Zk−1(t) ≤ |Z(t)| ≤ 1 +α1t for all t. So,

we can choose tk ≥ t′k independently of the particular fluid model solution X(·),
so that Zk(t) = 0 for t ≥ tk. Since, by induction, this holds for all k, it follows
that for any fluid model solution with |Z(0)| = 1, one has Z(t) = 0 for t ≥ N
and some fixed N . So, the fluid model is stable.

We now demonstrate Theorem 5.8.

Proof of Theorem 5.8. We will show that for some N , one must have Zk(t) = 0
for t ≥ N and all k, for any fluid model solution with |Z(0)| = 1. To show this,
assume that at a given k and t, Zk(t) > 0, with Zℓ(t) = 0 for ℓ = k + 1, . . . , K.
It follows that if t is a regular point,

dk(t) = dk+1(t) = · · · = dK(t). (5.17)

Set Hk = {ℓ ≥ k : s(ℓ) = s(k)}. Since Zk(t) > 0, it follows from (5.17), (4.55),
and (5.14), that

dK(t)
∑

ℓ∈Hk

mℓ =
∑

ℓ∈Hk

mℓdℓ(t) = (T+
k )′(t) = 1.

So, dK(t) = 1/
∑

ℓ∈Hk
mℓ. Because the system is subcritical,

α1

∑

ℓ∈Hk

mℓ ≤ α1 max
j

∑

ℓ∈C(j)

mℓ = max
j
ρj

def
= ρmax < 1.

In particular, dK(t) ≥ α1/ρmax > α1.
Set f(t) = |Z(t)|. At regular points of f(t),

f ′(t) = α1 − dK(t).

From the previous paragraph, we know this is at most α1(1 − 1/ρmax) <
0 when Z(t) 6= 0. For |Z(0)| = 1, it follows that Z(t) = 0 for t ≥ N , where

N = 1/α1(1/ρmax − 1).

So, the fluid model is stable.
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5.3. FIFO networks of Kelly type

We saw, in Section 2.5, that the explicit formula (2.44) for the stationary distri-
bution of subcritical single class HL networks generalizes to the related formula
for subcritical FIFO networks of Kelly type in (2.4) and (2.9). In both cases, the
interarrival and service times of the network were assumed to be exponentially
distributed. We showed, in Section 5.1, that subcritical single class queueing
networks are stable under more general distributions by using the machinery of
fluid limits. Here, we do the same for FIFO networks of Kelly type. At the end
of the section, we briefly discuss similar behavior of HLPPS queueing networks,
which are an HL variant of PS networks.

In order to specify the evolution of such queueing networks, one requires an
equation corresponding to the FIFO discipline, in addition to the basic queueing
network equations (4.42)–(4.47). The equation we employ is

Dk(t+Wj(t)) = Zk(0) + Ak(t), k = 1, . . . , K, (5.18)

for all t ≥ 0. To verify (5.18), note that t+Wj(t) is the time at which the service
of the last of the jobs currently at j will be completed, since jobs arriving after
time t will have lower priority under the FIFO discipline.

Together, (4.42)–(4.47) and (5.18) form the FIFO queueing network equa-
tions; the corresponding 6-tuple X(·) is the FIFO queueing network process.
One can check that the triple (E(·), Γ (·), Φ(·)), together with

{Dk(t) for t ≤Wj(0), k = 1, . . . , K}, (5.19)

determines X(·), for all t ≥ 0, if X(·) evolves according to the FIFO queueing
network equations. The information in (5.19) serves the role of the initial data
for solutions of these equations. This additional information is needed, since
Z(0) is by itself not enough to determine the order in which the original jobs
are served.

Arguing as in the proof of Proposition 4.12, it is not difficult to show that (5.18)
is satisfied for all fluid limits of FIFO queueing networks. (Recall that the com-
ponent D̄(·) of a fluid limit is continuous and nondecreasing.) We already know
from Proposition 4.12 that the basic fluid model equations (4.50)–(4.55) are
satisfied by all fluid limits of the queueing network. So, the fluid model given
by the equations (4.50)–(4.55) and (5.18) is associated with the FIFO queueing
network.

We refer to these equations as the FIFO fluid model equations, and to the
corresponding fluid model as the FIFO fluid model. Solutions of the fluid model
equations are denoted by the 6-tuple X(·). The initial data is again given by (5.19).
Using the basic fluid model equations, one can show that

∑

k∈C(j)

mkDk(t) = t for t ≤Wj(0) (5.20)

must hold; (5.20) serves as a consistency condition on the initial data. In keeping
with the definition for queueing networks, we say that a FIFO fluid model is of
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Kelly type, if mk = mℓ whenever k, ℓ ∈ C(j) for some j. We will then write ms
j

for mk.
We saw, in Chapter 3, that there exist subcritical FIFO queueing networks

that are not stable. On the other hand, subcritical FIFO queueing networks of
Kelly type that have exponentially distributed interarrival and service times are
stable, as was shown in Chapter 2. The following result from [Br96a] shows that
stability continues to hold for more general interarrival and service times. We
follow the presentation that is given there.

Theorem 5.9. Any subcritical FIFO queueing network of Kelly type satisfy-
ing (5.1) is stable.

As in the previous two sections, we will use Theorem 4.16 to demonstrate this
stability. Since we already know that FIFO fluid models are associated with the
FIFO queueing networks, it suffices to demonstrate the following result.

Theorem 5.10. Any subcritical FIFO fluid model of Kelly type is stable.

Demonstration of Theorem 5.10

In order to demonstrate Theorem 5.10, we introduce a form of entropy. Let

h(x) = x logx, x ≥ 0 (5.21)

and
hk(x) = λkh(x/λk) = x log(x/λk), x ≥ 0, (5.22)

for k = 1, . . . , K. Note that h(x) and hk(x) are convex, with

h(0) = h(1) = 0, hk(0) = hk(λk) = 0, h′(1) = h′k(λk) = 1. (5.23)

The basic tool for analyzing the asymptotic behavior of Z(t) will be the entropy
function H(t),

H(t) =
∑

k

∫ t+Wj(t)

t

hk(D′
k(r)) dr, t ≥ 0. (5.24)

Since D(·) and W (·) are Lipschitz continuous, it is not difficult to check that
H(·) is also Lipschitz continuous. We will analyze H′(t) at regular points t.

One can think of H(t) as measuring the “distance” at time t from the “equi-
librium” D′

k(r) ≡ λk, averaged over the above values of r. One can check that,
for ρ < e, such equilibria only occur when Z(r) = 0. (For ρ = e, there are other
solutions.) We will not need this fact here, although it motivates our approach.

Since hk(·) is convex and ρ < e, the following lemma is not difficult to show
with the help of Jensen’s Inequality. We will use here the expression

ms
j

∑

k∈C(j)

D′
k(t) = 1 on {t : Wj(t) 6= 0}, (5.25)

which follows from (4.53)–(4.55).
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Lemma 5.11. Suppose X(·) is any FIFO fluid model solution of Kelly type,
with ρj ≤ 1 for all j. Then, H(t) ≥ 0 for all t.

Proof. Rewriting (5.24) gives

H(t) =
∑

j∈Ft

λΣ
j

∫ t+Wj(t)

t

∑

k∈C(j)

(λk/λ
Σ
j )h(D′

k(r)/λk) dr, (5.26)

where
Ft = {j : Wj(t) 6= 0} and λΣ

j =
∑

k∈C(j)

λk.

By Jensen’s Inequality, (5.26) is at least

∑

j∈Ft

λΣ
j

∫ t+Wj(t)

t

h

(

∑

k∈C(j)

D′
k(r)/λΣ

j

)

dr.

On account of (5.25) and ρj ≤ 1, which holds for all j, the integrand

h

(

∑

k∈C(j)

D′
k(r)/λΣ

j

)

= h(1/ρj) ≥ 0 (5.27)

at regular points r ∈ [t, t+Wj(t)]. It follows from (5.26)–(5.27) that H(t) ≥ 0
for all t.

If we knew that H′(t) ≤ −c1, c1 > 0, whenever H(t) > 0, it would follow
immediately that H(t) = 0 for t ≥ H(0)/c1. We will instead show the weaker
inequality that, for appropriate c2, c3 > 0,

H(t) −H(t + c2W
M (t)) ≥ c3W

M(t) for all t, (5.28)

where WM (t) = maxj Wj(t). From this, we will show that

H(t) = 0 for t ≥ c4H(0), (5.29)

and some c4 not depending on X(·). It will then follow quickly that

Z(t) = 0 for t ≥ c5|Z(0)| (5.30)

and appropriate c5, which implies Theorem 5.10.
Proposition 5.12 is the most important step in deriving (5.28). The represen-

tation for H′(t) given on the right side of (5.31) will enable us to compute upper
bounds on H′(t) without too much difficulty. As usual, statements on H′(t) refer
to regular points t.

Proposition 5.12. For any FIFO fluid model of Kelly type,

H′(t) =
∑

k

[hk(A′
k(t)) − hk(D′

k(t))] −
∑

j

1

ms
j

h(1 +W ′
j(t)). (5.31)
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Proof. Differentiation of (5.24) gives

H′(t) =
∑

k

[(1 +W ′
j(t))hk(D′

k(t +Wj(t))) − hk(D′
k(t))]. (5.32)

By (5.18), this

=
∑

k

[(1 +W ′
j(t))hk(A′

k(t)/(1 +W ′
j(t))) − hk(D′

k(t))].

Using the definition of hk(·), one can check this

=
∑

k

[hk(A
′
k(t)) − hk(D′

k(t))] −
∑

j

(

∑

k∈C(j)

A′
k(t)

)

log(1 +W ′
j(t)). (5.33)

If Y ′
j (t) 6= 0 and W ′

j(t) exists, it follows from (4.54) that W ′
j(t) = 0. For each

j, the summand on the right side of (5.33) is therefore equal to
(

∑

k∈C(j)

A′
k(t) +

1

ms
j

Y ′
j (t)

)

log(1 +W ′
j(t)). (5.34)

On the other hand, combining (4.52), (4.53), and (4.55), one gets

t+Wj(t) = Wj(0) +ms
j

∑

k∈C(j)

Ak(t) + Yj(t).

Plugging the derivative of the above quantity into the first factor in (5.34),
shows that (5.34) is equal to h(1 +W ′

j(t))/m
s
j . Consequently, (5.33) equals

∑

k

[hk(A′
k(t)) − hk(D′

k(t))] −
∑

j

1

ms
j

h(1 +W ′
j(t)).

Together with (5.32), this implies (5.31).

The following proposition provides bounds for the two terms on the right side
of (5.31), and hence for H′(t).

Proposition 5.13. For any FIFO fluid model of Kelly type, both
∑

k

[hk(A′
k(t)) − hk(D′

k(t))] ≤
∑

k

Z′
k(t) (5.35)

and, for some c6 > 0,

∑

j

1

ms
j

h(1 +W ′
j(t)) ≥

∑

k

Z′
k(t) + c6

∑

j

(W ′
j(t))

2. (5.36)

Consequently,

H′(t) ≤ −c6
∑

j

(W ′
j(t))

2. (5.37)
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The proof of (5.36) is just a few lines. The proof of (5.35) is a bit longer.
It relies on the convexity of hk(·) and on Jensen’s Inequality, as well as on the
general equality

Z(t) = Z(0) + (I − P T )(λt −D(t)), (5.38)

which follows from (4.51), (4.50), and (1.6). The inequality (5.35) reflects the
randomness present in the mean transition matrix P . For instance, for reentrant
lines that are closed (i.e., there are no arrivals to or departures from the system),
this randomness is absent and both sides of (5.35) are equal to 0. (The sum on
the left side telescopes, with all terms cancelling.)

Proof of Proposition 5.13. The inequality (5.37) immediately follows from Propo-
sition 5.12 and (5.35)–(5.36). For (5.36), note that since h(1) = 0, h′(1) =
1, h′′(x) = 1/x, and W ′

j(t) is bounded,

h(1 +W ′
j(t)) ≥W ′

j(t) + c7(W
′
j(t))

2

for some c7 > 0. Also, by (4.57),

W ′
j(t) = ms

j

∑

k∈C(j)

Z′
k(t).

Combining these two expressions and summing over j shows (5.36).
To show (5.35), note that by (4.50),

hk(A′
k(t)) = hk

(

αk +
∑

ℓ

Pℓ,kD
′
ℓ(t)

)

(5.39)

for each t, which can be rewritten as

λkh

(

λ−1
k

[

αk +
∑

ℓ

(λℓPℓ,k)(λ
−1
ℓ D′

ℓ(t))

])

.

By (1.6), λ−1
k (αk +

∑

ℓ λℓPℓ,k) = 1. So, by Jensen’s Inequality and h(1) = 0,
this is

≤ αkh(1) +
∑

ℓ

λℓPℓ,kh(λ
−1
ℓ D′

ℓ(t)) =
∑

ℓ

Pℓ,khℓ(D
′
ℓ(t)). (5.40)

It follows from (5.39)–(5.40) that, for each k,

hk(A′
k(t)) ≤

∑

ℓ

Pℓ,khℓ(D
′
ℓ(t)).

Summation over k shows that

∑

k

[hk(A′
k(t)) − hk(D′

k(t))] ≤ −
∑

k

(

1 −
∑

ℓ

Pk,ℓ

)

hk(D′
k(t)). (5.41)
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Since hk(·) is convex with hk(λk) = 0 and h′k(λk) = 1, the right side of (5.41) is

≤ −
∑

k

(

1 −
∑

ℓ

Pk,ℓ

)

(D′
k(t) − λk) =

∑

k

Z′
k(t), (5.42)

with the equality following from (5.38). The inequality (5.35) is an immediate
consequence of (5.41) and (5.42).

Let τj(t) denote the additional time, starting at t, until a station j is next
empty. We will need the following general bound for showing (5.28).

Lemma 5.14. For each subcritical fluid model,

τj(t) ≤ c2W
M (t) for all t (5.43)

and some constant c2.

Proof. On account of (4.57), (5.43) is equivalent to

τj(t) ≤ c8|Z(t)|, (5.44)

for appropriate c8. By the general equality (4.63),

CMQ(Z(t′) − Z(t)) = (ρ− e)(t′ − t) + Y (t′) − Y (t)

for t′ ≥ t. Therefore, for each j,

ms
j

∑

k∈C(j)

Zk(t′) ≤ (CMQZ(t))j + (ρj − 1)(t′ − t) + Yj(t
′) − Yj(t).

This implies (5.44), with c8 = (CMQZ(t))j/(1− ρj).

The bound in (5.28) follows from (5.37), Jensen’s Inequality, and (5.43).

Proof of (5.28). By (5.37) and Jensen’s Inequality,

H(t) −H(t′) ≥ c6

∫ t′

t

(W ′
j(r))

2dr ≥
c6

t′ − t
(Wj(t

′) −Wj(t))
2 (5.45)

for 0 ≤ t < t′ and any j. Suppose that Wj(t) 6= 0 for given t and j. Setting
t′ = t + τj(t), it follows from (5.43) and (5.45) that

H(t) −H(t + τj(t)) ≥ c3(Wj(t))
2/WM (t),

where c3 = c6/c2. Choosing j so that Wj(t) = WM (t), it follows from the
monotonicity of H(·) that

H(t) −H(t + c2W
M (t)) ≥ c3W

M (t),

which is (5.28).

We now finish the demonstration of Theorem 5.10.
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Proof of Theorem 5.10. We will iterate along the times ti+1 = ti + c2W
M (ti),

i = 0, 1, 2, . . ., where t0 = 0. This gives

H(0) −H(ti) ≥ c3ti/c2 for all i,

by (5.28). Since H(ti) ≥ 0, it follows that

t∞
def
= lim

i→∞
ti ≤ c2H(0)/c3.

Consequently, by the continuity ofW (t),W (t∞) = 0. Moreover, because of (5.24),
H(t∞) = 0, which implies that H(t) = 0 for t ≥ t∞. This is equivalent to (5.29).
It follows from this and (5.28) that

W (t) = 0 for t ≥ t∞.

Since D(t) is Lipschitz continuous, it is not difficult to see that

H(0) ≤ c9W
M (0)

for appropriate c9. Together, the last three displays imply

W (t) = 0 for t ≥ c10W
M(0),

with c10 = c2c9/c3. It follows from this and (4.57) that

Z(t) = 0 for t ≥ c5|Z(0)|,

for appropriate c5, which is (5.30). Theorem 5.10 follows.

HLPPS queueing networks

The head-of-the-line proportional processor sharing (HLPPS) discipline is a
variant of processor sharing, which was discussed in Chapter 2. Under this disci-
pline, all nonempty classes present at a station are served simultaneously, with
the fraction of time spent serving a class being proportional to the number of
jobs of the class currently there, and all of the service going into the first job
of each class. The discipline is clearly HL. When the service times are expo-
nentially distributed, the queueing network process X(·) of an HLPPS network
coincides with that of the corresponding processor sharing network, where all
jobs of a class receive equal service instead of the first receiving all of the ser-
vice. The HLPPS discipline can be thought of as a simpler variant of processor
sharing that exhibits the HL property. It can be preferable to processor sharing
in certain situations when a penalty is attached to sharing service among too
many jobs.

The following result is shown in [Br96b].

Theorem 5.15. Any subcritical HLPPS queueing network satisfying (5.1) is
stable.
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As in the previous examples, Theorem 4.16 can be employed to demonstrate
stability of these networks. In order to use the accompanying fluid model ma-
chinery, we observe that the HLPPS property can be expressed as

T (t) =

∫ t

0

ZP (s) ds (5.46)

for all t ≥ 0, where

ZP
k (s) =

{

Zk(s)/ZΣ
j (s) for ZΣ

j (s) > 0,

0 for ZΣ
j (s) = 0,

and
ZΣ

j (s) =
∑

k∈C(j)

Zk(s).

The HLPPS queueing network equations are then (4.42)–(4.47) together with (5.46).
The HLPPS fluid model equations are (4.50)–(4.55) together with

T ′
k(t) = ZP

k (t) when ZΣ
j (t) > 0, k = 1, . . . , K. (5.47)

Arguing as in the proof of Proposition 4.12, it is not difficult to show that (5.47)
is satisfied for all fluid limits of HLPPS queueing networks. So, the fluid model
given by (4.50)–(4.55) and (5.47) is associated with the HLPPS queueing net-
work. In order to show Theorem 5.15, it therefore suffices to show its fluid model
analog.

Theorem 5.16. Any subcritical HLPPS fluid model is stable.

The demonstration of Theorem 5.16 exhibits similarities to that of Theo-
rem 5.10 for FIFO fluid models of Kelly type. The argument employs an entropy
function

H(t) =
∑

k

Zk(t) log(D′
k(t)/λk), t ≥ 0.

This entropy function is equivalent to
∑

k

mkZ
Σ
j (t)hk(D′

k(t)), t ≥ 0,

which is similar to that in (5.24).
As before, the goal is to show (5.29), from which (5.30) will follow. In the

present setting, one can show that

H′(t) ≤ −c11 < 0

until H(t) = 0, in place of (5.28). The individual steps of the argument differ
from those for Theorem 5.10. We note that Theorem 5.16 (and hence The-
orem 5.15) holds when mk = mℓ for s(k) = s(ℓ) is not assumed, unlike its
FIFO analog. This might be expected, because the stationary distribution for
processor sharing networks given by (2.7) and (2.9) also does not require this
condition.
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5.4. Global stability

In the last chapter and in the first three sections of this chapter, we have ad-
dressed the question on when an HL queueing network is stable. Our main
technique has been the employment of fluid models: when an associated fluid
model of a queueing network is stable, so is the queueing network. In this sec-
tion, we introduce a different notion of stability, global stability. As before, fluid
models will provide the main technique for demonstrating global stability.

We say that a queueing network is globally stable if it remains stable when
the discipline is replaced by any HL discipline. That is, under any HL discipline
(e.g., an SBP or FIFO discipline), the resulting network, with its given routing,
and interarrival and service distributions, is positive Harris recurrent.

Global stability is clearly a more restrictive requirement, in general, than
is stability. For example, the subcritical two-station reentrant lines, with route
given in Figure 3.1, may or may not be stable, depending on the discipline.
The FBFS discipline is stable, by Theorem 5.5 (provided (5.1) holds). On the
other hand, the Lu-Kumar network, which has the priority scheme (4,1) and
(2,3) at the two stations, is unstable for the range of mean service times given
in Theorem 3.2.

We recall that the basic fluid model equations (4.50)–(4.55) do not reflect the
discipline of a queueing network. By Proposition 4.12, each HL queueing network
is associated with its basic fluid model. The following result is therefore a direct
consequence of Theorem 4.16.

Proposition 5.17. Assume that a given HL queueing network satisfies (5.1)
and that its basic fluid model is stable. Then, the queueing network is globally
stable.

As we have seen earlier in this chapter, it is easier to study the stability of
fluid models rather than directly investigating the stability of the corresponding
queueing networks. We will take this approach here, and study the stability of
the basic fluid model. A complete, explicit theory is given in [DaV00] when the
network has two stations and routing is deterministic. Most of this section is
devoted to providing a summary of these results. The remainder of the section
briefly presents related results on weak stability and global weak stability.

We note that our terminology is somewhat different than that in [DaV00], and
in related work [Ha97] and [DaHV99]. There, the authors employ the term “fluid
networks” rather than “fluid models”, and employ the term “global stability”
for when the fluid networks are stable. The latter definition corresponds to
stability for the basic fluid model here, although somewhat different fluid model
equations are used in those papers. Another difference arises from the usage of
the term “queueing network” in our lectures, which assumes that a discipline
has already been assigned; in the above references, this is not assumed.

Virtual stations and push starts

An appealing theory for the stability of basic fluid models with two stations
is developed in [DaV00] for networks with deterministic routing, with necessary
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m2 = 0.1 

m5 = 0.4 

j = 2 

1 m

m4  = 0.1

= 0.4 

j = 1

= 0.43m

Fig. 5.1. The five classes along the route are labelled in the order of their appearance; the
mean service time of each is given. The priority scheme is (1,3,4) at station 1 and (5,2) at
station 2.

and sufficient conditions for stability being given. Key ingredients include the
concepts of virtual stations and push starts, in terms of which stability can be
phrased. The theory does not extend to networks with three or more stations.

We will later give a systematic definition of virtual stations and push starts,
but the concepts are better illustrated by an example. We will employ the ex-
ample from [DaHV04], which is a reentrant line with route given in Figure 5.1.

The queueing network has two stations, with three and two classes each, as
illustrated in the figure. The mean service times at the classes are

m1 = m3 = m5 = 0.4 and m2 = m4 = 0.1, (5.48)

and jobs are assumed to enter the network at rate 1. The network is therefore
subcritical. The actual distributions of the interarrival and service times will
not be important to us. A preemptive SBP discipline is assigned, with priority
scheme (1,3,4) at station 1 and (5,2) at station 2. That is, the discipline is FBFS
at station 1 and LBFS at station 2. We will exhibit a virtual station for this
queueing network.

We also consider the fluid model obtained by adding the SBP equation (5.13)
to the basic fluid model equations, where the classes have the same priorities
as above. The SBP fluid model thus obtained is associated with the above
queueing network; this was shown in Section 5.2. Examination of the basic
fluid model suffices presently, although we will need the SBP fluid model later
when examining push starts. In order to exhibit a virtual station for either fluid
model, we will need to employ the fluid limits from the above queueing network.

The interaction between classes 3 and 5 is important for understanding the
evolution of this queueing network. If one assumes that Z3(0) = 0 or Z5(0) = 0,
it then follows that

Z3(t) = 0 or Z5(t) = 0 for each t ≥ 0. (5.49)

That is, if at least one of these two classes is initially empty, then this condition
persists for all time. The reason is that since class 3 has higher priority than
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class 4, no job from the latter class can enter class 5 as long as class 3 is not
empty. Moreover, if class 5 is not empty, then no job can enter class 3, since
class 5 has higher priority than class 2. This behavior relies on the assumption
that the discipline is preemptive. (The corresponding behavior for classes 2 and
4 of the Lu-Kumar network was used in the proof of Theorem 3.2.)

It follows from (5.49) that, under such initial data, classes 3 and 5 can never
be served simultaneously. Consequently,

T3(t2) − T3(t1) + T5(t2) − T5(t1) ≤ t2 − t1 (5.50)

whenever t1 ≤ t2, or equivalently,

T ′
3(t) + T ′

5(t) ≤ 1 (5.51)

wherever the derivative is defined. One can think of classes 3 and 5 as forming
a “virtual station”, with their service being constrained, as in (5.51), as if they
actually belonged to a single station.

Let X̄(·) be a fluid limit obtained from a sequence (an, xn) as in (4.71), with
Zxn

3 (0) = an and Zxn

5 (0) = 0. Then, (5.50) holds for each term of the sequence,
and so the same is also true for T̄ (·). On the other hand, X̄(·) is a solution of
the SBP fluid model equations. So, classes 3 and 5 form a “virtual station” for
the SBP fluid model as well. Note that not all SBP fluid model solutions need
satisfy (5.50) or (5.51), since fluid mass can possibly be served and pass through
a class k, with Zk(t) = 0 nonetheless holding over an entire time interval. This
contrasts with the behavior for the associated queueing network.

For the SBP fluid model (and hence for the basic fluid model) to be stable,

m3 +m5 < 1 (5.52)

needs to hold. The argument is similar to that for Part (c) of Proposition 4.11,
and relies on (5.50). (One can employ the analogs of (4.62) and (4.63), but
with C, ρ, and Y augmented to include the virtual station.) For either fluid
model with the parameters given by (5.48), m3 + m5 = 0.8 < 1, which does
not preclude stability. However, if m5 is replaced by m′

5 = 0.7, then m3 +m′
5 =

1.1 > 1, and so the resulting fluid model will not be stable even though the
network is still subcritical. One can then show, in fact, that some solutions
satisfy lim inft→∞ Z(t)/t ≥ 1/11. As we will see, both fluid models with the
original service rates are already not stable. For this, we will need to use push
starts.

The push start phenomenon relies on the presence of a virtual station, and
provides a stability condition which is an amplification of that provided by the
virtual station. It is caused by a higher priority class that shares a station with
one of the classes of the virtual station, and always receives at least a fixed
proportion of the service at that station. In contrast to virtual stations, it is a
fluid model phenomenon, rather than a queueing network phenomenon.

In the setting of the example in Figure 5.1, the stability condition (5.52) can
be replaced by

ρpush =
m3

1 −m1
+m5 < 1, (5.53)
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by using push starts. We first note that if one deletes class 1 from the reentrant
line in Figure 5.1, then the four-class reentrant line that remains is equivalent to
the Lu-Kumar network in Section 3.1. If one retains the labelling of the original
five-class reentrant line, then one can check that the bound (5.52) is needed for
the associated SBP fluid model to be stable, for the same reasons as for the
five-class fluid model.

Returning to the SBP fluid model for the five-class network in Figure 5.1,
we observe that class 1 has the highest priority at its station. Since fluid enters
the reentrant line at rate 1 and m1 < 1, class 1 empties in finite time and
remains empty thereafter. In keeping class 1 empty, station 1 spends proportion
m1 = 0.4 of its effort in processing fluid at class 1. The remaining proportion
1 −m1 of its effort can be spent on fluid in classes 3 and 5. This occurs for all
solutions of the SBP fluid model.

Since class 1 remains empty, its sole effect on the remainder of the system is
to reduce the amount of effort available at station 1 for the other two classes.
Removing this class and expanding the service times at classes 3 and 4 by the
factor 1/(1 −m1) to compensate for this reduced effort, one can show with a
little work that the resulting SBP fluid model is identical to the four-station
SBP fluid model mentioned above, but with the service times at classes 3 and
4 expanded by 1/(1 −m1). The push start stability condition (5.53) therefore
replaces the condition (5.52), as desired. With the choice of service times given
in (5.48), ρpush = 2

3 + 2
5 > 1, and so (5.53) is violated. Hence, the SBP fluid

model in Figure 5.1 is not stable. This also implies that the corresponding basic
fluid model is not stable.

Systematic presentation of virtual stations and push starts

We will provide an abridged version of the construction given in [DaV00], re-
ferring sometimes to the virtual station and push start example given earlier for
motivation. In order to simplify matters somewhat, we will restrict consideration
to networks with just a single deterministic route, i.e., to reentrant lines.

We employ the following terminology. An excursion is a maximal set of con-
secutive classes along the route that belong to a single station. A last class of
an excursion is the last class visited there, and a first class denotes all of the
remaining classes; if the excursion contains only one class, then it has no first
class. A set S of excursions is strictly separating if it contains no consecutive
excursions and does not contain the first excursion. For each such set S, the
virtual station V (S) consists of the classes in the excursions of S, together with
the first classes of excursions for which the immediately preceding excursion is
not in S. Also, let k1, k2, . . . , kL denote the last classes visited for each of the L
excursions, and let F≤(ℓ) denote all of the classes along the route visited up to

and including kℓ; then F<(ℓ)
def
= F≤(ℓ)−{kℓ} is called a push start set. One sets

Vj(S), F≤
j (ℓ), and F<

j (ℓ), j = 1, 2, equal to the corresponding classes restricted
to the stations 1 and 2, respectively.

For the example in Figure 5.1, there are four excursions consisting of the sets
of classes, {1}, {2}, {3, 4}, and {5}. The virtual stations are {2}, {2, 5}, {3, 4},
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and {3, 5}. The only one that is not a subset of a station, and is therefore of
interest, is V ({5}) = {3, 5}. For future reference, we record that

V ({5}) = {3, 5}, F≤(2) = {1, 2}, F<(2) = {1}. (5.54)

We now state the main result in [DaV00], restricted to reentrant lines. Here,
we use the abbreviation m(A) =

∑

k∈Amk for any set A of classes. The rate at
which fluid enters the first class is denoted by α1.

Theorem 5.18. A two-station basic fluid model is stable if and only if

ρj < 1 for j = 1, 2, (5.55)

and for each strictly separating set S and ℓ = 1, . . . , L,

2
∑

j=1

α1m(Vj(S)\F≤
j (ℓ))

1 − α1m(F<
j (ℓ))

< 1. (5.56)

In [DaV00], it is also shown that if the left side of (5.56) is strictly greater
than 1 for some strictly separating set S and some ℓ, then there exists a fluid
model solution whose fluid mass |Z(t)| → ∞ as t → ∞. (The authors actually
consider the limit for the “work in progress”, i.e., the total workload, which is
equivalent to this limit.)

We note that, in order to be of interest in (5.56), virtual stations need to
include classes from both stations. Otherwise, (5.56) follows from the subcriti-
cality of each station.

One can interpret the example in Figure 5.1 in terms of Theorem 5.18. Sub-
stitution of (5.54) into (5.56) reduces the latter to the inequality in (5.53). Since
this is violated for the choice of m in the example, Theorem 5.18 implies that
the basic fluid model is not stable. There is, moreover, a fluid model solution
with |Z(t)| → ∞ as t → ∞. We saw earlier that such a solution is given by the
SBP discipline with priorities (1,3,4) and (5,2) at the two stations. For arbitrary
two-station fluid models, the calculation of the left side of (5.56) for all strictly
separating sets S and all ℓ will in general be tedious.

There is, for arbitrary two-station reentrant lines, a strong connection be-
tween stability of the associated basic fluid model and stability of the corre-
sponding family of fluid models with SBP disciplines. Namely, when the basic
fluid model is not stable, there must also exist an SBP fluid model that is not
stable. Another way of phrasing this is the following. Let D ⊂ RK

+ denote the
set of service time vectors, with coordinates mk, on which the basic fluid model
is stable for a given route and choice of α1. (In [DaHV99] and [DaV00], D is
referred to as the global stability region.) Similarly, let DS ⊂ RK

+ denote the
set on which all fluid models with SBP disciplines are stable. Clearly, D ⊆ DS .
The above assertion is that, in fact,

D = DS . (5.57)

This is shown in [DaV00], while demonstrating Theorem 5.18.
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We also point out that, as a consequence of Theorem 5.18, the region D
is monotone. That is, reducing service times maintains stability. This follows
immediately from the conditions (5.55) and (5.56).

The proofs of the two directions of Theorem 5.18 are of different levels of dif-
ficulty. The necessity of the conditions (5.55) and (5.56) is reasonably straight-
forward. If (5.56) is violated for some value of ℓ, one can make the same basic
type of argument we sketched for the SBP fluid model in Figure 5.1, once an
appropriate SBP discipline has been chosen. One wants a discipline that (a)
assigns the highest priority to classes in F<(ℓ), with classes in F<(ℓ) being
ordered according to the FBFS discipline, (b) assigns a high priority to the
remaining classes in V (S), and (c) assigns a low priority to the other classes,
including the class in F≤(1)\F<(1). (The particular priority is not important in
each of (b) and (c).) Using Theorem 5.5, one can then show that F<(ℓ) will be
empty after large times, like the first class in Figure 5.1. By applying the same
type of argument we sketched for that network, one can also show that once
all of the classes in either V1(S) or V2(S) are empty, this condition persists for
all time. This argument heavily uses the structure of V (S), which was defined
with appropriate “gaps” between its classes so that service at V1(S) will prevent
service at V2(S) and vice versa, because of the presence of low priority classes
in between. More detail is given in [DaV00] and in [Ha97], which looks at a
related problem. (The reference [DaV96] cited in [DaV00] never appeared due
to an unrelated flaw in extending push starts to the queueing network setting.
This flaw also affects the example on page 756 in [Da96].)

The demonstration of the sufficiency of (5.55) and (5.56) is more involved and
requires most of the work in [DaV00]. The paper employs linear programming
techniques to construct a piecewise linear Lyapunov function, from which the
stability of the fluid model will follow. (Piecewise linear Lyapunov functions have
also been employed in [BoZ92], [DoM94], and [DaWe96].) The duality between
minimum flows and maximum cuts is used to obtain the explicit formulation
in (5.55) and (5.56). We will not go into details here.

It is natural to ask whether Theorem 5.18 extends to fluid models with more
than two stations. [DaHV99] shows this is not the case, in general, by analyzing
the fluid models whose routing is given by Figure 5.2. Not only is there no

j = 1 j = 2 j= 3 

Fig. 5.2. The basic fluid model for this three-station reentrant line has irregular behavior
with regard to stability, when m and the discipline are varied. This behavior is not present
for two-station reentrant lines.
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analog of Theorem 5.18, but D 6= DS and D is not monotone. There is presently
no developed theory for stability for more than two stations.

Rate and global stability

We conclude this section with two other types of stability. We will say that
an HL queueing network is rate stable (or pathwise stable) if for any given initial
state x,

lim
t→∞

Zx(t)/t = 0 a.s. (5.58)

(Alternative definitions are often given. For instance, limt→∞Dx(t)/t = λ a.s.
is equivalent to (5.58).) An HL queueing network will be globally rate stable
if (5.58) continues to hold irrespective of the discipline. Rate stability for queue-
ing networks differs from stability in that only the first order behavior of Zx(t)
enters into (5.58); an unstable queueing network might conceivably be rate sta-
ble, with limt→∞ |Zx(t)| = ∞ a.s., but with |Zx(t)| = o(t).

As is the case for stability, fluid models and fluid limits may be employed to
demonstrate rate stability. A fluid model is weakly stable, if for each solution of
the fluid model equations with Z(0) = 0, one has Z(t) = 0 for all t ≥ 0. Clearly,
stability of a fluid model implies weak stability. Also, as was done in the context
of global stability, the basic fluid model may be employed to demonstrate global
rate stability. (In the literature, the term globally weakly stable is used when the
basic fluid model is weakly stable.)

For queueing networks, rate stability and global rate stability are less satis-
fying properties than are stability and global stability, but they are easier to
show. One has the following analog of Theorem 4.16.

Theorem 5.19. Assume that an associated fluid model of a given HL queueing
network is weakly stable. Then, the queueing network is rate stable.

Proof. Suppose on the contrary that the queueing network is not rate stable.
Then,

lim sup
t→∞

|Zx(t)|/t > 0

for some ω ∈ G, where G is given in (4.70). Let an → ∞, as n → ∞, be a
sequence on which lim inft→∞ |Zx(an)|/an > 0. The sequence (an, x) satisfies
(4.71). So, there is a subsequence (ain

, x) along which X
x(ain

t)/ain
has a limit

X̄(·) that satisfies the associated fluid model equations.
Since the initial state is constant, Z̄(0) = 0. Because the fluid model is

assumed to be weakly stable, it follows that Z̄(t) ≡ 0. In particular, Z̄(1) = 0.
Therefore,

lim
n→∞

|Zx(ain
)|/ain

= 0,

which is a contradiction. So, the queueing network is, in fact, rate stable.

By Proposition 4.12, the basic fluid model is associated with its queueing
network. The following corollary is therefore an immediate consequence of The-
orem 5.19. Both Theorem 5.19 and the corollary are related to Theorem 4.1 in
[Ch95].
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Corollary 1. Assume that the basic fluid model of a given HL queueing network
is weakly stable. Then, the queueing network is globally rate stable.

The following weak stability analog of Theorem 5.18 is given in [DaV00]. As
before, we restrict the result to reentrant lines from queueing networks with
deterministic routing. We employ the same notation as before involving strictly
separating sets of excursions, virtual stations, and push start sets. Note that
the conditions (5.59) and (5.60) for weak stability are the same as (5.55) and
(5.56) in Theorem 5.18, except that strict inequalities in (5.55) and (5.56) are
replaced by inequalities.

Theorem 5.20. A two-station basic fluid model is weakly stable if and only if

ρj ≤ 1 for j = 1, 2, (5.59)

and for each strictly separating set S and ℓ = 1, . . . , L,

2
∑

j=1

α1m(Vj(S)\F≤
j (ℓ))

1 − α1m(F<
j (ℓ))

≤ 1. (5.60)

The proof of Theorem 5.20 is not spelled out there, but, according to [DaV00],
is analogous to that of Theorem 5.18.

5.5. Relationship between QN and FM stability

The material in the first four sections of this chapter has relied heavily on the
stability of fluid models that are associated with a given queueing network. In
the first three sections, stability of such fluid models enabled us to demonstrate
stability for a number of disciplines when the queueing network is subcritical.
In the last section, this approach was applied to global stability.

We have so far avoided the question in the opposite direction, of whether sta-
bility of a queueing network implies the stability of its associated fluid model.
On account of Theorem 4.16, this would imply that the two concepts of stability
are equivalent, modulo certain side conditions. If the above implication is not
correct, how “close” are the two concepts? Besides being aesthetically pleasing,
a two-directional relationship would allow reduction of questions involving the
stability of queueing networks to the less complex setting of fluid models. Re-
sults, such as Theorem 5.18 of the previous section, would also take on added
significance. Of course, for disciplines such as those in the first three sections of
the chapter, this equivalence is already clear, if both the queueing networks and
fluid models are stable whenever they are subcritical.

The question should not be taken in its most naive form. For instance, the
basic fluid model for a queueing network (which has no equations specifying the
discipline) need not be stable even if the queueing network is. So, the fluid model
needs to include an appropriate equation (or equations) corresponding to the
discipline; we have already seen that there are often “canonical” equations that
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suggest themselves in this context. Also, one should exclude certain “exotic”
disciplines. For instance, if the priority rule favoring different classes is allowed
to change with the total queue length |Z|, such a discipline might consist of
priority rules that are decreasingly stable as |Z| → ∞. The fluid model would
then correspond to the limiting rule, which is not stable, whereas the queueing
network itself could be stable.

As we will see, even for certain “standard” disciplines, the above two forms
of stability are not equivalent: there exist stable queueing networks whose fluid
models are not stable. Moreover, there are no general results in this direction.
Nonetheless, one must work to produce such examples, which seem to be, in
some sense, “borderline”. So, at this point, one can claim that the reduction to
fluid models “works well in practice”. The same should hold for the basic fluid
model in the context of global stability. For global weak stability, there is, in
fact, a partial result, which we mention at the end of the section.

This section is divided into four parts. We first present an elementary con-
dition for the instability of a queueing network from [Da96]. We then present
examples of stable queueing networks with unstable fluid models from [Br99]
and [DaHV04], which together constitute most of the section. We conclude with
the global weak stability result mentioned above, which is from [GaH05].

An elementary condition for instability

Proposition 5.21 gives an elementary condition for the instability of a queue-
ing network in terms of its fluid limits. The result relies on Proposition 4.11
and is a variant of a result from [Da96]. Related results, with more involved
conditions, are given in [Me95] and [PuR00]. Similar reasoning also shows that
an HL queueing network with a supercritical station is unstable; the result is
included in Proposition 5.21.

Proposition 5.21. (a) Assume that for every fluid limit X̄(·) of a given HL
queueing network, with Z̄(0) = 0, that Z̄(δ) 6= 0 for some fixed δ > 0. Then, for
every initial state x,

lim inf
t→∞

|Zx(t)|/t > 0 on G. (5.61)

(b) Assume that for a given HL queueing network, ρj > 1 at some j. Then, for
some ǫ > 0 and every initial state x,

lim inf
t→∞

|Zx(t)|/t ≥ ǫ on G. (5.62)

Proof. The argument for (5.61) is almost the same as that used in the proof of
Theorem 5.19. Suppose on the contrary that, for some ω ∈ G,

lim inf
t→∞

|Zx(δt)|/t = 0,

where δ > 0 is chosen as in the statement of the proposition. Let an → ∞,
as n → ∞, be a sequence on which this limit holds. Since the sequence (an, x)
satisfies (4.71), by Proposition 4.12, there is a subsequence (ain

, x) along which
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X
x(ain

t)/ain
has a limit X̄(·). Since the initial state is constant, Z̄(0) = 0, and

so, by assumption, Z̄(δ) 6= 0. Therefore,

lim
t→∞

|Zx(δain
)|/ain

> 0,

which is a contradiction. Consequently, (5.61) holds.
Suppose ρj > 1 for some j. The basic fluid model is associated with the

queueing network. By Part (d) of Proposition 4.11, |Z(1)| ≥ ǫ for some ǫ > 0
and all solutions of the basic fluid model. Reasoning analogous to that for (5.61)
then implies (5.62).

The assumption in Part (a) of Proposition 5.21, that Z̄(δ) 6= 0 for all fluid
limits with Z̄(0) = 0, is unfortunately too strong for most applications, as is the
assumption, in Part (b), that ρj > 1 for some j. One can, in fact, wonder whether
the proposition has any applications to subcritical networks. Note, for instance
that, under Z(0) = 0, the conditions Z(t) ≡ 0 and D(t) = λt are equivalent
for any fluid model. Since none of the stations, in this case, is overloaded if the
network is subcritical, these equations provide a solution for fluid models such
as the basic fluid model and the other fluid models that have appeared in this
chapter. So, the assumptions in Part (a) will not be satisfied if one considers all
fluid model solutions (rather than just fluid limits).

The situation is different if one considers only the fluid limits of the queueing
network. For instance, a subcritical queueing network might contain supercriti-
cal virtual stations, as in the previous section. In this setting, Z̄(δ) = 0 will no
longer be possible for any fluid limit. Hence, Part (a) of Proposition 5.21 will be
applicable. Other situations where Z̄(δ) 6= 0 for all fluid limits will also occur.

An example of a stable queueing network with unstable fluid model

In this subsection and the next, we will present two examples of stable queue-
ing networks with unstable fluid models. In this subsection, the example consists
of a network with routing that is a modification of that given in Figure 5.3.

The network portrayed in Figure 5.3 is a reentrant line with three stations,
each possessing two classes. The discipline is a preemptive SBP, with priority

k = 1 

k = 6 

k = 2 

k = 5 

k = 3 

k = 4 

j = 1 j = 2 j = 3 

Fig. 5.3. The six classes along the route are labelled in the order of their appearance; the
mean service times are given in (5.63). The priority scheme is (6,1), (5,2), and (3,4) at the
three stations.
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k = 2 k = 5j = (3, l)

Fig. 5.4. In the modified network, jobs leaving class 2 are randomly routed to one of the L
stations, (3, l). After service at the two classes at the station, jobs are routed to class 5. In
the figure, L = 3.

scheme (6,1), (5,2), and (3,4) at the three stations. Interarrival and service times
are assumed to be exponentially distributed, with the interarrival times having
mean 1 and the service times having means

m2 = m3 = m6 = 3/4, m1 = m5 = γ, m4 = γ/L2 , (5.63)

where γ ∈ (0, 1/8) and L ∈ Z+. (One can, for example, set γ = 1/16.) The
queueing network is subcritical with

ρ1 = ρ2 =
3

4
+ γ <

7

8
and ρ3 =

3

4
+

γ

L2
<

7

8
. (5.64)

The process Z(t) corresponding to the queueing network is Markov because of
the SBP discipline and the exponential interarrival and service times.

The modified queueing network we will employ is defined by “splitting” the
station 3 into L separate two-class stations, (3, 1), . . . , (3, L), one of which is
randomly chosen along the route. That is, the higher priority class of each of
these stations is entered with probability 1/L, by a job leaving class 2. After
service at this class is completed, the job passes to the lower priority class of
this station, and then to class 5 of the original network; the queueing network
otherwise evolves as before (see Figure 5.4). The new service times are exponen-
tially distributed with means 3

4
L and γ/L. The modified network is subcritical,

with traffic intensity again given by (5.64). The process Z(t) corresponding to
the modified queueing network is again Markov. The original network can be
obtained by “collapsing” the stations (3, 1), . . . , (3, L) into a single station 3.

Both the original and modified queueing networks have preemptive SBP disci-
plines. As in Section 5.2, the fluid models consisting of the basic fluid equations,
together with the SBP equation (5.13), are associated with these queueing net-
works. In [Br99], the stability of the modified queueing network and its fluid
model are characterized as follows.

Theorem 5.22. (a) For sufficiently large L, the modified queueing network
defined above is stable. (b) For any L, the associated fluid model is not stable.
In particular, there is a solution of the fluid model, with

lim inf
t→∞

|Z(t)|/t = 1/3. (5.65)
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Sketch of proof. The argument for Part (b) consists of explicitly constructing
a solution of the fluid model equations that satisfies (5.65). The construction
is similar to that for the simpler two-station, four-class network in Example 2
of the second part of Section 4.3. Rather than doing this here, we will instead
motivate the evolution of the solution. The interested reader can refer to page
825 of [Br99] for a precise treatment.

The above solution is constructed so as to take the same values at each of
the stations (3, ℓ), l = 1, . . . , L. The sum of the contributions of these stations
therefore undergoes the same evolution as the corresponding solution for the
original network, which we henceforth consider. For the original network, m5 ≤
m6. Since class 5 is the higher priority class at station 2, this implies that the
fluid mass there is always passed to class 6 at least as fast as it can be served
at class 6. Also, since m2 = m3, fluid mass for this solution is also passed from
class 2 to class 3 as fast as it can be served at class 3, provided no mass is
concurrently served at the higher priority class 5. Such will be the case for this
particular solution, as can easily be verified by checking its explicit construction.

Using these two observations, one can see that this solution will become
a solution of the two-station network obtained by deleting station 2, if one
combines the mass at class 2 with that at class 3, and the mass at class 5
with that at class 6. The resulting network is just the Lu-Kumar network in
Figure 3.1, with priorities (6, 1) and (3, 4) at the remaining stations 1 and 3,
and service times

m3 = m6 = 3/4, m1 = γ, m4 = γ/L2. (5.66)

The classes 3 and 6 are the high priority classes at their stations. For the
same reasons as given between (5.49) and (5.52) for the fluid model considered
there, the classes 3 and 6 form a virtual station, with

ρvirtual = 3/2 > 1. (5.67)

So, the two-station fluid model is not stable. For our particular solution, fluid
mass will only be processed at this virtual station at 2/3 the rate at which it
arrives there, and so 1/3 will be a lower bound for the limit in (5.65). From the
actual construction of the solution, the limit in fact equals 1/3, as claimed in
Part (b) of the theorem.

The argument for Part (a) of Theorem 5.22 is more involved. The result
might also be true for the original queueing network, but one needs to employ
the modified queueing network, with large L, to obtain the bounds that are used
here.

The basic reason for the different behavior in Parts (a) and (b) of the theorem
is the different behavior at the stations (3, ℓ). For the unstable fluid model
solution that was just discussed, as in the examples of the unstable queueing
networks in Chapter 3, the flow of mass through the network is “cyclic”, with,
in particular, an increasingly large periodic buildup of mass at the different
stations. This includes the stations (3, ℓ), ℓ = 1, . . . , L. (Or equivalently, the
station 3 for the original network.)
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At the stations (3, ℓ), ℓ = 1, . . . , L, the behavior of the queueing network is
different. One can show that, for large L, the effective service rate at class 2 is
slower than the combined service rate at the classes (3, ℓ), ℓ = 1, . . . , L, when the
combined number of jobs at the classes (3, ℓ) is large. The basic idea is that for
large L, the probability is close to 1 that, relatively frequently, one of the classes,
say (3, ℓ0), becomes empty. Once this occurs, service begins on the jobs at the
quick low priority class (4, ℓ0) that follows (3, ℓ0). The served jobs from there
continue to the high priority class 5, which interrupts service at class 2. This
interruption prevents jobs from entering any of the (3, ℓ) classes until class 5
empties, which only occurs after it stops receiving jobs from the different (4, ℓ)
classes. As additional (3, ℓ) classes empty, this allows service to begin at the
corresponding (4, ℓ) classes. Without this interference from class 5, the service
rate at class 2 is the same as the combined service rate of all of the (3, ℓ) classes,
which is 4/3. This interference, however, creates idle periods for class 2, which
causes it to have a slower effective service rate than the combined service rate
of the (3, ℓ) classes. This service rate is also slower than the combined service
rate of the (3, ℓ) stations, since service at the (4, ℓ) classes is quick.

The above behavior creates a strong bias for the total number of jobs ZΣ
3 (t)

at all of the (3, ℓ) stations to drift toward 0. Using this, one can show that
ZΣ

3 (t) typically remains close to 0 on the relevant time scale after it first hits 0.
It is therefore reasonable to guess that the presence of the (3, ℓ) stations should
have only a negligible effect on the evolution of the queueing network on this
time scale, and that the qualitative behavior of the network should not change
if these stations are omitted. This is, in fact, correct. By using fluid limits, one
can make this statement precise. (The fluid limits used in [Br99] are slightly
more general than those introduced in Section 4.3. They are mentioned briefly
in the discussion after Theorem 4.16.)

After a fixed time (depending on the initial state), all such fluid limits will
have no mass at station 3. They will satisfy the SBP fluid model consisting of
the remaining stations 1 and 2, whose classes have priorities (6,1) and (5,2), and
service times

m2 = m6 = 3/4 and m1 = m5 = γ. (5.68)

This SBP discipline is LBFS. Since ρ1 = ρ2 < 7/8 < 1, one knows from
Theorem 5.6 that this two-station fluid model is stable. It follows that the
fluid limits for the entire modified queueing network are stable. From this,
it in turn follows that the modified queueing network is stable. So, Part (a)
holds.

The queueing network in Theorem 5.22 is an example of a stable SBP queue-
ing network for which the associated fluid model consisting of the basic fluid
model equations and (5.13) is not stable. The discipline here is an SBP discipline
and not an “exotic” discipline one would wish to exclude from consideration.
This example therefore casts doubt on a robust equivalence between queueing
network and fluid model stability.

Despite this example, one can still ask whether there is some general corre-
spondence between queueing network stability and some notion similar to fluid
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model stability. This question is, of course, vague, and there are different possi-
ble approaches. One approach is to focus on the stability of fluid limits instead
of fluid models. There is no known correspondence here either. Moreover, the
set of fluid limits for a queueing network will be difficult to describe in general.

Another approach is more philosophical. How does one know that the fluid
model employed in Theorem 5.22 is the “right one”? Perhaps fluid limits of the
queueing network automatically satisfy further “hidden” fluid model equations,
and under these additional equations, all fluid model solutions will be stable.
Maybe the same is true for queueing networks in general. It is unclear how to
disprove such a thesis. However, even if the thesis is correct, one will still need
a way of finding such hidden equations, in order for fluid models to provide a
general practical framework for reformulating queueing network stability.

The literature on related work includes two papers, [FoK99] and [StR99], that
give examples of stable networks with unstable fluid limits for polling models.
The model in [FoK99] consists of two stations and two servers, which switch
back and forth between the stations when the work is exhausted; there is also
a switchover period. The paper also introduces a less restrictive criterion of
stability under which the fluid limits are stable.

An example where stability depends on the distributions of the queueing
network

At the end of the last subsection, we wondered how one could discount the
possibility that an unstable fluid model, which is associated with a stable queue-
ing network, merely lacks equations that are implicit in the evolution of the
queueing network. One convincing response to this would be to find two queue-
ing networks, one stable and the other not, that differ only in their interarrival
and service time distributions, but for which everything else, including the in-
terarrival and service time means, is the same. The queueing networks would
then have the same fluid model, which would show that stability of a queueing
network cannot always be determined at the fluid model level.

This approach is taken in [DaHV04]. The queueing network that is analyzed
is the two-station SBP reentrant line in Figure 5.1 of the previous section. It
has priority scheme (1, 3, 4) and (5, 2) at the two stations, interarrival rate 1,
and mean service times given by (5.48). One version of the queueing network is
assumed to have deterministic interarrival and service times. Hence, there is no
randomness in the evolution of the network. The other version of the queueing
network is assumed to have exponentially distributed interarrival and service
times. Both versions are assumed to be nonpreemptive.

In order to describe the evolution of the deterministic network, abbreviated
notation is employed in [DaHV04] to designate certain specific states. One uses
the 6-tuples, (z1, . . . , z5; a), where zk is the number of jobs in class k and a is the
remaining interarrival time until the next job enters the network. Only certain
states occurring at the instant of a service completion are designated this way,
and they are viewed at the time t− just prior to the completion of service. For
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example, by
(0, 0, 0, 1, 0; a), (5.69)

one means the “state” at a time t− if service of the class 4 customer is completed
at time t. Strictly speaking, these are not states for the state space we introduced
in Section 4.1, but they suffice for describing the evolution of the network from
the specific “states” mentioned above. One can, in particular, verify that the
deterministic network starting from (5.69), with a ∈ (0, 0.1], returns to this
state exactly one unit of time later. Thus, such a trajectory forms an orbit; for
a given a ∈ (0, 0.1], this orbit is called an a orbit.

Employing this terminology, it is shown in [DaHV04] that the queueing net-
work with deterministic distributions has the following behavior.

Theorem 5.23. For any initial state of the nonpreemptive deterministic queue-
ing network specified above, there exists a finite time at which the network enters
an a orbit, with a ∈ (0, 0.1].

On the other hand, in [DaHV04], it is also shown that the following result
holds for the queueing network with exponentially distributed interarrival and
service times.

Theorem 5.24. For any initial state of the nonpreemptive exponential queueing
network specified above,

|Z(t)| → ∞ as t→ ∞, (5.70)

with probability 1.

The exponential queueing network in Theorem 5.24 is unstable. (This is also
true for the preemptive version of the discipline.) On the other hand, the tra-
jectories of the deterministic queueing network in Theorem 5.23 all eventually
enter a fixed bounded set. Since not all states communicate with one another,
its underlying (deterministic) Markov process is not positive Harris recurrent,
and so the network is not stable in the sense we are using in these lectures.
Nevertheless, the two examples show distinctly different behavior with regard
to their “stability”, despite having interarrival and service time distributions
with the same means, and therefore not being distinguishable at the fluid model
level.

In [DaHV04], it is also shown that the above deterministic queueing network,
but with preemptive rather than nonpreemptive discipline, is unstable, with
|Z(t)| → ∞ linearly as t→ ∞, for appropriate initial states. So, whether or not
a queueing network is preemptive can also influence its stability.

The natural question arises as to whether the behavior of the nonpreemptive
deterministic network is an anomaly. Simulations in [DaHV04] seem to indicate
that when the deterministic interarrival and service times are replaced by those
with uniform distributions having the same means as before, the (nonpreemp-
tive) network is stable when the width of the uniform distributions is 0.001, but
is not stable when the width is 0.1.
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It is tricky to attempt to formulate rules as to which distributions should
be stable and which should not, for more general networks. On the basis of
the above examples, it is tempting to say that both a more deterministic dis-
tribution and a nonpreemptive discipline should be “good” with regard to sta-
bility, whereas a more random distribution and a preemptive discipline should
be “bad”. But, the three-station example in Theorem 5.22 of the previous sub-
section consists of a stable preemptive queueing network with exponential dis-
tributions and a fluid model that is not stable, which make this less clear. In
[DaHV04], it is suggested that exponential distributions should be “bad” for
a large family of two-station networks, based on the belief that the proof of
Theorem 5.24 should generalize.

Not surprisingly, the argument for Theorem 5.23 is primarily computational,
on account of the system’s deterministic evolution. The reader is referred to
[DaHV04] for details. The argument for Theorem 5.24 is more involved. In the
remainder of this subsection, we will discuss some of the ideas behind the proof
of the theorem that relate to virtual stations and push starts.

Virtual stations and push starts were introduced in the previous section in the
context of the associated fluid model for the preemptive version of the queueing
network in Theorem 5.24. Since the push start condition (5.53) is violated for
the choice of service times in (5.48), one already knows from the previous section
that the fluid model is not stable. One would like to be able to apply similar
reasoning to show that the queueing network in Theorem 5.24 is unstable.

We recall that for the same queueing network, but where the discipline is
preemptive, the classes 3 and 5 form a virtual station. As explained in the
previous section, the virtual station owes its presence to the constraint in (5.49),
which does not allow simultaneous service at the two classes if either is initially
empty.

Unfortunately, for the nonpreemptive version of interest to us here, (5.49)
need not hold. For instance, a job at class 4 can complete service there and
continue to class 5 after another job has already arrived at class 3. However, at
most one job at class 5 can coexist with jobs at class 3; the same is true for jobs
at class 5 coexisting with those at class 3. For the nonpreemptive network, one
can therefore replace (5.49) with

(Z3(t) − 1)+ = 0 or (Z5(t) − 1)+ = 0 for each t ≥ 0, (5.71)

assuming (5.49) holds at t = 0. In contrast to (5.49), (5.71) allows simultaneous
service at classes 3 and 5. One might hope that there is not “too much” such
joint service, so that the classes together still behave like a virtual station, up
to a small error.

There are also difficulties in applying the push start condition in (5.53) to
the queueing network. The inequality applies to the fluid model, where it relies
on the proportion of effort devoted to class 1 being constant over time. For the
queueing network (either preemptive or nonpreemptive), there may or may not
be a job there receiving service at a given time. So, service at class 1 may or
may not interfere with service at class 3. The reasoning leading up to (5.53) will
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therefore not hold in the strict sense. However, if there is sufficient independence
between the times of external arrivals to class 1 and times when class 3 is not
empty, one might expect the same behavior to hold up to a small error. Since
the arrivals to the network are Poisson, one might expect that to be the case in
the present setting. It is certainly not the case for the deterministic network in
Theorem 5.23.

Much of the work in [DaHV04] is devoted to carrying out the ideas that
are summarized in the last two paragraphs, in order to demonstrate Theorem
5.24. The queueing network itself must be analyzed, which involves deriving
estimates based on its random evolution. However, the virtual station and push
start behavior of the associated fluid model provide guidance for these steps.

Global rate stability

The examples in the previous two subsections cast doubt on the equivalence,
under general conditions, of queueing network and fluid model stability. This
does not preclude analogous positive results in the context of global stability,
though. In particular, the presence of a basic fluid model that is not stable might
imply the existence of an associated queueing network that is not stable, under
some discipline. This is an open question even for two-station reentrant lines.
If one knows this equivalence in the two-station reentrant line setting, one can
then apply Theorem 5.18 to obtain necessary and sufficient conditions on the
global stability of such reentrant lines.

At the end of Section 5.4, we introduced the concepts of rate stability, global
rate stability, and weak stability. As in the two previous subsections, one can
attempt to show the equivalence of rate stability for queueing networks and
weak stability for fluid models. One does not meet with greater success here
than with stability. The deterministic queueing network in Theorem 5.23, for
example, is rate stable, but its fluid model (with auxiliary equation (5.13)) is
not.

The question of global rate stability is more approachable. We recall, from
the corollary to Theorem 5.19, that an HL queueing network is globally rate
stable if its basic fluid model is weakly stable. The following partial converse
is shown in [GaH05] for a family of queueing networks. The family consists of
two-station networks with deterministic routing. The interarrival and service
distributions there are assumed to satisfy a large deviation condition.

Theorem 5.25. Assume that a two-station queueing network with the above
properties is globally rate stable. Then, its basic fluid model is weakly stable.

The proof of Theorem 5.25 is by contradiction. The basic idea is to show
the existence of a fluid model solution that diverges linearly to infinity, and
to construct a discipline for which the sample paths of the queueing network
almost surely “track” this solution. The large deviation condition is employed
in this construction.

The queueing networks in the theorem differ, in two ways, from the HL
queueing networks we defined in Section 4.1 and have been employing since.
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Changes in service allocation are allowed between the arrival and departure
times of jobs at stations, in order to facilitate tracking. More seriously, the
discipline that was constructed need not be time homogeneous. It should be
possible to modify the construction so as to eliminate both of these differences.

Since the discipline of a queueing network is not reflected in the basic fluid
model equations, the corollary to Theorem 5.19 continues to hold in the set-
ting of the queueing networks in Theorem 5.25. Together with the theorem,
this implies the equivalence of global rate stability for these two-station queue-
ing networks and weak stability for their basic fluid models. As an immediate
consequence of this and Theorem 5.20, one obtains the following necessary and
sufficient conditions for the global rate stability of two-station queueing net-
works. Since Theorem 5.20 was stated for reentrant lines, we make the same
restriction here. We also make the same assumptions on the networks as were
made in Theorem 5.25.

Theorem 5.26. A two-station reentrant line with the above properties is globally
rate stable if and only if both (5.59) and (5.60) hold.
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adversarial queueing, 221
α-excessive function, 251, 292

balance equations, 192
detailed, 193
partial, 210

Borel right, 251, 252, 291
bounded set, 257
buffer, 173

class, 173
classical networks, 186
clearing policy, 225
constituency matrix, 267
critical, 180, 266, 270
cumulative

idle time, 267
service time process, 266

customers, 171, 172

Debut Theorem, 251, 252
deterministic routing, 173
discipline, 171, 177

entropy function, 311
e-stability, 180, 256, 280, 290
ergodic, 180, 255
Erlang distribution, 190, 201, 202
excursion, 321
external arrival, 181

process, 266
rate, 176, 267

FIFO
network of Kelly type, 190, 310
node of Kelly type, 188

filtration, 250
natural, 250

first-buffer-first-served (FBFS), 177,
307

first-in, first-out (FIFO), 177, 186,
188, 228, 233, 235, 249, 268

first-in-system, first-out (FISFO),
178, 250

fluid limit, 243, 265, 275, 276
associated, 276, 277
model, 276

fluid model, 180, 182, 243, 265, 269
basic, 269
equations, 182, 269

auxiliary, 269
basic, 269
FBFS, 307
FIFO, 310
LBFS, 307
SBP, 307
with delay, 270, 289
without delay, 269

solution, 269
fluid network, 182, 234
Foster’s Criterion, 257

Generalized, 259
Multiplicative, 259, 281, 286

general distributions, 205

Harris recurrent, 178, 252, 295
positive, 171, 178, 179, 252, 295

head-of-the-line (HL), 177
head-of-the-line proportional proces-

sor sharing (HLPPS), 316
heavy traffic limits, 182, 221, 265
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homogeneous node, 188, 196
of Kelly type, 195, 196

homogeneous queueing network, 196
of Kelly type, 197, 200

hydrodynamic scaling, 182

infinite server (IS), 186, 189, 190
instability, 180, 221, 226–228, 233,

235, 237, 326
irreducibility measure, 252

Jackson network, 176
generalized, 176

jobs, 171, 172

Kelly type, 238
Kumar-Seidman network, 225

last-buffer-first-served (LBFS), 177,
307

last-in, first-out (LIFO), 178, 186,
190

last-in-system, first-out (LISFO), 178
Lu-Kumar network, 221, 222

deterministic, 222
random, 223

Lusin space, 292

M/M/1 queue, 171, 172, 187
Martin boundary, 230
maximal irreducibility measure, 253
mean

routing matrix, 176, 267
service time, 176, 267
transition matrix, 176, 267

method of stages, 190, 202

node, 186, 187
nominal load, 179
non-idling, 176
nonpreemptive, 177
nonuniqueness (of fluid model solu-

tions), 272
norm, 247, 257

orbit, 332

petite, 254, 303
phase-type distributions, 205
ϕ-irreducible, 252
piecewise-deterministic Markov pro-

cess (PDP), 250, 291
policy, 171, 177
preemptive, 177

resume, 177
primitive triple, 266
processor sharing (PS), 177, 186, 190,

316
push start, 319–321, 333

set, 321

quasi-reversible, 191, 207, 209, 210
queueing network, 173, 178

closed, 177
equations, 180, 266

auxiliary, 268
basic, 268

multiclass, 176, 177
open, 177
process, 267
single class, 176, 177, 303

R-chain, 253, 292
reentrant line, 173
refined class, 202
regular

point, 270, 303
set, 296

residual
interarrival times, 247
service times, 247

resolvent, 253, 294
reversed process, 192
reversible, 192
round robin, 177
routing process, 266
Rybko-Stolyar network, 221, 226

service rate, 176, 267
simple queue, 172
small, 254

uniformly, 256, 261, 303
stability, 171, 179, 183, 271, 276, 280

asymptotic, 289
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global, 224, 318
global rate, 324, 334
global weak, 324
nonconvex region, 239
nonmonotone region, 240, 242,

324
pathwise, 324
rate, 324
weak, 324

stage, 202
state space

countable, 171, 179, 180
uncountable, 178, 206

static buffer priority (SBP), 177, 221,
226, 249, 268, 307, 327

stationary, 192
distribution, 180, 192
measure, 172, 252, 297

strictly separating, 321
strong Markov, 251
subcritical, 180, 270
supercritical, 180, 326
symmetric node, 201

total arrival rate, 179, 267
traffic

equations, 179
intensity, 171, 179, 267

unstable, see instability

virtual station, 319, 321, 333

work, 178
conserving, 176

workload
immediate, 224, 267

A(t), 181
(an, xn), 276
A, 176
α, 176, 267
(α,M, P ), 277
β(i, n), 196, 201
C, 267
C(j), 173
D(t), 181

δ(i, n), 196
E(t), 181, 266
(E(·), Γ (·), Φ(·)), 277
e, 180, 267
eℓ, 249
ηA, 252
Ft, 250
F0

t , 250
G, 276
Γ , 266
γk, 249, 266
h(x), 311
H(t), 311
λ, 179, 267
M , 176, 267
ms, 188
mk, 176, 267
M, 276
µk, 176
nx, 198
P , 176, 267
P t, 251
Pµ, 250
Φ, 181, 266
φ(n), 196, 201
φk, 249, 266
π, 172
Q, 177, 267
q(x), 192
q(x, y), 192, 198, 204, 212
q̂(x), 195
q̂(x, y), 193, 195, 204, 210
ρ, 179, 267
S, 181, 191, 192, 211
(S,S ), 247
S0 , 188
Se, 190, 203
S∞, 206
s(i), 202
s(k), 173
si(x), 204, 209
T (t), 181
τA, 252
τA(δ), 254
u, 247, 276
v, 247, 276



M. Bramson/Stability of queueing networks 345

v(i), 202
W (t), 181, 267
|x|, 247
x(i), 202
X(t), 267, 269
X̄(t), 276

ξk, 249

ξk(i), 266

Y (t), 267

Z(t), 172, 181

z, 276
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