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The singularity of the solutions obtained before in the teleparallel the-

ory of gravitation is studied. Also the stability of these solutions is studied

using the equations of geodesic deviation. The condition of stability is ob-

tained. From this condition the stability of the Schwarzschild solution can

be obtained.
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1. Introduction

Static uncharged black holes in general relativity are described by the well-
-known Schwarzschild solution. A singularity can happen when a gravitational
collapse takes place and continues until the surface of the star approaches the
Schwarzschild radius, i.e., r = 2m [1]. Hawking and collaborators discovered that
the laws of thermodynamics have exact analogues in the properties of black holes
[1–4]. As a black hole emits particles, its mass and size steadily decrease. This
makes it easier to tunnel out and so the emission will continue at an ever-increasing
rate until eventually the black hole radiates itself out of existence. In the long run,
every black hole in the universe will evaporate in this way.

The tetrad theory of gravitation based on the geometry of absolute paral-
lelism [5–14] can be considered as the closest alternative to general relativity, and
it has a number of attractive features both from the geometrical and physical
viewpoints. Absolute parallelism is naturally formulated by gauging space-time
translations and underlain by the Weitzenböck geometry, which is characterized by
the metricity condition and by the vanishing of the curvature tensor (constructed
from the connection of the Weitzenböck geometry). Translations are closely re-
lated to the group of general coordinate transformations which underlies general
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relativity. Therefore, the energy-momentum tensor represents the matter source
in the field equation for the gravitational field just like in general relativity.

The tetrad formulation of gravitation was considered by Møller in connection
with attempts to define the energy of gravitational field [15, 16]. For a satisfactory
description of the total energy of an isolated system it is necessary that the energy-
-density of the gravitational field is given in terms of first- and/or second-order
derivatives of the gravitational field variables. It is well known that there exists
no covariant, nontrivial expression constructed out of the metric tensor. However,
covariant expressions that contain a quadratic form of first-order derivatives of
the tetrad field are feasible. Thus it is legitimate to conjecture that the difficulties
regarding the problem of defining the gravitational energy-momentum are related
to the geometrical description of the gravitational field rather than are an intrinsic
drawback of the theory [17, 18].

In an earlier paper [19], the author used a spherically symmetric tetrad con-
structed by Robertson [20] to derive three different spherically symmetric space-
-times for the coupled gravitational and electromagnetic fields with charged source
in the tetrad theory of gravitation. One of these contains an arbitrary function
and generates the others. These space-times give the Reissner–Nordström metric
black hole. Calculations of the energy associated with these black holes using the
superpotential method given by Møller [15] have been done [19]. It has been shown
that unless the time-space components of the tetrad field go to zero faster than
1/
√

r at infinity, one got different results for the energy.
It is the aim of the present paper to study the singularity of the three black

hole solutions obtained before [19] and then derive the condition of stability using
the geodesic deviation [21]. This study is important to gain more investigation
about the solutions obtained before [19]. In Sect. 2, a brief review of the three
black holes is given. The singularity problem of these black holes is studied in
Sect. 3. In Sect. 4, the condition of stability is given. The final section is devoted
to the main results.

2. Spherically symmetric black hole solutions

In a previous paper the author used the teleparallel space-time in which
the fundamental fields of gravitation are the parallel vector fields bk

µ. In the
Weitzenböck space-time the fundamental field variables describing gravity are a
quadruplet of parallel vector fields [22] bi

µ, which we call the tetrad field in this
paper, characterized by

Dνbi
µ = ∂νbi

µ + Γµ
λνbi

λ = 0, (1)
where Γµ

λν define the nonsymmetric affine connection coefficients. The met-
ric tensor gµν is given by gµν = bi

µbiν , where summation convention is taken
over i. Equation (1) leads to the metricity condition and the identically vanishing
curvature tensor.
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The gravitational Lagrangian LG is an invariant constructed from gµν and
the contorsion tensor γµνρ given by

γµνρ = bi
µbiν; ρ = 1

2
(Tνµρ + Tρµν − Tµνρ) , Tµνρ = bi

µbiν, ρ − bi
νbiµ, ρ, (2)

where the semicolon denotes covariant differentiation with respect to the Christof-
fel symbols and comma is the ordinary differentiation and Tµνρ is the torsion. It is
of interest to note that the concept is as old as the gravitation theory of Einstein.
The torsion notion of a variety, besides the curvature was introduced by Cartan
[23] that also gave a geometric interpretation for both tensors. In teleparallel the-
ories the gravitational interaction is described by a force similar to the Lorentz
force equation of electrodynamics, with torsion playing the role of force [18].

The most general gravitational Lagrangian density invariant under parity
operation is given by the form [7, 22, 24]

LG =
√−gLG =

√−g (α1ΦµΦµ + α2γ
µνργµνρ + α3γ

µνργρνµ) (3)
with g = det(gµν) and Φµ being the basic vector field defined by Φµ = γρ

µρ. Here
α1, α2, and α3 are constants determined in such a way that the theory coincides
with general relativity in the weak fields [15, 22]:

α1 = − 1
κ

, α2 =
λ

κ
, α3 =

1
κ

(1− λ), (4)

where κ is the Einstein constant and λ is a free dimensionless parameter†.
The electromagnetic Lagrangian density Le.m. is [25]

Le.m. = −1
4
gµρgνσFµνFρσ (5)

with Fµν given by‡ Fµν = ∂µAν − ∂νAµ.
The gravitational and electromagnetic field equations for the system de-

scribed by LG + Le.m. are the following:

Gµν + Hµν = −κTµν , Kµν = 0, ∂ν

(√−gFµν
)

= 0 (6)
with Gµν being the Einstein tensor of general relativity defined by

Gµν = Rµν − 1
2
gµνR, (7)

Rµν({}) is the Ricci tensor defined by

Rµν({}) = ∂ρ{ρ
µν} − ∂ν{ρ

µρ}+ {ρ
λρ}{λ

µν} − {ρ
λν}{λ

µρ}
and R({}) is the Ricci scalar R({}) = gµνRµν .

Hµν and Kµν are defined by

Hµν = λ
[
γρσµγρσ

ν + γρσµγν
ρσ + γρσνγµ

ρσ

+gµν

(
γρσλγλσρ − 1

2
γρσλγρσλ

)]
(8)

and

†Throughout this paper we use the relativistic units, c = G = 1 and κ = 8π.
‡The Heaviside–Lorentz rationalized units will be used throughout this paper.
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Kµν = λ
[
Φµ,ν − Φν,µ − Φρ

(
γρ

µν − γρ
νµ

)
+ γµν

ρ
;ρ

]
, (9)

and they are symmetric and antisymmetric tensors, respectively. The energy-
-momentum tensor Tµν is given by

Tµν = −gρσFµρF νσ +
1
4
gµνF ρσFρσ. (10)

It can be shown [22] that in the spherically symmetric case the antisymmetric
part of the field equations (Eq. (6)) implies that the axial-vector part of the torsion
tensor, aµ = (1/3)εµνρσγνρσ, should vanish. Then Hµν in Eq. (8) vanishes, and
the field equations (Eqs. (6)) reduce to the coupled teleparallel equivalent of the
Einstein–Maxwell equations. Equations (6) then determine the tetrad field only
up to local Lorentz transformations

bk
µ → Λ(x)k

` b`
µ,

which retain the condition aµ = 0. Hereafter we shall refer to this property of the
field equations as restricted local Lorentz invariance.

The structure of the Weitzenböck spaces with spherical symmetry and three
unknown functions of radial coordinate was given by Robertson [20] in the form

(bi
µ) =




iA iDr 0 0
0 B sin θ cos φ B

r cos θ cosφ −B sin φ
r sin θ

0 B sin θ sin φ B
r cos θ sin φ B cos φ

r sin θ

0 B cos θ −B
r sin θ 0


 , (11)

where the vector b0
µ has been taken to be imaginary in order to preserve the

Lorentz signature for the metric, i.e., the functions A and D have to be taken as
imaginary. Applying (11) to the field equations (Eqs. (6)) the author got [19] a
set of non-linear partial differential equations. The solution of these equations has
the following form [19]:
— first solution

if A(R) =
1√

1− 2m
R + q2

R2

, B(R) =

√
1− 2m

R
+

q2

R2
,

and D(R) = 0, where R =
r

B
; (12)

— second solution

if A = 1, B = 1, and D(r) =

√
2mr − q2

r2
; (13)

— third solution

if A(R) =
1

(1−RB′)
,

and D(R) =
1

1−RB′

√
2m

R3
+

q2

R4
+

B′

R
(RB′ − 2). (14)

It is clear from (14) that the third solution depends on the arbitrary function B,
i.e., we can generate the previous solutions of (12) and (13) by choosing the arbi-
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trary function B to have the form

B(R) = 1 and B(R) =
∫

1
R

(
1−

√
1− 2m

R
− q2

R2

)
dR. (15)

The associated metric of the three solutions (12)–(14) is found to be the same and
have the form

ds2 = −η(r)dT 2 +
dr

η(r)
+ r2dΩ2 with η(r) = 1− 2m

r
+

q2

r2
, (16)

which is the static Reissner–Nordström black hole [26, 27]. The form of the vector
potential Aµ, the antisymmetric electromagnetic tensor field Fµν and the energy-
-momentum tensor are given by [19]

At(r) = − q

2
√

πr
, Frt = − q

2
√

πr2
, T0

0 = T1
1 = −T2

2 = −T3
3 =

q2

8πr4
. (17)

It is of interest to note that the two tensors Hµν and Kµν are vanishing identically
for the three solutions given by Eqs. (12), (13), and (14). It is proved that these
tensors are vanishing identically for any spherically symmetric solutions [28, 29].

3. Singularities
In teleparallel theories we mean by singularity of space-time [25] the singu-

larity of the scalar concomitants of the torsion and curvature tensors.
Using the definitions of the Riemann–Christoffel curvature tensor, Ricci ten-

sor, Ricci scalar, torsion tensor, basic vector, traceless part, and the axial vector
part [30] we obtain for the first solution of (12):

RµνλσRµνλσ =
8

R8

(
7q4 − 12RMq2 + 6M2R2

)
, RµνRµν =

4q4

R8
, R = 0,

TµνλTµνλ =
−2

R4(R2 − 2MR + q2)
(
4R4 − 12MR3 + 6R2q2

−4R3
√

R2 − 2MR + q2 − 10RMq2 + 8R2
√

R2 − 2MR + q2M

−4R
√

R2 − 2MR + q2q2 + 9M2R2 + 3q4
)
,

ΦµΦµ =
−1

R4(R2 − 2MR + q2)
(− 2R3 + 4MR2 − 2Rq2

+2
√

R2 − 2MR + q2R2 − 3
√

R2 − 2MR + q2MR

+
√

R2 − 2MR + q2q2
)2

,

tµνλtµνλ =
−1

R4(R2 − 2MR + q2)
(
R3 − 2MR2 + Rq2

−
√

R2 − 2MR + q2R2 + 3
√

R2 − 2MR + q2MR

−2
√

R2 − 2MR + q2q2
)2

, aµaµ = 0. (18)
The scalars of the Riemann-curvature tensor, Ricci tensor, and Ricci scalar of the
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second solution (13) are the same as given by (18). This is a logic result since
both solutions reproduce the same metric tensor and these scalars mainly depend
on the metric tensor. The scalars of torsion tensor, basic vector, traceless part,
and the axial vector part of the space-time given by solution (13) are given by

TµνλTµνλ =
−2

(2Mr − q2)r4
(3q4 − 10q2Mr + 9M2r2),

ΦµΦµ =
−1

(2Mr − q2)r4
(3Mr − q2),

tµνλtµνλ =
−1

(2Mr − q2)r4
(3Mr − 2q2). (19)

It is clear from (18) and (19) that the scalars of the torsion, basic vector, and
the traceless part of the first two solutions given by Eqs. (12) and (13) are quite dif-
ferent in spite of the fact that they gave the same associated metric (16)! The sin-
gularity of the scalars of Riemann-curvature tensor, Ricci tensor, and Ricci scalar
is given at R → 0 and this is well known from general relativity as we can see from
Eq. (18) [1]. As the singularities of the scalars of the torsion, basic vector, and
the traceless part of the first solution (12) are r → 0 and R2 − 2Mr + q2 → 0, the
second singularity may have the form R → M ±

√
M2 − q2, which is the horizon

of the static Reissner–Nordström black hole [31].
The singularities of the second solution (19) are given by r → 0 and q2/2M .

Now we have two solutions reproducing the same metric but the singularity of their
space-times are not coinciding. This is expected of course due to the following
facts:

i) The energy content of these space-times are different [19].
ii) The time-space components of the tetrad fields b0

α, bα
0 go to zero as

1/
√

r at infinity [28, 29].
iii) Also another interpretation, which may be taken into account as it is

clear from Eqs. (18) and (19), is that the torsion tensor of these solutions is
different. As we discussed in the introduction that the torsion plays the role of the
force, therefore, we may interpret the different results of the two torsions given by
Eqs. (18) and (19) due to the fact that the forces of the two solutions are different.

4. The stability condition

In the background of gravitational field the trajectories are represented by
the geodesic equation

d2xλ

ds2
+

{
λ
µν

} dxµ

ds

dxν

ds
= 0, (20)

where dxµ/ds is the velocity 4-vector, s is a parameter varying along the geodesic.
It is well known that the perturbation of the geodesic will lead to deviation [1]:

d2ζλ

ds2
+ 2

{
λ
µν

} dxµ

ds

dζν

ds
+

{
λ
µν

}
,ρ

dxµ

ds

dxν

ds
ζρ = 0, (21)

where ζρ is the deviation 4-vector.
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Inserting Eqs. (20) and (21) into (16) we get for the geodesic equations

d2t

ds2
= 0,

1
2
η′(r)

(
dt

ds

)2

− r

(
dφ

ds

)2

= 0,
d2θ

ds2
= 0,

d2φ

ds2
= 0, (22)

and for the geodesic deviation
d2ζ0

ds2
+

η′(r)
η(r)

dt

ds

dζ1

ds
= 0,

d2ζ1

ds2
+ η(r)η′(r)

dt

ds

dζ0

ds
− 2rη(r)

dφ

ds
dζ3

ds

+

[
1
2

(
η′2(r) + η(r)η′′(r)

)(
dt

ds

)2

− (η(r) + rη′(r))
(

dφ

ds

)2
]

ζ1 = 0,

d2ζ2

ds2
+

(
dφ

ds

)2

ζ2 = 0,
d2ζ3

ds2
+

2
r

dφ

ds
dζ1

ds
= 0, (23)

where η(r) is defined by (16), η′(r) = dη(r)/dr and we have to consider the circular
orbit in the plane

θ =
π

2
,

dθ

ds
= 0,

dr

ds
= 0. (24)

Using (24) in (16) we get

η(r)
(

dt

ds

)2

− r2

(
dφ

ds

)2

= 1, (25)

from (25) and (22) we obtain
(

dφ

ds

)2

=
η′(r)

r[2η(r)− rη′(r)]
,

(
dt

ds

)2

=
2

2η(r)− rη′(r)
. (26)

The variable s in (23) can be eliminated and we can rewrite it in the form

d2ζ0

dφ2
+

η′(r)
η(r)

dt

dφ

dζ1

dφ
= 0,

d2ζ1

dφ2
+ η(r)η′(r)

dt

dφ

dζ0

dφ
− 2rη(r)

dζ3

dφ

+

[
1
2
(η′2(r) + η(r)η′′(r))

(
dt

dφ

)2

− (η(r) + rη′(r))

]
ζ1 = 0,

d2ζ2

dφ2
+ ζ2 = 0,

d2ζ3

dφ2
+

2
r

dζ1

dφ
= 0. (27)

It is clear from the third equation of (27) that it represents a simple harmonic
motion, this means that the motion in the plane θ = π/2 is stable.
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Let us assume now that the solution of the remaining equations is given by

ζ0 = A1eiωφ, ζ1 = A2eiωφ, and ζ3 = A3eiωφ, (28)
where A1, A2, and A3 are constants to be determined. Inserting (28) into (27) we
get

r3m− 6m2r2 + 9mrq2 − 4q4

r2(mr − q2)
> 0, (29)

which is the condition of the stability for a static spherically symmetric Reissner–
Nordström solution. Condition (29) can be rewritten as

r − q2

m
> 0 and r − 6m > 0. (30)

5. Main results

The main results can be summarized as follows:
1) The singularity problem of the first two solutions (12) and (13) obtained

before [19] has been studied. The scalars of the torsion tensor, basic vector, and
the traceless part of these solutions are quite different as we can see from Eqs. (18)
and (19). The scalars have a common singularity if r → 0. Furthermore, the first
solution has another singularity if

r2 − 2rm + q2 → 0,

while the second solution has another singularity if

r − q2

2M
→ 0.

This explains that the structure of the two solutions (12) and (13) is quite different
in spite of the fact that they reproduce the same metric space-time.

2) The stability condition for the metric of Reissner–Nordström black hole
(Eq. (16)) is derived and given by Eq. (29). From this condition we can see that:

i) If r → 0, the value of (29) is finite.
ii) If r becomes large, then Eq. (30) takes the value r > 6m and r > q2/m,

which is the condition of stability for Reissner–Nordström black hole.
iii) When q = 0 and if r becomes large, then Eq. (32) takes the value r > 6m,

which is the condition of stability for the Schwarzschild black hole [30]. The
analysis given here for the derivation of the stability condition is straightforward
and simpler than that used in the literature [32, 33].
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