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Abstract

We extend existing theory on stability, namely how much changes in the training data influence the
estimated models, and generalization performance of deterministic learning algorithms to the case
of randomized algorithms. We give formal definitions of stability for randomized algorithms and
prove non-asymptotic bounds on the difference between the empirical and expected error as well
as the leave-one-out and expected error of such algorithms that depend on their random stability.
The setup we develop for this purpose can be also used for generally studying randomized learning
algorithms. We then use these general results to study the effects of bagging on the stability of
a learning method and to prove non-asymptotic bounds on the predictive performance of bagging
which have not been possible to prove with the existing theory of stability for deterministic learning
algorithms.1

Keywords: stability, randomized learning algorithms, sensitivity analysis, bagging, bootstrap
methods, generalization error, leave-one-out error.

1. Introduction

The stability of a learning algorithm, namely how changes to the training data influence the result of
the algorithm, has been used by many researchers to study the generalization performance of several
learning algorithms (Devroye and Wagner, 1979; Breiman, 1996b; Kearns and Ron, 1999; Bousquet
and Elisseeff, 2002; Kutin and Niyogi, 2002; Poggio et al., 2004). Despite certain difficulties with
theories about stability, such as the lack so far of tight bounds as well as lower bounds (Bousquet
and Elisseeff, 2002), the study of learning methods using notions of stabilityis promising although
it is still at its infancy. For example, recently Poggio et al. (2004) have shown conditions for the
generalization of learning methods in terms of a stability notion that have possibleimplications for
new insights on diverse learning problems.

1. This work was done while A.E. was at the Max Planck Institute for Biological Cybernetics in Tuebingen, Germany.
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The existing theory, however, is developed only for deterministic learning algorithms (Bous-
quet and Elisseeff, 2002), therefore it cannot be used to study a large number of algorithms which
are randomized, such as bagging (Breiman, 1996a), neural networks, or certain Bayesian learning
methods. Thegoal of this paperis to improve upon this analysis. To this end, we present a nat-
ural generalization of the existing theory to the case of randomized algorithms, thereby extending
the results of (Bousquet and Elisseeff, 2002), and formally prove bounds on the performance of
randomized learning algorithms using notions of randomized stability that we define. To prove
our results we have also extended the results of (Bousquet and Elisseeff 2002) that hold only for
symmetric learning algorithms to the case of asymmetric ones. We then prove, as an application
of our results, new non-asymptotic bounds for bagging (Breiman, 1996a), a randomized learning
method. Finally, we note that our work also provides an approach that canbe used for extending
other studies, for example other results on stability, done for deterministic algorithms to the case of
randomized learning algorithms.

The paper is organized as follows. For completeness and comparison we first replicate in Sec-
tion 2 the key notions of stability and the generalization bounds we extend derived for deterministic
methods in the literature. We then extend these notions — Definitions 7, 10, and 13 — and gen-
eralization bounds — Theorems 9, 12 and 15 — to the case of randomized methods in Section 3.
Finally, in Section 4 we present an analysis of bagging within the stability theoryframework.

2. Stability and Generalization for Deterministic Algorit hms

In this section we briefly review the results in (Devroye and Wagner 1979;Kearns and Ron, 1999;
Bousquet and Elisseeff, 2002) that show that stability is linked to generalization for deterministic
learning methods. We assume here that all algorithms are symmetric, that is, theiroutcome does not
change when the elements in the training set are permuted. In the next section, we will extend sta-
bility concepts to the case of randomized learning methods and remove this symmetry assumption.

2.1 Basic Notation

In the following, calligraphic font is used for sets and capital letters referto numbers unless explic-
itly defined. LetX be a set,Y a subset of a Hilbert space and defineZ = X ×Y . X is identified
as the input space andY as the output space. Given a learning algorithmA we definefD to be the
solution of the algorithm when the training setD = {zi = (xi ,yi), i = 1, . . . ,m} ∈ Zm drawn i.i.d.
from a distributionP is used. AlgorithmA is thus interpreted as a function fromZm to (Y )X , the set
of all functions fromX to Y , and we use the notationA(D) = fD . We denote byD\i the training
setD \{zi} obtained by removing point(xi ,yi). More formally, pointi is replaced by the empty set
which we assume the learning method treats as having this point simply removed – we will need
this for our analysis below. We denote byD i the training set obtained by changing point(xi ,yi)
from D into z′ = (x′,y′), that is the set(D \{zi})∪z′.

For any pointz = (x,y) and function f (real valued or binary) we denote by`( f ,z) the loss
(error) whenf (x) is predicted instead ofy (` is the loss function). We define the expected error off
also known asgeneralization errorby the equation

Rgen[ f ] = Ez[`( f ,z)] .
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We also define theempirical erroras

Remp[ f ] =
1
m

m

∑
i=1

`( f ,zi)

and theleave–one–out erroras

Rloo [ f ] =
1
m

m

∑
i=1

`( fD\i ,zi).

Note that the last two errors are functions ofD. For the case of classification we useθ(−y f(x))
as the loss functioǹ, whereθ(·) is the Heavyside function. The analysis we will do concerns
classification as well as regression. For the latter we will mainly focus on the case that̀ is a
Lipschitzian loss function, that is, we assume that there exists a positive constantB such that, for
every f1, f2 ∈ (Y )X andz= (x,y) ∈ Z, there holds the inequality|`( f1,z)− `( f2,z)| ≤ B|y1− y2|.
Note that the absolute value satisfies this condition withB = 1, whereas the square loss satisfies the
condition provided the setY is compact.

2.2 Hypothesis Stability

The first notion of stability we consider has been stated in (Bousquet and Elisseeff, 2002) and is
inspired by the work of Devroye and Wagner (1979). It is very close towhat Kearns and Ron
(1999) defined as hypothesis stability:

Definition 1 (Hypothesis Stability) An algorithm A hashypothesis stabilityβm w.r.t. the loss func-
tion ` if the following holds:

∀i ∈ {1, . . . ,m}, ED,z[|`( fD ,z)− `( fD\i ,z)|] ≤ βm.

It can be shown (Bousquet and Elisseeff, 2002) that when an algorithm has hypothesis stabilityβm

and forall training setsD we have, for everyz∈ Z, that 0≤ `( fD ,z) ≤ M, M being a positive
constant, then the following relation between the leave-one-out error andthe expected error holds:

Theorem 2 (Hypothesis stability leave-one-out error bound)Let fD be the outcome of a learn-
ing algorithm with hypothesis stabilityβm (w.r.t. a loss functioǹ such that0≤ `( f ,z) ≤ M). Then
with probability1−δ over the random draw of the training setD,

Rgen[ fD ] ≤ R̀ oo[ fD ]+

√

δ−1M2 +6Mmβm

2m
. (1)

The proof consists of first bounding the second order moment of (Rgen[ fD ]− R̀ oo[ fD ]) and then
applying Chebychev’s inequality. A similar bound on(Rgen[ fD ]− R̀ oo[ fD ])2 holds. Theorem 2
holds for any loss functions as long as stability can be proved w.r.t. this loss function.
In the following, we will say that an algorithm is stable when its stability scales like 1/m, in which
case the difference between the generalization and leave-one-out error is of the orderO(1/

√
m).

Many algorithms are stable according to this definition, see (Devroye et al., 1996; Bousquet and
Elisseeff, 2002) for a discussion. For example, with respect to the classification loss,k-Nearest
Neighbor (k−NN) is k/mstable. This is discussed in the next example.
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Example 1 (Hypothesis Stability ofk-Nearest Neighbor (k-NN)) With respect to the classifica-
tion loss, k-NN is at leastkm stable. This can be seen via symmetrization arguments. For the sake of
simplicity we give here the proof for the1-NN only. Let vi be the neighborhood of zi such that the
closest point in the training set to any point of vi is zi . The1−NN algorithm computes its output via
the following equation (we assume here that the probability that xi appears twice in the training set
is negligible):

fD(x) =
m

∑
i=1

yi1x∈vi (x)

where1S is the indicator function of set S. The difference between the losses`( fD ,z) and`( fD\i ,z)
is then defined by the set vi . Here we assume that` is the classification loss. We then have that

Ez[|`( fDm,z)− `( fD\i ,z)|] ≤ P(vi).

Note that vi depends onD. Now averaging overD we need to computeED [P(vi)] which is the same
for all i because the zi are drawn i.i.d. from the same distribution. But, we have,

1 = ED,z[| fD(x)|] = ED,z

[∣
∣
∣
∣
∣

m

∑
i=1

yi1x∈vi (x)

∣
∣
∣
∣
∣

]

= ED,z

[
m

∑
i=1

1x∈vi (x)

]

.

The last equality comes from the fact that for fixedD and z, only one1x∈vi (x) is non-zero. We also
have that

1 = ED,z

[
m

∑
i=1

1x∈vi (x)

]

= mED [P(vi)] .

Consequently,ED [P(vi)] =
1
m and the1-NN has hypothesis stability bounded above by1/m.

A bound similar to Equation (1) can be derived for the empirical error whena slightly different
notion of stability is used (Bousquet and Elisseeff, 2002).2

Definition 3 (Pointwise hypothesis stability) An algorithm A haspointwise hypothesis stability
βm w.r.t. the loss functioǹ if the following holds :

∀i ∈ {1, . . . ,m}, ED,z
[∣
∣`( fD ,zi)− `( fD\i∪z,zi)

∣
∣
]
≤ βm.

Note that we adopted the same notationβm for all notions of stability since it should always be
clear from the context which is the referred notion. As for the case of hypothesis stability and leave-
one-out error above, it can also be shown (Bousquet and Elisseeff, 2002) that when an algorithm has
pointwise hypothesis stabilityβm and if for all training setsD, 0≤ `( f ,z) ≤ M, then the following
relation between the empirical error and the expected error holds:

Theorem 4 (Pointwise hypothesis stability empirical error bound) Let fD be the outcome of a
learning algorithm with pointwise hypothesis stabilityβm (w.r.t. a loss functioǹ such that0 ≤
`( fD ,z) ≤ M). Then with probability1−δ over the random draw of the training setD,

Rgen[ fD ] ≤ Remp[ fD ]+

√

δ−1M2 +12Mmβm

2m
. (2)

2. We slightly changed the definition to correct one mistake that has been pointed out by Poggio et al., (2004): the
difference of losses is taken here between two outcomes trained on datasets of equal sizes.
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2.3 Uniform Stability

The application of bound (1) to different algorithmsf1, . . . , fQ with stabilitiesβq
m, q = 1, . . . ,Q, is

usually done by using the union bound (Vapnik, 1998). Applying Theorem 2 Q times, we get with
probability 1−δ,

∀q∈ {1, . . . ,Q}, Rgen[ fq] ≤ R̀ oo[ fq]+

√

δ−1Q
M2 +6Mmβq

m

2m
. (3)

In such situations, we would like to have a dependence in log(Q) so that we can have large values of
Q without increasing the bound too much. To this end, we need a stronger notion of stability called
uniform stability (Bousquet and Elisseeff, 2002).

Definition 5 (Uniform Stability) An algorithm A hasuniform stabilityβm w.r.t. the loss functioǹ
if the following holds

∀D ∈ Zm, ∀i ∈ {1, . . . ,m}, ‖`( fD , .)− `( fD\i , .)‖∞ ≤ βm. (4)

It is easily seen that the uniform stability is an upper bound on hypothesis and pointwise hy-
pothesis stability (Bousquet and Elisseeff, 2002). Uniform stability can beused in the context of
regression to get bounds as follows (Bousquet and Elisseeff, 2002):

Theorem 6 Let fD be the outcome of an algorithm with uniform stabilityβm w.r.t. a loss functioǹ
such that0≤ `( fD ,z) ≤ M, for all z∈ Z and all setsD. Then, for any m≥ 1, and anyδ ∈ (0,1),
each of the following bounds holds with probability1−δ over the random draw of the training set
D,

Rgen[ fD ] ≤ Remp[ fD ]+2βm+(4mβm+M)

√

log(1/δ)

2m
, (5)

and

Rgen[ fD ] ≤ R̀ oo[ fD ]+βm+(4mβm+M)

√

log(1/δ)

2m
. (6)

The dependence onδ is
√

log(1/δ) which is better than the bounds given in terms of hypothesis
and pointwise hypothesis stability.

It is important to note that these bounds hold only for regression. Uniformstability can also be
used for classification with margin classifiers to get similar bounds, but we donot pursue this here
for simplicity. In the next section, for simplicity we also consider random uniform stability only for
regression. Classification can be treated with appropriate changes like in (Bousquet and Elisseeff,
2002).

Example 2 (Uniform Stability of regularization methods) Regularization-based learning algo-
rithms such as Regularization Networks (RN’s) (Poggio and Girosi, 1990) and Support Vector Ma-
chines (SVM’s), see, for example, (Vapnik, 1998), are obtained by minimizing the functional

m

∑
i=1

`( f ,zi)+λ‖ f‖2
K
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whereλ > 0 is a regularization parameter and‖ f‖K is the norm of f in a reproducing kernel Hilbert
space associated to a symmetric and positive definite kernel K: X×X → R. A typical example is
the Gaussian, K(x, t) = exp(−‖x− t‖2/2σ2), whereσ is a parameter controlling the width of the
kernel. Depending on the loss function used, we obtain different learning methods. RN’s use the
square loss while SVM’s regression uses the loss`( f ,z) = | f (x)−y|ε, where|ξ|ε = |ξ|−ε if |ξ|> ε,
and zero otherwise.3

It can be shown (Bousquet and Elisseeff, 2002) that for Lipschitz lossfunctions, the uniform
stability of these regularization methods scales as1/λ. This results is in agreement with the fact
that for smallλ, the solution tends to fit perfectly the data and Theorem 6 does not give an interesting
bound. On the contrary, whenλ is large the solution is more stable and Theorem 6 gives a tight
bound. Hence, there is a trade-off between stability and deviation betweengeneralization and
empirical error that is illustrated here by the role of the regularization parameterλ.

Finally, we note that the notion of uniform stability may appear a little restrictive since the
inequality in Equation (4) has to hold over all training setsD. A weaker notion of stability has been
introduced by Kutin and Niyogi (2002) with related exponential bounds. We do not discuss this
issue here for simplicity, and we conjecture that the analysis we do below canbe generally adapted
for other notions of stability.

3. Stability and Generalization for Randomized Algorithms

The results summarized in the previous section concern only deterministic learning algorithms. For
example they cannot be applied to certain neural networks as well as bagging methods. In this
section we generalize the theory to include randomized learning algorithms.

3.1 Informal Reasoning

Let A be a randomized learning algorithm, that is a function fromZm×R onto (Y )X whereR is
a space containing elementsr that model the randomization of the algorithm and is endowed with
a probability measurePr . For notational convenience, we will use the shorthandfD,r to denote the
outcome of the algorithmA applied on a training setD with a random parameterr . We should
distinguish between two types of randomness that are exemplified by the following examples.

Example 3 (Bootstrapping once)Let R = {1, . . . ,m}p, p≤ m, and definePr , for r ∈ R , to be a
multinomial distribution with m parameters(1/m, . . . ,1/m). This random process models the sub-
sampling with replacement of p elements from a set of m distinct elements. Analgorithm A that
takes as input a training setD, performs a sub-sampling with replacement and runs a method such
as a decision tree on the sub-sampled training set is typically modeled as a randomized algorithm
taking as inputs a training set and an elementr ∈ R just described.

In this first example we see that the randomness depends onm, which is different from what the
second example describes.

3. Note that in the statistical learning theory literature (Vapnik, 1998), SVM are usually presented in term of mathe-
matical programming problems and the parameterλ is replaced byC = 1/(2λ) which now appears in front of the
empirical error.
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Example 4 (Initialization weights) Let R = [0,1]k and definePr to be the uniform distribution
overR . Such a random process appear in the initialization procedure of NeuralNetworks when the
initial weights are chosen randomly. In the latter case, a multi-layer perceptron with k weights can
be understood as an algorithm A taking a training set and a random vectorr ∈ R as inputs.

We consider the following issues for the definitions of stability for randomizedalgorithms be-
low.

• We give stability definitions that reduce to deterministic stability concepts when there is no
randomness, that is,R is reduced to one element with probability 1.

• We assume that the randomness of an algorithm (randomness ofr ) is independent of the
training setD, althoughr may depend on the size of this set,m. There are two main reasons
for this: first, it simplifies the calculations; second, the randomness ofr has generally nothing
to do with the randomness of the training setD. Most of the time our knowledge about the
distribution overr is known perfectly, like in the examples above, and we would like to take
advantage of that. Adding some dependencies betweenr andD reduces this knowledge since
nothing is assumed about the distribution overZ from whichD is drawn.

• We also consider the general case that the randomization parameterr ∈ R T is decomposed
as a vector of independent random parametersr = (r1, . . . , rT) where eachr t is drawn from
the distributionP

t
r t

. For example, this model can be used to model the randomization of
bagging (Breiman, 1996a), where eachr t corresponds to one random subsampling from the
data, and theT subsamples are all drawn independently. To summarize, we will make use of
the following assumption:

Assumption 1: We assume thatr = (r1, . . . , rT) wherer t , t = 1, . . . ,T are random elements
drawn independently from the same distribution and writer ∈ R T to indicate the product
nature ofr .

• Finally we assume that we can re-use a draw ofr for different training set sizes, for example
for m andm−1. We need this assumption for the definitions of stability below to be well
defined as well as for the leave-one-out error definition we use for randomized methods.

To develop the last issue further, let us consider how to compute a leave-one-out error estimate
when the algorithm depends on a random vectorr that changes with the number of training exam-
ples. One way is to sample a new random vectorr (which in this case will concern onlym− 1
training points) for each fold/iteration. This is done, for example, by Kearns and Ron (1999) when
they introduce the notion of the random error stability. However, this introduces more instabilities
to the algorithms whose behavior can be different not only because of changes in the training set but
also because of changes in the random partr . A more stable leave-one-out procedure for a random-
ized algorithm would be to fixr and to apply the leave-one-out method only on the sampling of the
training set – a deterministic leave-one-out error (Evgeniou et al., 2004). Therefore for each leave-
one-out iteration, when we leave one point out — which is replaced, as wediscussed in Section 2.1,
with an empty set which we assume the learning method does not use — we use thesamer for the
remainingm−1 points. For instance, in Example 3.1 we would use the same bootstrap samples
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that we used when having allm points, with the point left out replaced by the empty set that is not
used for training, for each leave-one-out iteration. In that case, we don’t need to re-sampler and
the leave-one-out estimate concerns an algorithm that is closer to what we consider onmpoints.

Therefore, in what follows, keeping in mind Example 3, we assume the following:

Assumption 2: The samer can be applied to fD and fD\i whereD\i is the setD where point i
is replaced by the empty set. We also consider the deterministic leave-one-out error computed as
described above.

Note that this assumption is not restrictive about the kind of learning methods we can consider. For
example both in Example 3.1 and 3.2 the samer (i.e. subsamples or initialization of neural network
weights) can be used form andm−1 training points.

3.2 Random Hypothesis Stability

The first definition we consider is inspired by the hypothesis stability for deterministic algorithms.

Definition 7 (Random Hypothesis Stability) A randomized algorithm A hasrandom hypothesis
stability βm w.r.t. the loss functioǹ if the following holds:

∀i ∈ {1, . . . ,m},ED,z,r

[∣
∣
∣`( fD,r ,z)− `( fD\i ,r ,z)

∣
∣
∣

]

≤ βm. (7)

Note that the value in the left hand side (l.h.s.) of Equation (7) can vary for different indexes
i. If r is fixed then the random hypothesis stability is exactly the same as the hypothesisstability
except that the resulting algorithm need not be symmetric anymore: if we samplethe training data
using a fixedr , permuting two data points might lead to different samplings and hence to a different
outcome. This means that we cannot apply the results for the case of deterministic algorithms and
we have to consider other bounds on the variance of the difference between the generalization and
empirical (or leave-one-out) errors. We prove in the appendix the following lemma.

Lemma 8 For any (non-symmetric) learning algorithm A and loss function` such that0≤ `( f ,z)≤
M we have for the leave-one-out error:

ED

[
(Rgen− R̀ oo)

2]≤ 2M2

m
+

12M
m

m

∑
i=1

ED,z[|`( fD ,z)− `( fD\i ,z)|] . (8)

Using Chebychev’s inequality, this lemma leads to the inequality

PD

(
Rgen[ fD,r ]− R̀ oo[ fD,r ] ≥ ε | r

)
≤ 2M2

mε2 +
12M ∑m

i=1ED,z

[∣
∣
∣`( fD,r ,z)− `( fD\i ,r ,z)

∣
∣
∣ , r
]

mε2 , (9)

where we use the notationE[X,Y] for the expectation ofX conditioned onY, andP[.|r ] for the condi-
tional probability. By integrating Equation (9) with respect tor and using the propertyEY [EX[g(X,Y)|Y]] =
EX,Y[g(X,Y)] we derive the following theorem about the generalization and leave-one-out errors of
randomized learning methods:
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Theorem 9 Let fD,r be the outcome of a randomized algorithm with random hypothesis stability
βm w.r.t. a loss functioǹ such that0≤ `( f ,z) ≤ M, for all y ∈ Y , r ∈ R and all setsD. Then with
probability1−δ with respect to the random draw of theD andr ,

Rgen( fD,r ) ≤ R̀ oo[ fD,r ]+

√

δ−12M2 +12Mmβm

m
. (10)

Notice that in the case that we make Assumption 1 nothing changes since the integration of (9)
w.r.t. r does not depend on the decomposition nature ofr made in Assumption 1.

As in the deterministic case, it is possible to define a different notion of stability toderive bounds
on the deviation between the empirical error and the generalization error ofrandomized algorithms:

Definition 10 (Random Pointwise Hypothesis Stability)A randomized algorithm A hasrandom
pointwise hypothesis stabilityβm w.r.t. the loss functioǹ if the following holds:

∀i ∈ {1, . . . ,m},EDm,r ,z

∣
∣
∣`( fD,r ,zi)− `( fD\i∪z,r ,zi)

∣
∣
∣≤ βm. (11)

Using the following lemma proved in the appendix,

Lemma 11 For any (non-symmetric) learning algorithm A and loss function` such that0≤ `( f ,z)≤
M we have for the empirical error,

ED

[
(Rgen−Remp)

2]≤ 2M2

m
+

12M
m

m

∑
i=1

ED,z
[
|`( fD ,zi)− `( fD\i∪z,zi)|

]
. (12)

we can derive as before the theorem:

Theorem 12 Let fD,r be the outcome of a random algorithm with random pointwise hypothesis
stability βm w.r.t. a loss functioǹ such that0≤ `( f ,z) ≤ M, for all y ∈ Y , r ∈ R and all setsD.
Then with probability1−δ with respect to the random draw of theD andr ,

Rgen( fD,r ) ≤ Remp[ fD,r ]+

√

δ−12M2 +12Mmβm

m
. (13)

We note that both for Theorems 9 and 12 (Lemmas 8 and 11) one can furtherimprove the
constants of the bounds – as is typically the case with bounds in the literature.

The parallel with the deterministic case is striking. However when we considera random space
R reduced to only one element, then the bounds we obtain here are worse since we assume non-
symmetric learning algorithms.
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3.3 Random Uniform Stability

The uniform stability definition (Definition 5) for deterministic algorithms can be extended as fol-
lows:

Definition 13 (Uniform Stability of Randomized Algorithms) We say that a randomized learn-
ing algorithm has uniform stabilityβm w.r.t. the loss functioǹ if, for every i= 1, . . . ,m

sup
D,z

∣
∣
∣Er
[
`( fD,r ,z)

]
−Er

[

`( fD\i ,r ,z)
]∣
∣
∣≤ βm. (14)

Note that this definition is consistent with Definition 5 which holds for deterministic symmetric
learning algorithms.

To link uniform stability to generalization, the following result by McDiarmid (1989), see also
(Devroye et al., 1996), is central.

Theorem 14 (Bounded Difference Inequality)Letr = (r1, . . . , rT)∈R be T independent random
variables (r t can be vectors, as in Assumption 1, or scalars) drawn from the same probability
distributionPr . Assume that the function G: R T → R satisfies

sup
r1,...,rT ,r ′t

∣
∣G(r1, . . . , rT)−G(r1, . . . , r t−1, r ′t , r t+1, . . . , rT)

∣
∣≤ ct , t = 1, . . . ,T. (15)

where ct is a nonnegative function of t. Then, for everyε > 0

P [G(r1, . . . , rT)−Er [G(r1, . . . , rT)] ≥ ε] ≤ exp

{

−2ε2/
T

∑
t=1

c2
t

}

. (16)

For the next theorem we replace theG of Theorem 14 with̀ ( fD,r ,z) and require that, for every
D ∈ Zm andz∈ Z, `( fD,r ,z) satisfies the inequality in Equation (15). This is a mild assumption but
the bounds below will be interesting only if, forT → ∞, ct goes to zero at least as 1/

√
T. We useρ

as the supremum of thects of Theorem 14.

Theorem 15 Let fD,r be the outcome of a randomized learning algorithm satisfying Assumptions 1
and 2 with uniform stabilityβm w.r.t. the loss functioǹ. Letρ be such that for all t

sup
r1,...,rT ,r ′t

sup
z

∣
∣`( fD,(r1,...,rT),z)− `( fD,(r1,...,r t−1,r ′t ,r t+1,...,rT),z)

∣
∣≤ ρ,

as in Equation (15) for G being̀( fD,r ,z) and r = (r1, . . . , rT). The following bound holds with
probability at least1−δ with respect to the random draw of theD andr ,

Rgen( fD,r ) ≤ Remp( fD,r )+2βm+

(
M +4mβm√

2m
+
√

2Tρ
)

(
√

log2/δ), (17)

and,

Rgen( fD,r ) ≤ R̀ oo( fD,r )+βm+

(
M +2mβm−1 +2mβm√

2m
+
√

2Tρ
)

(
√

log(2/δ)). (18)
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Furthermore, assuming thatβm−1, the random uniform stability for training sets of size m−1, is
greater thanβm, we can simplify Equation (18) to:

Rgen( fD,r ) ≤ R̀ oo( fD,r )+βm+

(
M +4mβm−1√

2m
+
√

2Tρ
)

(
√

log(2/δ)). (19)

Notice that the assumption for the simplification we make in the theorem thatβm−1 is greater
thanβm is natural: when points are added to the training set, the outcome of a learning algorithm
is usually more stable. Moreover, bounds onβm can be used here so that the conditionβm−1 ≥ βm

can be replaced by a condition on these bounds: we would require that thebounds onβm are non-
increasing inm.

We note thatρ may depend both on the number of random variablesT and the number of
training datam. In the bagging example below we estimate a bound onρ that depends only onT,
the number of subsamples we do for the bagging process – it may or may not be possible to show
that ρ depends onm, too, but this is an open question. We do not know of an example whereρ
also depends onm or, alternatively, of a case where it can be shown that it is not possible tohaveρ
depend onm. The latter case would imply that for fixedT the empirical (leave-one-out) error does
not converge to the expected error asm increases. This is, however, an open question and potentially
a weakness for the framework we develop here.

Finally note that, as in the deterministic case discussed in Section 2, results similar tothose in
Theorem 15 can be given for classification following the same line as in (Bousquet and Elisseeff,
2002).

4. Stability of Bagging and Subbagging

In this section we discuss an application of the results derived above to bagging (Breiman, 1996a)
and subbagging, see, for example, (Andonova et al., 2002), two randomized algorithms which work
by averaging the solutions of a learning algorithm trained a number of times on random subsets of
the training set. We will analyze these methods within the stability framework presented above. To
this end, we need to study how bagging and subbagging “affect” the stabilityof the base (underlying)
learning algorithm. First we present more formally what we mean by bagging.

4.1 Bagging

Bagging consists of training the same learning algorithm on a numberT of different bootstrap sets
of a training setD and by averaging the obtained solutions. We denote these bootstrap sets byD(r t)
for t = 1, . . . ,T, where ther t ∈ R = {1, . . . ,m}m are instances of a random variable corresponding
to samplingwith replacement ofmelements from the training setD (recall the notation in Example
3). Such random variables have a multinomial distribution with parameters( 1

m, . . . , 1
m). The overall

bagging model can thus be written as:

FD,r =
1
T

T

∑
t=1

fD(r t). (20)
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Here we assume that the base learning method (fD ) treats multiple copies of a training point
(for example when many copies of the same point are sampled) as one point.4 Extending the results
below to the case where multiple copies of a point are treated as such is an open question.

The reader should also keep in mind that the base learning algorithm may be itself randomized
with random parameters. When trained on thet−th bootstrap set,D(r t), this algorithm will output
the solutionfD(r t),st

. However, to simplify the notation, we suppress the symbolst in our discussion
below.

In what follows, we compute an upper bound on the random hypothesis stability for bagging.
For regression, we have then the following proposition:

Proposition 4.1 (Random hypothesis stability of bagging for regression) Assume that the loss̀
is B−lipschitzian w.r.t. its first variable. Let FD,r , r ∈ R T , be the outcome of a bagging algorithm
whose base machine ( fD ) has (pointwise) hypothesis stabilityγm w.r.t. the`1 loss function. Then the
random (pointwise) hypothesis stabilityβm of FD,r with respect tò is bounded by

βm ≤ B
m

∑
k=1

kγk

m
Pr [d(r) = k] ,

where d(r), r ∈ R , is the number of distinct sampled points in one bootstrap iteration.

Proof
We first focus on hypothesis stability. Let us assume first thatD is fixed andz too. We would

like to bound:

I(D,z) = Er1,...,rT

[∣
∣
∣
∣
∣
`

(

1
T

T

∑
t=1

fD(r t),z

)

− `

(

1
T

T

∑
t=1

fD\i(r t)
,z

)∣
∣
∣
∣
∣

]

wherer1, . . . , rT are i.i.d. random variables modeling the random sampling of bagging and having
the same distribution asr . Since` is B−lipschitzian, and ther t are i.i.d.,I(D,z) can be bounded as:

I(D,z) ≤ B
T

Er1,...,rT

[∣
∣
∣
∣
∣

T

∑
t=1

(

fD(r t)(x)− fD\i(r t)
(x)
)
∣
∣
∣
∣
∣

]

≤ B
T

T

∑
t=1

Er t

[∣
∣
∣ fD(r t)(x)− fD\i(r t)

(x)
∣
∣
∣

]

= B Er

[∣
∣
∣ fD(r)(x)− fD\i(r)(x)

∣
∣
∣

]

.

To simplify the notation we denote by∆(D(r),x) the difference betweenfD\i(r)(x) and fD(r)(x).
We have that

Er [|∆(D(r),x)|] = Er [|∆(D(r),x)|(1i∈r +1i /∈r )]

= Er [|∆(D(r),x)|1i∈r ]+Er [|∆(D(r),x)|1i /∈r ] .

Note that the second part of the last line is equal to zero because wheni is not inr , pointzi does not
belong toD(r) and, thus,D(r) = D\i(r). We conclude that

I(D,z) ≤ BEr [|∆(D(r),x)|1i∈r ] .

4. This means that if for example the underlying learning algorithm is a neural network, this algorithm is modified by a
preprocessing step so that the training set consists only of distinct data points.
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We now take the average w.r.t.D andz:

ED,z[I(D,z)] ≤ BEr ,D,x [|∆(D(r),x)|1i∈r ] =

= BEr
[
ED,x [|∆(D(r),x)|]1i∈r

]
= BEr

[
γd(r)1i∈r

]
, (21)

where the last equality follows by noting thatED,x [|∆(D(r),x)|] is bounded by the hypothesis sta-
bility γd(r) of a training set of sized(r). We now note that when averaging w.r.t.r , the important
variable aboutr is the sized(r):

Er
[
γd(r)1i∈r

]
=

m

∑
k=1

Pr [d(r) = k]γkEr [1i∈r ;d(r) = k] .

Now note that, by symmetry,Er [1i∈r ;d(r) = k] = k/m. This concludes the proof for hypothesis
stability. The proof for pointwise stability is exactly the same except that in Equation (21) there is
no expectation w.r.t.z andz is replaced byzi .

The bounds we just proved depend on the quantitiesPr [d(r) = k], where, we recall thatd(r),
r ∈ R , is the number of distinct sampled points in one bootstrap iteration. It can be shown, for
example by applying Theorem 14, that the random variabled(r) is sharply concentrated around its
mode which is fork = (1− 1

e)m≈ 0.632m. For that reason, in what follows we will assume that the
previous bounds can be approximately rewritten as:

βm ≤ .632Bγ.632m.

For example ifB = 1 andγm scales appropriately withm the bounds on the random (pointwise)
hypothesis stability of the bagging predictor are better than those on the (pointwise) hypothesis
stability of a single predictor trained on the whole training set. Notice also that.632 is the probability
that the bootstrapped set will contain a specific (any) point, also used to justify the .632 bootstrap
error estimates (Efron and Tibshirani, 1997).

Similar results can be shown for the random (pointwise) hypothesis stability for classification.
In particular:

Proposition 4.2 (Random hypothesis stability of bagging for classification) Let FD,r be the out-
come of a bagging algorithm whose base machine has (pointwise) hypothesis stabilityγm w.r.t. the
classification loss function. Then, the (pointwise) random hypothesis stabilityβm of FD,r w.r.t. the
`1 loss function is bounded by

βm ≤ 2
m

∑
k=1

kγk

m
Pr [d(r) = k] .

Proof The proof is the same as in the above proposition except that the loss appearing therein is the
`1 loss and, so,B = 1. The functionsf (t) being{+1,−1} valued, the term:

ED,z[| fD(x)− fD\i (x)|]

is equal to the term
2ED,z[θ(−y fD(x))−θ(−y fD\i(x))] .
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So that stability w.r.t. thè1 loss function can be replaced by stability w.r.t. the classification loss,
and the proof can be transposed directly.

Example 5 (k-NN) As previously seen, k-NN has hypothesis stability equal tok
m such that bagging

k-NN has stability with respect to classification loss bounded by

2
m

∑
j=1

jβ j

m
Pr [d(r) = j] = 2

m

∑
j=1

j k
j

m
Pr [d(r) = j] = 2

k
m

m

∑
j=1

Pr [d(r) = j] = 2
k
m

So bagging does not improve stability, which is also experimentally verified by Breiman (1996a).

The next proposition establishes the link between the uniform stability of bagging and that of
the base learning algorithm for regression. As before, classification can be treated similarly, see
(Bousquet and Elisseeff, 2002).

Proposition 4.3 (Random uniform stability of bagging for regression)Assume that the loss̀is
B-lipschitzian with respect to its first variable. Let FD,r be the outcome of a bagging algorithm
whose base machine has uniform stabilityγm w.r.t. the`1 loss function. Then the random uniform
stability βm of FD,r with respect tò is bounded by

βm ≤ B
m

∑
k=1

kγk

m
Pr [d(r) = k] . (22)

Proof The random uniform stability of bagging is given by

βm = sup
D,z

∣
∣
∣
∣
∣
Er1,...,r t

[

`

(

1
T

T

∑
t=1

fD(r t),z

)

− `

(

1
T

T

∑
t=1

fD\i(r t)
,z

)]∣
∣
∣
∣
∣
.

This can be bound by taking the absolute valued inside the expectation. Then, following the same
lines as in the proof of Proposition 4.1 we have:

βm ≤ Bsup
D,x

{Er [∆(D(r),x)1i∈r ]}

where, we recall,∆(D(r),x) = | fD(r)− fD\i(r)| and function1i∈r is equal to one if pointi is sampled
during bootstrapping and zero otherwise. We then have

βm ≤ B Er

[

sup
D,x

{∆(D(r),x)}1i∈r

]

.

Now we observe that

sup
D,x

{∆(D(r),x)} = sup
D(r),x

{∆(D(r),x)} = γd(r).

Placing this bound in the previous one gives

βm ≤ Er
[
γd(r)1i∈r

]
.

The proof is now exactly the same as in the final part of Proposition 4.1.
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Example 6 (SVM regression)We have seen in Example 2 that the uniform stability of a SVM w.r.t.
the `1 loss is bounded by1/λ. The uniform stability of bagging SVM is then roughly bounded by
0.632/λ if the SVM is trained on all bootstrap sets with the sameλ. So that the bound on the random
uniform stability of a bagged SVM is better than the bound on the uniform stability fora single SVM
trained on the whole training set with the sameλ.

4.2 Subbagging

Subbagging is a variation of bagging where the setsD(r t), t = 1, . . . ,T are obtained by sampling
p≤ mpoints fromD withoutreplacement. Like in bagging, a base learning algorithm is trained on
each setD(r t) and the obtained solutionsfD(r t) are combined by average.

The proofs above can then be used here directly which gives the following upper bounds on
stability for subbagging:

Proposition 4.4 (Stability of subbagging for regression)Assume that the loss̀is
B-lipschitzian w.r.t. its first variable. Let FD,r be the outcome of a subbagging algorithm whose base
machine is symmetric and has uniform (resp. hypothesis or pointwise hypothesis) stabilityγm w.r.t.
the `1 loss function, and subbagging is done by sampling p points without replacement. Then the
random uniform (resp. hypothesis or pointwise hypothesis) stabilityβm of FD,r w.r.t. ` is bounded
by

βm ≤ Bγp
p
m

.

For classification, we have also the following proposition, again only for hypothesis or pointwise
hypothesis stability as in Section 2:

Proposition 4.5 ((P.) Hypothesis stability of subbagging for classification) Let FD,r be the out-
come of a subbagging algorithm whose base machine is symmetric and hashypothesis (resp. point-
wise hypothesis) stabilityγm with respect to classification loss, and subbagging is done by sampling
p points without replacement. Then the random hypothesis (resp. pointwise hypothesis) stabilityβm

of FD,r with respect to thè1 loss function is bounded by

βm ≤ 2γp
p
m

.

4.3 Bounds on the Performance of Subbagging

We can now prove bounds on the performance of bagging and subbagging. We present the following
theorems for subbagging but the same statements hold true for bagging where, in the bounds below,
pγp

m is replaced by∑m
k=1

kγk
m Pr [d(r) = k] which is roughly equal to 0.632γ0.632m whenm is sufficiently

large.

Theorem 16 Assume that the loss̀is B-lipschitzian w.r.t. its first variable. Let FD,r be the outcome
of a subbagging algorithm. Assume subbagging is done with T sets of size psubsampled without
replacement fromD and the base learning algorithm has hypothesis stabilityγm and pointwise
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hypothesis stabilityγ′m, both stabilities being w.r.t. thèloss. The following bounds hold separately
with probability at least1−δ

Rgen(FD,r ) ≤ R̀ oo(FD,r )+

√

δ−12M2 +12MBpγp

m
(23)

Rgen(FD,r ) ≤ Remp(FD,r )+

√

δ−1
2M2 +12MBpγ′p

m
. (24)

Proof The inequalities follow directly from plugging the result of Proposition 4.4 in Theorems 9
and 12 respectively.

Note that, as in Proposition 4.2, the same result holds for classification if we set B = 2 and
M = 1.

The following theorem holds for regression. The extension to the case ofclassification can be
done again as in (Bousquet and Elisseeff, 2002).

Theorem 17 Assume that the loss̀is B-lipschitzian w.r.t. its first variable. Let FD,r be the outcome
of a subbagging algorithm. Assume subbagging is done with T sets of size psubsampled without
replacement fromD and the base learning algorithm has uniform stabilityγm w.r.t. the` loss. The
following bounds hold separately with probability at least1−δ in the case of regression

Rgen(FD,r ) ≤ R̀ oo(FD,r )+
Bpγp

m
+

(

M +4B(m/m−1)pγp√
2m

+

√
2BM√

T

)
√

log(2/δ), (25)

and

Rgen(FD,r ) ≤ Remp(FD,r )+2
Bpγp

m
+

(

M +4Bpγp√
2m

+

√
2BM√

T

)
√

log2/δ. (26)

Proof We recall thatr = (r1, . . . , rT) and introducethe notation

r t = (r1, . . . , r t−1, r ′, r t+1, . . . , rT).

Note that

∣
∣`(FD,r ,z)− `(FD,r t ,z)

∣
∣=

∣
∣
∣
∣
∣
`

(
T

∑
s=1

fD(rs),z

)

− `

(
T

∑
s=1,s6=t

fD(rs) + fD(r ′),z

)∣
∣
∣
∣
∣
≤

≤ B
T

∣
∣ fD(r ′)

∣
∣≤ B

T
M

Thus, the constantρ in Theorem 15 is bounded as

ρ = sup
r ,r ′t

∣
∣`(FD,r ,z)− `(FD,r t ,z)

∣
∣≤ B

T
M.

The result then follows by using this theorem and Proposition 4.4.

We comment on some characteristics of the above bounds for subbagging:
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• In Theorem 16 if, asm→ ∞, pγp

m → 0 then the empirical or leave-one-out error converge to
the expected error. In particular, ifp = O(1) asm→ ∞ the empirical or leave-one-out error
converge to the expected one asO(1/

√
m). This convergence is in probability as opposed to

the convergence provided by Theorem 17 which is almost surely.

• Although we can derive bounds for bagging using our theory in section 3that were not possi-
ble to derive with the existing theory summarized in Section 2, our results for bagging do not
show that bagging actually improves performance. Indeed, for example comparing Theorems
17 and 6, it is not clear which bound is tighter as that depends on the constants (e.g.M, B, and
other constants) and the behavior ofγp as p increases. Developing tighter bounds or lower
bounds within our analysis for bagging is needed for this purpose. This isan open problem.

• Theorem 17 indicates that the effects of the number of subsamplesT is of the form 1√
T

, so
there is no need for a largeT, as also observed in practice (Breiman, 1996a). For example,
it is sufficient thatT scales as

√
m. This result improves upon the analysis of (Evgeniou et

al., 2004) where in order to have convergence of the empirical or leave-one-our error to the
expected error it was required thatT is infinite.

• The bounds provided by Theorem 17 imply that the empirical or leave-one-out error converge
to the expected error provided, asm→ ∞, that pγp√

m → 0 and T→ ∞. The latter condition is

not a problem in practice, for example one could chooseT = O(
√

m) to get convergence,
but it indicates a weak point of the uniform stability analysis as opposed to thehypothesis
stability analysis above. As we discussed above, it may be possible to show that parameter
ρ appearing in Theorem 15 depends onm for the case of bagging, or to show that this is not
possible in which case it will be a limitation of our approach. This is an open problem.

5. Conclusions

We presented a theory of random stability for randomized learning methods that we also applied to
study the effects of bagging on the stability of a learning method. This is an extension of the existing
theory about the stability and generalization performance of deterministic (symmetric) learning
methods (Bousquet and Elisseeff 2002). We note that the setup that we developed for this analysis,
such as the issues and assumptions that we considered in Section 3, may be also used for other
studies of randomized learning algorithms – such as extensions of other theories about stability from
deterministic to randomized learning methods. The bounds we proved show formally the relation
of the generalization error to the stability of the (random) algorithm. There is currently no lower
bound hence we cannot practically use the bounds when the number of datam is small (e.g., several
hundreds or thousands, which is the case in many current applications).This issue concerns both
the deterministic (Bousquet and Elisseeff, 2002) as well as the random case. Developing tighter
bounds as well as lower bounds in order to be able to use the theory developed here in practice is an
open question.
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Appendix A. Proofs of Lemmas 3.1 and 3.2

The proofs of Lemmas 3.1 and 3.2 follow directly the proof that has been given in (Bousquet and
Elisseeff, 2002). We reproduce the proof here with the changes that are required to handle non
symmetric algorithms. Before entering the core of the calculations, let us introduce some convenient
notation. We will denote by

`i j (z,z
′,z′′) = `( fDi j (z,z′),z

′′) (27)

the loss of an algorithmA trained on

Di, j(z,z
′) =

(
z1, . . . ,zi−1,z,zi+1, . . . ,zj−1,z

′,zj+1, . . . ,zm
)

which represents the training setD wherezi andzj have been replaced byz andz′. When i = j,
it is required thatz= z′. Note that the position ofzi andzj matters here since the algorithm is not
symmetric. Since we haveDi, j(zi ,zj) = Dk,l (zk,zl ) for any i, j andk, l in {1, . . . ,m}, we use the
notation`(z) to denotè i j (zi ,zj ,z) for all i and j in {1, . . . ,m}. According to these notations we
have

`i j ( /0,zj ,zi) = `( fD\i ,zi),

that is, we replacezi by the empty set when it is removed from the training set. Since`i j ( /0,zj ,zi)
does not depend onj, we will denote it bỳ i .

Different tricks such as decomposing sums, renaming and permuting variables will be used in
the following calculations. Since the proofs are very technical and mostly formal, we explain here
more precisely what these steps are. Decomposing sums is the main step of the calculations. The
idea is to transform a differencea−b into a suma−b= ∑k

i=1ai −ai+1 (a1 = a andak+1 = b) so that
the quantitiesai −ai+1 in the sum can be bounded by terms of the formED,z

[∣
∣`i j (z,zj ,zi)− `(zi)

∣
∣
]
,

the latter being directly related to the notion of stability we defined. Renaming variables corre-
sponds to simply changing the name of one variable into another one. Most oftime, this change
will be done betweenz, zi andzj using the fact thatz and thezi ’s are independently and identically
distributed so that averaging w.r.t.z is the same as w.r.t.zi . The last technique we use is symmetriza-
tion. The following simple lemma will allow us to perform some symmetrization without changing
significantly the outcome of a (stable) learning algorithm.

Lemma 18 Let A be a (non-symmetric) algorithm and let` be as defined in Equation (27), we have
∀(i, j) ∈ {1, . . . ,m}2

ED,z
[∣
∣`(z)− `i j (zj ,zi ,z)

∣
∣
]
≤ 3

2

(
ED,z,z′

[∣
∣`i j (z

′,zj ,z)− `(z)
∣
∣
]

+ED,z,z′
[∣
∣`i j (zi ,z

′,z)− `(z)
∣
∣
])

. (28)

Proof We have

ED,z
[∣
∣`(z)− `i j (zj ,zi ,z)

∣
∣
]
≤ ED,z,z′

[∣
∣`(z)− `i j (z

′,zj ,z)
∣
∣
]

+ED,z,z′
[∣
∣`i j (z

′,zj ,z)− `i j (z
′,zi ,z)

∣
∣
]
+ED,z,z′

[∣
∣`i j (z

′,zi ,z)− `i j (zj ,zi ,z)
∣
∣
]

(29)

Since the distribution overD is i.i.d., integrating with respect tozi is the same as integrating w.r.t.
zj or z′, and we can swap the role ofz′ andzi in the second term of the r.h.s. , and ofzi andzj in the
last term.

ED,z,z′
[∣
∣`i j (z

′,zj ,z)− `i j (z
′,zi ,z)

∣
∣
]

= ED,z,z′
[∣
∣`(z)− `i j (zi ,z

′,z)
∣
∣
]

ED,z,z′
[∣
∣`i j (z

′,zi ,z)− `i j (zj ,zi ,z)
∣
∣
]

= ED,z,z′
[∣
∣`i j (z

′,zj ,z)− `(z)
∣
∣
]
,
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which gives the following result:

ED,z
[∣
∣`(z)− `i j (zj ,zi ,z)

∣
∣
]

≤ 2ED,z
[∣
∣`i j (z

′,zj ,z)− `(z)
∣
∣
]

+ ED,z
[∣
∣`i j (zi ,z

′,z)− `(z)
∣
∣
]

(30)

If instead of (29) we used the following decomposition,

ED,z
[∣
∣`(z)− `i j (zj ,zi ,z)

∣
∣
]
≤ ED,z,z′

[∣
∣`(z)− `i j (zi ,z

′,z)
∣
∣
]

+ED,z,z′
[∣
∣`i j (zi ,z

′,z)− `(zj ,z
′,z)
∣
∣
]
+ED,z,z′

[∣
∣`(zj ,z

′,z)− `i j (zj ,zi ,z)
∣
∣
]
,

it would have led to

ED,z
[∣
∣`(z)− `i j (zj ,zi ,z)

∣
∣
]
≤ ED,z

[∣
∣`i j (z

′,zj ,z)− `(z)
∣
∣
]
+2ED,z

[∣
∣`i j (zi ,z

′,z)− `(z)
∣
∣
]
.

Averaging this inequality with (30), we get the final result.

Note that the quantity appearing in the r.h.s. of Equation (28) can be boundedby different quantities
related to pointwise hypothesis stability or to hypothesis stability. We have indeed

ED,z
[∣
∣`(z)− `i j (zj ,zi ,z)

∣
∣
]
≤ 3

(
ED,z

[∣
∣`i j (z,zj ,zi)− `(zi)

∣
∣
]

+ED,z
[∣
∣`i j (zi ,z,zj)− `(zj)

∣
∣
])

, (31)

which is related to the definition of pointwise hypothesis stability and will be used when the focus
is on empirical error. We have also

ED,z
[∣
∣`(z)− `i j (zj ,zi ,z)

∣
∣
]
≤ 3

(
ED,z

[∣
∣`i j ( /0,zj ,z)− `(z)

∣
∣
]

+ED,z
[∣
∣`i j (zi , /0,z)− `(z)

∣
∣
])

,

which is related to bounds on the leave-one-out error. Both bounds have the same structure and it
will turn out that the following calculations are almost identical for leave-one-out error and empirical
error. We can now start the main part of the proofs. The notations are difficult to digest but the ideas
are simple and use only the few formal steps we have described before. We first state the following
lemma as in (Bousquet and Elisseeff, 2002):

Lemma 19 For any (non-symmetric) learning algorithm A, we have

ED

[
(Rgen−Remp)

2]≤ 1
m2 ∑

i6= j

ED,z,z′
[
`(z)`(z′)

]
− 2

m2

m

∑
i6= j

ED,z[`(z)`(zi)]

+
1

m2 ∑
i 6= j

ED [`(zi)`(zj)]+
1

m2

m

∑
i=1

(
ED,z,z′

[
`(z)`(z′)

]
−2ED,z[`(z)`(zi)]+ED

[
`(zi)

2])

and

ED

[
(Rgen− R̀ oo)

2]≤ 1
m2 ∑

i6= j

ED,z,z′
[
`(z)`(z′)

]
− 2

m2 ∑
i6= j

ED,z[`(z)`i ]

+
1

m2 ∑
i6= j

ED [`i`i j (zi , /0,zj)]

+
1

m2

m

∑
i=1

(
ED,z,z′

[
`(z)`(z′)

]
−2ED,z[`(z)`i ]+ED

[
`2

i

])
.
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Proof We have

ED

[
R2

gen

]
= ED

[

Ez`(z)
2
]

= ED,z,z′
[
`(z)`(z′)

]

=
1

m2 ∑
i6= j

ED,z,z′
[
`(z)`(z′)

]
+

1
m2

m

∑
i=1

ED,z,z′
[
`(z)`(z′)

]
,

and also

ED [RgenRemp] = ED

[

Rgen
1
m

m

∑
i=1

`(zi)

]

=
1
m

m

∑
i=1

ED [Rgeǹ (zi)]

=
1
m

m

∑
i=1

ED,z[`(z)`(zi)]

=
1

m2 ∑
i6= j

ED,z[`(z)`(zi)]+
1

m2

m

∑
i=1

ED,z[`(z)`(zi)] ,

and also

ED [RgenR̀ oo] = ED

[

Rgen
1
m

m

∑
i=1

`i

]

=
1
m

m

∑
i=1

ED [Rgeǹ i ]

=
1
m

m

∑
i=1

ED,z[`(z)`i ]

=
1

m2

m

∑
i6= j

ED,z[`(z)`i ]+
1
m

m

∑
i=1

ED,z[`(z)`i ] .

Also we have

ED

[
R2

emp

]
=

1
m2

m

∑
i=1

ED

[
`(zi)

2]+
1

m2 ∑
i6= j

ED [`(zi)`(zj)]

and

ED

[
R2

`oo

]
=

1
m2

m

∑
i=1

ED

[
`2

i

]
+

1
m2 ∑

i6= j

ED [`i`i j (zi , /0,zj)] ,

which concludes the proof.
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Continuing the proof of Lemma 3.2, we now formulate the first inequality of Lemma 19 as

ED

[
(Rgen−Remp)

2]≤ 1
m2 ∑

i6= j

ED,z,z′
[
`(z)`(z′)

]
−ED,z[`(z)`(zi)]

︸ ︷︷ ︸

I

+
1

m2

m

∑
i6= j

ED [`(zi)`(zj)]−ED,z[`(z)`(zi)]
︸ ︷︷ ︸

J

+
1

m2

m

∑
i=1

ED,z,z′
[
`(z)`(z′)

]
−2ED,z[`(z)`(zi)]+ED

[
`(zi)

2]

︸ ︷︷ ︸

K

.

Using the fact that the loss is bounded byM, we have

K = ED,z,z′
[
`(z)

(
`(z′)− `(zi)

)]
+ED,z[`(zi)(`(zi)− `(z))]

≤ 2M2.

Now we rewriteI as
ED,z,z′

[
`(z)`(z′)

]
−ED,z[`(z)`(zi)] =

= ED,z,z′
[
`(z)`(z′)− `i j (z

′,zj ,z)`i j (z
′,zj ,z

′)
]
,

where we renamedzi asz′ in the second term. We have then

I = ED,z,z′
[
(`(z)− `i j (z,zj ,z))`(z

′)
]

+ED,z,z′
[
(`i j (z,zj ,z)− `i j (z

′,zj ,z))`(z
′)
]

+ED,z,z′
[
(`(z′)− `i j (z

′,zj ,z
′))`i j (z

′,zj ,z)
]
.

Thus,
|I | ≤ 3MED,z,z′

[∣
∣`i j (z,zj ,z)− `(z)

∣
∣
]
. (32)

Next we rewriteJ as

ED [`(zi)`(zj)]−ED,z[`(z)`(zi)] = ED,z,z′
[
`i j (z,z

′,z)`i j (z,z
′,z′)− `(z)`(zi)

]

where we renamedzj asz′ andzi asz in the first term. We have also

J = ED,z,z′
[
`i j (z,z

′,z)`i j (z,z
′,z′)− `i j (z

′,zi ,z)`i j (z
′,zi ,z

′)
]

where we renamedzi asz′ andzj aszi in the second term. Using Equation 31, we have

J ≤ ED,z,z′
[
`i j (z,z

′,z)`i j (z,z
′,z′)− `i j (zi ,z

′,z)`i j (z
′,zi ,z

′)
]

︸ ︷︷ ︸

J1

+3M
(
ED,z

[∣
∣`i j (z,zj ,zi)− `(zi)

∣
∣
]

+ED,z
[∣
∣`i j (zi ,z,zj)− `(zj)

∣
∣
])

. (33)

Let us focus onJ1, we have

J1 = ED,z,z′
[
(`i j (z,z

′,z′)− `i j (z,zi ,z
′)`i j (z,z

′,z)
]

+ED,z,z′
[
(`i j (z,z

′,z)− `i j (zi ,z
′,z))`i j (z,zi ,z

′)
]

+ED,z,z′
[
(`i j (z,zi ,z

′)− `i j (z
′,zi ,z

′))`i j (zi ,z
′,z)
]
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and

J1 = ED,z,z′ [(`i j (zi ,zj ,zj)− `i j (zi ,z,zj))`i j (zi ,zj ,zi)]

+ED,z,z′ [(`i j (zi ,zj ,zi)− `i j (z,zj ,zi))`i j (zi ,z,zj)]

+ED,z,z′ [(`i j (z,zj ,zi)− `i j (zi ,zj ,zi))`i j (zj ,zi ,z)]

where we replacedz by zi , zi by zandz′ by zj in the first term, andz by zi andz′ by zj andzi by z in
the second term and, in the last term, we renamedz′ by zi andzi by zj . Thus,

|J1| ≤ 2MED,z
[∣
∣`i j (z,zj ,zi)− `(zi)

∣
∣
]
+MED,z,z′

[∣
∣`i j (zi ,z,zj)− `(zj)

∣
∣
]
. (34)

Summing Equation (32) with the inequality onJ derived from Equations (34) and (33), we obtain

I +J ≤ 8MED,z
[∣
∣`i j (z,zj ,zi)− `(zi)

∣
∣
]
+4MED,z

[∣
∣`i j (zi ,z,zj)− `(zj)

∣
∣
]
.

To boundI +J, we can swap the role ofi and j (note thati and j are under a sum and that we can
permute the role ofi and j in this sum without changing anything). In that case, we obtain

I +J ≤ 4MED,z
[∣
∣`i j (z,zj ,zi)− `(zi)

∣
∣
]
+8MED,z

[∣
∣`i j (zi ,z,zj)− `(zj)

∣
∣
]
.

Averaging over this bound and the previous one, we finally obtain

I +J ≤ 6M
(
ED,z

[∣
∣`i j (z,zj ,zi)− `(zi)

∣
∣
]

+ED,z
[∣
∣`i j (zi ,z,zj)− `(zj)

∣
∣
])

.

The above concludes the proof of the bound for the empirical error (Lemma 3.2).
The bound for the leave-one-out error (Lemma 3.1) can be obtained in a similar way. Indeed,

we notice that if we rewrite the derivation for the empirical error, we simply have to remove from
the training set the point at which the loss is computed. That is, we simply have toreplace all the
quantities of the form̀ i j (z,z′,z) by `i j ( /0,z′,z). It is easy to see that the above results are modified
in a way that gives the correct bound for the leave-one-out error.

Appendix B. Proof of Theorem 3.4

Proof We first prove Equation (17) and then show how to derive Equation (19). Both proofs are
very similar except for some calculations.

Let K(D, r) = Rgen( fD,r )−Remp( fD,r ) the random variable which we would like to bound. For
this purpose, we first show thatK is close to its expectation w.r.t.r and then show how this average
algorithm is controlled by its stability.

For everyr ,s∈ R T , andT ∈ N, we have

|K(D, r)−K(D,s)| =

=

∣
∣
∣
∣
∣
Ez
[
`( fD,r ,z)− `( fD,s,z)

]
− 1

m

m

∑
i=1

(
`( fD,r ,zi)− `( fD,s,zi)

)

∣
∣
∣
∣
∣

≤ Ez
[∣
∣`( fD,r ,z)− `( fD,s,z)

∣
∣
]
+

1
m

m

∑
i=1

∣
∣`( fD,r ,zi)− `( fD,s,zi)

∣
∣ .
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Thus, using the definition ofρ, this equation implies (whenr ands differ only in one of theT
coordinates) that

sup
r1,...,rT ,r ′t

∣
∣K(D, r1, . . . , rT)−K(D, r1, . . . , r t−1, r ′t , r t+1, . . . , rT)

∣
∣≤ 2ρ

and applying Theorem 14 we obtain (note thatD is independent ofr )

Pr [K(D, r)−Er [K(D, r)] ≥ ε | D] ≤ exp
{
−ε2/2Tρ2} .

We also have
ED [Pr [K(D, r)−Er K(D, r) ≥ ε]] =

= ED [Pr [K(D, r)−Er K(D, r) ≥ ε | D]] ≤ exp
{
−ε2/2Tρ2} .

Setting the r.h.s. equal toδ and writingε as a function ofδ we have that with probability at least
1−δ w.r.t. the random sampling ofD andr :

K(D, r)−Er K(D, r) ≤
√

2Tρ
√

log(1/δ). (35)

We first bound the expectation ofK(D, r). We defineG(D,z) := Er [`( fD,r ,z)]. We have

ED,r [K(D, r)] = ED

[

Ez

[

G(D,z)− 1
m

m

∑
i=1

G(D,zi)

]]

= ED,z[G(D,z)]− 1
m

m

∑
i=1

ED [G(D,zi)]

(a)

≤ 2βm+ED\i ,z

[

G(D\i ,z)
]

− 1
m

m

∑
i=1

ED

[

G(D\i ,zi)
]

(b)
= 2βm (36)

where(a) is derived from the fact that the algorithm has random uniform stabilityβm, that is,

sup
D,z

∣
∣
∣G(D,z)−G(D\i,z)

∣
∣
∣≤ βm,

and (b) comes fromED

[
G(D\i ,zi)

]
= ED\i ,z

[
G(D\i ,z)

]
(it amounts to changingzi into z). We

would like now to apply Theorem 14 toEr [K(D, r)]. To this aim, we bound (recall thatD i =
D\i ∪z′):

∣
∣Er
[
Er
[
K(D, r)−K(D i, r)

]]∣
∣=

∣
∣
∣
∣
∣
∣
∣
∣

1
m

(
Er
[
`( fD i ,r ,z

′)
]
−Er

[
`( fD,r ,zi)

])

︸ ︷︷ ︸

(a)

+
1
m∑

i6= j

Er [`( fD\i ,r ,zj)]−Er
[
`( fD,r ,zj)

]

︸ ︷︷ ︸

(b)

+
1
m∑

i 6= j

Er
[
`( fD i ,r ,zj)

]
−Er [`( fD\i ,r ,zj)]

︸ ︷︷ ︸

(c)

+Er
[
Ez
[
`( fD,r ,z)− `( fD i ,r ,z)

]]

︸ ︷︷ ︸

(d)

∣
∣
∣
∣
∣
∣
∣
∣

(37)
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where(a) is bounded byM
m, (b), (c) are bounded byβm and(d) is similarly bounded by 2βm. So

that supD,z′,z

∣
∣Er [K(D, r)]−Er

[
K(D i , r)

]∣
∣≤ M

m +4βm and we derive that

PD [Er [K(D, r)] ≥ ε+2βm] ≤ exp

{

− 2mε2

(M +4mβm)2

}

,

which implies that with probability at least 1−δ w.r.t. the random sampling ofD andr

Er [K(D, r)] ≤ 2βm+
M +4mβm√

2m

√

log(1/δ). (38)

Observe that the inequalities in Equations (35) and (38) hold simultaneously with probability at
least 1−2δ. The result follows by combining those inequalities and settingδ = δ/2.

The proof of Equation (19) follows the same reasoning except that the chain of Equations (36)
and (37) are different. We have

ED,r [K(D, r)] = ED

[

Ez[G(D,z)]− 1
m

m

∑
i=1

G(D\i ,zi)

]

= ED,z[G(D,z)]− 1
m

m

∑
i=1

ED,z

[

G(D\i ,z)
]

≤ βm,

and denotingD\i, j the setD wherezi andzj have been removed, andD i\ j the setD i wherezj has
been removed (forj 6= i),

∣
∣Er [K(D, r)]−Er

[
K(D i , r)

]∣
∣=

∣
∣
∣
∣
∣
∣
∣
∣

1
m

(

Er

[

`( fD\i ,r ,zi)
]

−Er

[

`( fD\i ,r ,z
′)
])

︸ ︷︷ ︸

(a)

+
1
m∑

i6= j

Er

[

`( fD\ j ,r ,zj)
]

−Er

[

`( fD\i, j ,r ,zj)
]

︸ ︷︷ ︸

(b)

+
1
m

m

∑
j 6= j

Er

[

`( fD\i, j ,r ,zj)
]

−Er

[

`( fD i\ j ,r ,zj)
]

︸ ︷︷ ︸

(c)

+Er
[
Ez
[
`( fD,r ,z)− `( fD i ,r ,z)

]]

︸ ︷︷ ︸

(d)

∣
∣
∣
∣
∣
∣
∣
∣

.

Finally, note that(a) is bounded byMm, (b) and(c) are bounded byβm−1 and(d) by 2βm.
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