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In the present paper, we investigate the trapping of relativistic electrons by intense whistler-mode

waves or electromagnetic ion cyclotron waves in the Earth’s radiation belts. We consider the

non-resonant impact of additional, lower amplitude magnetic field fluctuations on the stability of

electron trapping. We show that such additional non-resonant fluctuations can break the adiabatic

invariant corresponding to trapped electron oscillations in the effective wave potential. This

destruction results in a diffusive escape of electrons from the trapped regime of motion and thus

can lead to a significant reduction of the efficiency of electron acceleration. We demonstrate that

when energetic electrons are trapped by intense parallel or very oblique whistler-mode waves,

non-resonant magnetic field fluctuations in the whistler-mode frequency range with moderate

amplitudes around 3� 15 pT (much less intense than the primary waves) can totally disrupt the

trapped motion. However, the trapping of relativistic electrons by electromagnetic ion cyclotron

waves is noticeably more stable. We also discuss how the proposed approach can be used to

estimate the effects of wave amplitude modulations on the motion of trapped particles. VC 2015

AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4927774]

I. INTRODUCTION

Relativistic electron trapping (and/or phase bunching)

by strong electromagnetic whistler or ion cyclotron (EMIC)

waves is believed to play an important role in the formation

of small populations of high-energy particles in the Earth’s

radiation belts9,16,18,20,54 as well as in bursty precipitations of

electrons into the atmosphere.32,49,59,78 Moreover, nonlinear

wave-particle interactions are responsible for rapid

wave growth22,23,55,64,70 and amplitude modulation of the

waves.29,31

Basic theoretical approaches allowing the description of

particle trapping by intense waves in the inhomogeneous

plasma of the magnetosphere were first laid down in Refs.

28, 29, 50, and 51 (see also reviews of Refs. 6, 57, and 62).

Next, modern spacecraft observations provided comprehen-

sive statistical informations about the occurrence rate and

other parameters of intense whistler and EMIC waves in the

radiations belts,1,2,36,37,43,77 stimulating further investigations

of nonlinear wave-particle interactions.13,14,38,58,71,72

However, the important problem of the stability of the

particles’ trapped motion has often been left aside in previ-

ous works—except for a few studies devoted to the effects of

wave amplitude modulations72,73 or the simultaneous inter-

actions of particles with several waves.24,52,65 The latter

studies consider the presence of overlapping resonances

from two (or more) waves in the system (see Refs. 65 and

87). One most remarkable case of this kind is the situation

where sideband waves are present very close to the main

wave.24,52 Then, one deals with simultaneous resonant inter-

action with several waves, where particle trapping into one

wave is destroyed by electromagnetic field perturbations

induced by the other waves.

Besides this resonant destruction of trapping due to

sidebands, however, one can also consider a mechanism of

non-resonant destruction.17 When trapped particles are trans-

ported by intense waves over quite long time intervals, they

can be affected by various small-amplitude non-resonant

fluctuations of the background electromagnetic field. Such

additional fluctuations, while being generally too weak

and too far from resonance to significantly perturb particle

trajectories, may be used to control the fine regime of wave-

particle resonant interaction and, thus, can eventually result

in particle detrapping.82 The cumulative effect of such elec-

tromagnetic field fluctuations can be estimated following an

approach developed in Refs. 10 and 11. Below, we apply this

kind of approach to a rather general system of trapped parti-

cle motion. The obtained results are used to estimate the sta-

bility of particle trapping by intense whistler-mode waves

and EMIC waves in the Earth’s radiation belts.

Of course, the considered non-resonant (diffusive) scat-

tering of trapped particles is not as effective as a resonant

perturbation: If trapped particles are influenced by a pertur-

bation at the trapping frequency (in case of sideband
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instability24,52), then a resonance occurs and detrapping

should be much more rapid than for a diffusive detrapping.

Thus, the scenario examined in this paper actually corre-

sponds to systems composed of one intense (chorus or

EMIC) wave propagating in the midst of low amplitude

non-resonant magnetic fluctuations separated in frequency

from the main wave by a shift much larger than the trapping

frequency. In such a scenario, sidebands as well as other

waves susceptible of resonance overlap with the main wave

are assumed to have negligible amplitudes (typically <0.1 of

the main wave amplitude).

II. GENERAL EQUATIONS

In the strong magnetic field of the Earth’s dipole BðrÞ,
the dynamics of charged particles (with velocity v, rest mass

m, and charge e) follows a hierarchy of three different quasi-

periodic motions:60 the fastest motion is the gyrorotation at

the local gyrofrequency Xc=c (where Xc ¼ eBðrÞ=mc and

c ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2=c2
p

is the relativistic factor), the next one

consists in bounce oscillations along field lines, and the

slowest motion is an azimuthal rotation around the Earth.

The resonant interaction of particles with whistler-mode and

EMIC waves can significantly perturb the first two types of

motions, while the timescale of resonant interaction is

small enough to consider that the particle position in the azi-

muthal direction remains unchanged. Thus, we deal with a

two-dimensional system describing particle motion along a

geomagnetic field line (the corresponding coordinate is rk)
and across the field line (the corresponding coordinate is r?).
Gyro-averaging transforms the coordinate r? (and its conju-

gated momentum) to the first adiabatic invariant (i.e., the

magnetic moment). Therefore, this system includes both

particle bounce oscillations with a velocity � _rk and the

eventual resonant interaction with waves. The wave phase is

/ ¼ constþ
Ð

kkðrkÞdrk �
Ð

xðtÞdtþH, where kk is the

component of the wave vector parallel to the background

magnetic field direction, xðtÞ is the wave frequency, and H

is the gyrophase with _H ¼ Xc=c (see, e.g., Ref. 60). The

characteristic inhomogeneity scalelength along field lines is

determined by the parameter R0 ¼ REL, with RE the Earth’s

radius and L the so-called L-shell (we consider mainly the

outer radiation belt with L � 5). A rough estimate of the

bounce frequency of relativistic electrons yields �c=R0. The

timescale of / variations is about Xc ( _/ � kk _rk � x

þXc=c). Thus, the wave phase varies with time much faster

than particles move along field lines: XcR0=c � 1 (a similar

relation can be obtained for the first term of _/:

v ¼ kR0 � 1).

The clear separation of the different timescales of parti-

cle motion determines the approach used to describe wave-

particle resonant interactions. The Hamiltonian equations of

charged particle dynamics are expanded around the reso-

nance _/ ¼ 0, and one can consider particle motion in the

ð/;PÞ plane, where P is the momentum conjugate to /, for a

frozen value of rk. For trapped particles, the system can be

averaged over this periodic motion.3,4,63,67 Such an averaged

system describes the evolution of particle energy and

magnetic moment along the resonant trajectory rkðtÞ, where
_rk ¼ vR is a solution of the equation _/ ¼ 0

vR ¼
x tð Þ � nXc rkð Þ

ckk rkð Þ
: (1)

The time t along a trajectory can be recalculated from the

coordinate rk with the equation

t ¼
ð

rk

dr0k=vRðr0kÞ: (2)

In Eq. (1), n¼ 0 corresponds to Landau resonance, while

n¼ 1 corresponds to first cyclotron resonance. The combina-

tion of Eqs. (1) and (2) gives the implicit solution t ¼ tðrkÞ
(although this solution often cannot be found analytically in

realistic systems).

To investigate the possible destruction of the trapped

motion, we should consider particle dynamics in the ð/;PÞ
plane.10,11 For monochromatic waves, this dynamics is

described by the following Hamiltonian equations:5,7,59

_P ¼ X
2
trðsin/þ AÞ

_/ ¼ gP;

(

(3)

where g(s), A(s), and X
2
trðsÞ are functions of the coordinate

along the resonance trajectory s ¼ rk=R0 (and _s ¼ vRðsÞ=R0).

The so-called trapping frequency Xtr can be written as (for

relativistic particles)

Xtr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

keBw=m
p

wðsÞ; (4)

where Bw is the wave magnetic field amplitude and w(s) is a

dimensionless function of the order of 1. For very low energy

particles with velocity �v0 � c, there is an additional multi-

plicative factor
ffiffiffiffiffiffiffiffiffi

v0=c
p

in Eq. (4).

Equation (3) corresponds to the Hamiltonian

H ¼ 1

2
gP2 þ X

2
tr cos/� A/ð Þ: (5)

As / varies much faster than s, one can consider Eq. (5)

as the Hamiltonian of a mathematical pendulum with torque

and slowly varying parameters. In the case a< 1, the phase

portrait of the Hamiltonian (5) contains closed trajectories

(see Fig. 1(a)). Particles moving along these trajectories

oscillate around P¼ 0 (i.e., around _/ ¼ 0). Thus, for such

particles, the resonance condition remains satisfied—such

particles are trapped by the wave. The periodicity of trapped

particle motion in the ð/;PÞ plane allows to introduce the

action I ¼ ð2pÞ�1
Þ

Pd/ (see Ref. 35). To briefly explain the

meaning of the trapping frequency Xtr, one can consider a

particle trajectory oscillating around the bottom of the poten-

tial well in the ð/;PÞ plane (see Fig. 1(b)). The coordinate

/0 at the bottom corresponds to the extremum of the poten-

tial energy U ¼ X
2
trðcos/� A/Þ, yielding sin/0 ¼ �A.

Expanding the Hamiltonian (5) around /0 gives

H ¼ 1

2
gP2 þ 1

2
X

2
tr /� /0ð Þ2 þ const: (6)

082901-2 Artemyev et al. Phys. Plasmas 22, 082901 (2015)
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Equation (6) shows that gXtr is the frequency of particle

oscillations in the ð/� /0;PÞ plane. The factor g¼ 1 for

nonrelativistic systems (for which the frequency Xtr was ini-

tially introduced28–30,50,51), while for relativistic systems the

factor g is responsible for a modification of the trapping fre-

quency. Although gXtr represents the frequency of trapped

particle oscillations only in the vicinity of the bottom of the

potential well, this term can be used to estimate the

frequency of oscillations of trapped particles over almost the

entire region filled by closed trajectories (except near its

boundary), because the actual frequency of trapped particle

oscillations depends very weakly on I—i.e., on the position

of a particle within this region (see, e.g., Refs. 4 and 80). It

allows us to use hereafter 2p=ðgXtrÞ as an estimate of the

period of trapped particle oscillations. This period is small as

compared with the typical timescale of s variations, because

X
2
tr � kc _s and kc � _s.

In a system with constant s, the particle trajectory in the

ð/;PÞ plane does not evolve and, thus, the area surrounded

by this particle trajectory is exactly conserved. In the more

realistic case of a slow enough variation of s (when the time

scale of the s variations is much larger than the period

�2p=Xtr), the action I becomes an adiabatic invariant of the

system,8,35 i.e., the area 2pI is still conserved to a high

degree of accuracy even if the effective potential U varies

with s (with time). Thus, I can be used to characterize the

trapped particle motion.

Generally, in the saturated stage of wave instability away

from the equator, the function aðsÞ ¼ X
2
trAðsÞ does not

depend anymore on wave amplitude, being mostly determined

by the gradients of the system. For each particular system,

a(s) can be found using the expansion of the initial equations

of motion around the resonance _/ ¼ 0. In the particular case

of the gyroresonant (i.e., first cyclotron resonance) interaction

of relativistic electrons with whistler-mode waves, the expres-

sion for a contains three terms:20,21,54,56 �@x=@t;
�ðkc2=XcÞ@Xc=@s, and �vR@Xc=@s. In case of a significant

gradient in kkðsÞ, one would get an additional (fourth) term

�v
2
R@kk=@s (see, e.g., Refs. 9 and 62). For EMIC waves, the

function a can be found in Refs. 5 and 59. It is also worth not-

ing that the function a � X
2
tr during strong wave-particle

interaction such as trapping and nonlinear scattering,9,56 corre-

sponding to a normalized wave amplitude of the same order

of magnitude as the gradients of the system parameters:

Bw=B � vR=ðXcR0Þ.
Since we aim at investigating the potential disruption of

trapped particle motion by additional magnetic fluctuations

in the most general case, we consider below a very generic

system corresponding to electron trapping by an intense

wave. Such a standard wave-particle system can easily be

used for various applications. Although the considered sys-

tem does not correspond to any particular wave mode, we do

use model profiles g(s), a(s), and w2ðsÞ similar to realistic

profiles discussed in Refs. 3, 9, and 62. Namely, we take

gðsÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ s2
p

(for nonrelativistic systems there is a mul-

tiplication factor ðv0=cÞ2 before s2), aðsÞ ¼ s2ð1� s2Þ�1;
w2 ¼ s2=ðs20 þ s2Þ, where s0 ¼ 0:15 is a typical scale length

of increase of wave intensity in the Earth’s radiation belts

around L � 5 (see Refs. 1, 9, and 44). The fact that a¼ 0 at

the equatorial plane s¼ 0 means that we do not take into

account the term �@x=@t (only this term has a finite value at

s¼ 0 because the magnetic field gradient @Xc=@s and wave

number gradient @kk=@s both vanish at s¼ 0 due to the sym-

metry of the geomagnetic field model and wave propagation,

see details in Refs. 20, 21, 54, and 56). The profiles of coeffi-

cients a(s), w2ðsÞ, and g(s) are presented in Fig. 1(c).

FIG. 1. (a) Phase portrait of the Hamiltonian (5) with a< 1; (b) effective

potential U ¼ X
2
trðcos/� a/Þ of Hamiltonian (5) with a< 1; and (c) pro-

files of model functions a(s), w2ðsÞ, and g(s).
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Let us first examine the trapped motion of particles in

the presence of an intense wave and demonstrate the conser-

vation of I. We introduce the dimensionless wave amplitude

e ¼ kR0Bw=B0 and renormalize time as t ! tx� with

x� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xc0c=R0

p

. In this case, the Hamiltonian (5) takes the

form

H ¼ 1

2
gP2 þ ew2 cos/� a/: (7)

Trapped trajectories exist in the region where ew2ðsÞ > aðsÞ.
Consider the solution of Hamiltonians equations _/

¼ @H=@P; _P ¼ �@H=@/ for a particle trajectory initially

trapped at s¼ s0. We slowly vary s > s0 and study the parti-

cle motion in the ð/;PÞ plane. Figure 2 shows the particle

trajectory and the action I:

I ¼ 1

2p

þ

Pd/ ¼ 1

p

ffiffiffi

2

g

s

ð

/2

/1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H � ew2 cos/þ a/
p

d/; (8)

where /1;2 are shown in Fig. 1(b). The variations of parame-

ters g, w, and a result in the observed evolution of the parti-

cle trajectory in the ð/;PÞ plane, but the action I is

conserved. There are only very small amplitude �v�1=2

(v ¼ kR0 � 1) oscillations of I, corresponding to the fact

that integral (8) is calculated for a frozen s, while there are

actually small variations of s within one period of trapped

particle oscillations in the ð/;PÞ plane.
Let us consider a whole cycle of charged particle

motion, including particle trapping and escape from reso-

nance. To this aim, we start the numerical integration at

s¼ 0, choose a large enough e, and select a trajectory which

is trapped (see Fig. 3). The conservation of I for trapped par-

ticles means that we can use it to determine the moments of

time when a particle enters and escapes from the resonance.

At the start of trapping, the value of 2pI is equal to the area

surrounded by the boundary of the region filled by closed

trajectories in the ð/;PÞ plane. This boundary is called the

separatrix, and the corresponding area S is defined as (see,

e.g., Refs. 8, 12, 27, and 48)

S ¼ 2

ffiffiffiffiffi

2a

g

s

ð

/�

/�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ew2

a
cos/� � cos/ð Þ � /� þ /

r

d/; (9)

where /� ¼ /�ðsÞ is a solution of the equation

ew2ðsÞ sin/ ¼ �aðsÞ different from /� (both /� and /� are

shown in Figs. 1(a) and 1(b)). The area S(s) varies with s,

while I is conserved. Thus, the trapped particles escape from

the resonance when S becomes equal to 2pI while dS=ds < 0

(i.e., when the area surrounded by the separatrix becomes

smaller than the area surrounded by the trapped particle tra-

jectory so that the particle escapes into the region with open

trajectories). An example of particle escape from the reso-

nance is shown in Fig. 3: it occurs exactly when S becomes

equal to 2pI (or to the value of S at the start of trapping).

Figures 2 and 3 demonstrate that the trapped motion is

the result of the conservation of the adiabatic invariant I in

the main wave-particle system. However, if an additional

(external) force inducing variations of I were to be present

too, then 2pI could become equal to S, leading to a corre-

sponding escape of the particle from resonance. In Section

III, we consider the effects of such an external force and

demonstrate that it may eventually lead to the destruction of

the adiabatic invariant I.

III. MAGNETIC FIELD FLUCTUATIONS

In this section, we consider the effect of additional mag-

netic field fluctuations on trapped particle motion. For the

sake of generality, these fluctuations are assumed to be

mostly non-resonant, i.e., their frequency, although being of

the same order as the main wave frequency, is assumed to

differ sufficiently from it to allow neglecting resonant inter-

actions between particles trapped by the main wave and

these fluctuations (in contrast to cases considered in Refs. 52

and 65). Moreover, we consider here fluctuations parallel to

the geomagnetic field line (transverse fluctuations will be

briefly addressed in Section V; see also Ref. 17). It may

FIG. 2. A test particle trajectory in the ð/;PÞ plane and the corresponding I

profile (shown only for s values corresponding to the trapped motion). The

middle panel shows two fragments of the trajectory in the ð/;PÞ plane (at

the beginning and just before the escape from resonance).
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correspond to whistler-mode fluctuations with wave-normal

angle h � 30� � 60� (their parallel magnetic component

being then of the same order as their perpendicular compo-

nents). Such fluctuations can be included into the term �a in

Hamiltonian (5). There are two terms corresponding to mag-

netic field fluctuations: The first term comes from the

dependence of a on B, and the second term comes from the

dependence of a on the derivative @B=@s. As we assume

that magnetic field fluctuations are fast and small-scale, the

second term dominates. Thus, we can write a ¼ a0
þða0=@B=@sÞ@dB=@s, where a0 depends only on the non-

fluctuating background magnetic field B, while dBðs; tÞ
denotes magnetic field fluctuations.

In this paper, we consider hereafter a very simplified

model of coherent quasi-stationary magnetic field fluctua-

tions with a typical spatial scale ‘R0. For particles moving at

the velocity vR in the resonance with the main (intense)

wave, such fluctuations appear as spatio-temporal fluctua-

tions with a timescale s � ‘R0=vR. Thus, one can write

@dB=@s � dB=‘. This prototypal model of fluctuations can

be considered as a very rough representation of a noise-like

distribution of quasi-standing fluctuations composed of a

mixture of counter-propagating waves with a typical overall

scale length ‘R0 � k—the wide spectrum of k values usually

associated with incoherent fluctuations is ignored for the

sake of both simplicity and generality. The above generic

model of fluctuations can also be adopted to describe coher-

ent fluctuations corresponding to additional low-amplitude

whistler-mode waves with frequency xf and wavenumber

kf. In the latter case, one can simply replace jvRj by jvef f j
¼ jvR � xf=kf j giving the relative velocity of such fluctua-

tions in the frame of moving electrons. We discuss these dif-

ferent applications further below.

As we do not specify the type of function a, we can

assume that ða0=@B=@sÞ@dB=@s � a1ðdB=B0ÞR0=svR0 while

all numerical factors (of order unity) and the dependence on

s are included into the a1ðsÞ function (vR0 is the equatorial

resonant velocity, and B0 the equatorial geomagnetic field

amplitude). In this case, the Hamiltonian (5) takes the form

H ¼ 1

2
gP2 þ x2

� ew2 cos/� a0/
� �

� x2
��a1db/; (10)

where x� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xc0c=R0

p

; x�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xc0c=vR0s
p

, and db

¼ dB=B0. To keep a general approach, we do not specify the

type of fluctuations dB but simply introduce two parameters

characterizing these fluctuations: their timescale s and var-

iance VarðdBÞ ¼ r (the corresponding spectral power of

fluctuations is rs in pT2/Hz). Magnetic field fluctuations are

assumed to be high-frequency, such that sXtr � 1, and both

fast variables ð/;PÞ and slow variable s change only weakly

over one time step (time interval �s) of fluctuations.

Following the scheme proposed in Ref. 10, we calculate

the jump of the adiabatic invariant of trapped particles DI

over one time step (�s) of fluctuations. According to the def-

inition Xtrg ¼ @H=@I (see Ref. 35), we have

DI ¼ 1

Xtrg
DH ¼ � 1

Xtrg
x2

��a1dbD/; (11)

where all functions on the right-hand side of Eq. (11) are

evaluated at the same moment within one time step of fluctu-

ations, while D/ is the change of / between the beginning

and end of this step. This change D/ can be obtained after

integration of the Hamiltonian equation _/ ¼ @H=@P ¼ gP

over a small time step s: D/ ¼ gPs, while both g and P are

evaluated at the same moment within one step. Thus, Eq. (11)

can be rewritten as

DI ¼ � 1

Xtr

x2
��a1dbPs: (12)

On the right-hand side of Eq. (12), db changes much faster

than P, and both functions db and P are changing faster than

functions g(s), XtrðsÞ; a1ðsÞ. Thus, we can consider a time

interval including many steps �s, but short enough to keep s

unchanged. We can choose this interval equal to 2p=gXtr

corresponding to one period of particle oscillations in the

ð/;PÞ plane. Over this time interval, the variance of DI is

Var DIð Þ ¼ x2
��a1s

Xtr

� �2

Var dbPð Þ: (13)

We assume that fluctuations db and variations of P are statisti-

cally independent and, thus, VarðdbPÞ ¼ ðr=B2
0ÞVarðPÞ. The

term VarðPÞ can be considered as a sum of M � 1 values of

FIG. 3. A test particle trajectory in the ð/;PÞ plane. The middle panel shows two fragments of the trajectory in the ð/;PÞ plane: just after trapping (dashed

curve) and just before the escape (solid curve). I and S profiles are shown in the right panel.
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P2 calculated within consecutive time steps s (i.e., between

successive changes of db)

Var Pð Þ ¼ 1

M

X

M

i¼0

P2
i ¼

P

iP
2
i s

P

is

� gXtr

2p

þ

P2dt ¼ Xtr

2p

þ

Pd/ ¼ XtrI; (14)

where we took into account the smallness of the time step s.

Substituting Eq. (14) into Eq. (13), we obtain

Var DIð Þ ¼ x4
��a

2
1

XtrB
2
0

Irs2: (15)

The evolution of I can be viewed as a random walk and

described by the diffusion equation for the distribution WðIÞ
of trapped particles as a function of I

@W

@t
¼ @

@I
DII

@W

@I

� �

: (16)

In Eq. (16), we introduced the diffusion coefficient

DII ¼ VarðDIÞ=s. Performing a change of coordinate from t

to s (via _s ¼ vR=R0) in Eq. (16) and introducing

uR ¼ vR=vR0, with vR0 the resonant velocity at the equator,

we get

@W

@h
¼ @

@I
I
@W

@I

� �

; (17)

where

h ¼ x4
��R0

XtrvR0

rs

B2
0

ð

s

w sð Þa21 s0ð Þds0
w s0ð ÞuR s0ð Þ : (18)

The boundary of the region filled by trapped trajectories is

determined by the value of the area S surrounded by the sepa-

ratrix (see Eq. (9)). Again omitting all numerical factors of

order unity, we get S � Xtr (we assume that ew2 > a and,

thus, in dimensional form S � x�
ffiffi

e
p

w � Xtr). Renormalizing

i ¼ 2pI=S, we can rewrite Eq. (17) in dimensionless form

@W

@K
¼ @

@i
i
@W

@i

� �

; (19)

where

K ¼ 2px4
��R0

x2
�evR0

rs

B2
0

ð

s

a21 s0ð Þds0
w s0ð ÞuR s0ð Þ

¼ 2p

xs

r

BwB0

x

Xc0

c

vR0

� �2

kR0F1 sð Þ ¼ K0F1 sð Þ: (20)

Equation (19) describes the temporal evolution of the

distribution WðiÞ of trapped particles. Thus, for a given ini-

tial distribution, one can easily calculate the number of par-

ticles remaining trapped for a given value of K. Solutions of

Eq. (19) are shown in Fig. 4 for three types of initial distribu-

tions: (a) A uniformly filled region of trapped particles, (b)

trapped particles present only at the bottom of the potential

well, and (c) only recently trapped particles with i � 1 are

present. The right panel of Fig. 4 shows that in all three

cases, the number of trapped particles diminishes as K

increases, ultimately decreasing to 50%–20% already for

K¼ 0.2. Consequently, to estimate the amount of detrapped

(escaped) particles in realistic systems, one simply needs to

evaluate K ¼ K0F1ðsÞ, where F1ðsÞ is of order unity. As

trapped motion corresponds to s 2 ½0; 1	, the dependence of

K on s can be further neglected, considering it merely as a

multiplicative factor �1. In the end, the occurrence of a

significant detrapping of electrons is simply equivalent to the

condition K0 ¼ 0:2, where K0 is a function of the wave

amplitude, the intensity of magnetic field fluctuations, and

other wave parameters. Solving this equation K0 ¼ 0:2 for

different realistic systems, we can deduce the intensity of

magnetic field fluctuations required to detrap a significant

population of particles.

A. Turning acceleration by whistler waves

In this subsection, we consider particle trapping in the

first cyclotron resonance with parallel propagating whistler-

mode waves (one of the most classical examples of electron

acceleration in the radiation belts, see, e.g., Refs. 15, 28, 29,

50, and 51 and reviews Refs. 62 and 76). In this regime of

particle acceleration, the resonant velocity vR is

vR ¼ ðxc� XcÞ=kc: (21)

FIG. 4. Three examples of evolution of distributions of trapped particles WðiÞ. All particles with i> 1 are assumed to escape from the system within a very

short time interval. The right panel shows the evolution of the number of trapped particles for these three examples.
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For particles with energy c < Xc=x (i.e., for energies lower

than �1 MeV), vR is negative and trapped particles propa-

gate in the direction opposite to the wave. However, if in

the course of trapped particle acceleration, the energy

increases enough to get c > Xc=x, then the trapped par-

ticle’s direction of propagation is reversed (the so-called

turning acceleration, see Refs. 25, 54, and 69). The total du-

ration of trapped motion is rather long, leaving some room

for the occurrence of a diffusive destruction of the trapping

process.

As a first step, one can simply take c � 1 and thus

jvR0j ¼ Xc0ð1� x=Xc0Þ=k to estimate the disturbance to the

trapping process of 50� 150 keV electrons induced by addi-

tional magnetic field fluctuations. Equation (20) can then be

rewritten as

K0 ¼
2p

xs

rN3

BwB0

Xc0R0

c

x=Xc0ð Þ4

1� x=Xc0ð Þ2
; (22)

where N ¼ kc=x is the wave refractive index

N2 ¼ k2c2

x2
¼

x2
pe

X
2
c

Xc=x

1� x=Xcð Þ ; (23)

where xpe is the plasma frequency. Evaluating N at the equa-

torial plane, we rewrite Eq. (22) as

K0 ¼
2p

xs

r

BwB0

x3
pe

X
3
c0

Xc0R0

c

x=Xc0ð Þ5=2

1� x=Xc0ð Þ7=2
: (24)

We use the empirical plasmatrough density model from

Ref. 61 to estimate the ratio xpe=Xc0 � L as a function of

L-shell. In the Earth’s magnetosphere, the ratio R0Xc0=c is

about �1:1
 105L�2 for B0 � 3:06
 104nT=L3. Thus, Eq.
(24) finally takes the form

K0 � 2:3
 10�3 � 2p
xs

r=pT2

Bw=nT

 !

L

5

� �4
x=Xc0ð Þ5=2

1�x=Xc0ð Þ7=2
: (25)

We consider quasi-stationary magnetic field fluctuations

with an effective frequency 2p=s comparable to the fre-

quency x of intense whistler-mode chorus waves responsible

for particle trapping. Thus, one has 2p=xs � 1. This generic

model of fluctuations can be regarded as a very rough repre-

sentation of a peaked noise spectrum. We plot in Fig. 5 (left

panel) the power of magnetic fluctuations r required to reach

two values of K0 for L¼ 5 and various values of x=Xc0 and

wave amplitude Bw. For a smaller wave frequency, stronger

magnetic field fluctuations are necessary to significantly

detrap the population of particles (i.e., to get K0 ¼ 0:2). A re-

alistic1,44 average level of fluctuations r1=2 � 6� 20 pT can

markedly disrupt the trapping process even for rather high

amplitudes Bw � 0:3� 1 nT of the main wave. For higher

frequency waves (e.g., upper-band chorus waves with

x=Xc0 > 0:5), relatively weak fluctuations with r1=2 � 10

pT are sufficient to totally destroy the trapped motion (since

K0 reaches one). Finally, for higher energy (�0:3� 1 MeV)

electrons, the c factors must be retained, leading to an overall

increase of K0 by a factor �cðXc0 � xÞ=jXc0 � cxj > 1. In

the alternative case of really coherent whistler-mode fluctua-

tions with kf � k, jvR0j should be replaced by jvef f j ¼ jvR0
�xf=kf j. It corresponds to an extra multiplicative factor

�j1� cx=Xc0j, yielding ultimately similar K0 values as in

Fig. 5 (left panel).

To demonstrate the effect of I invariant destruction, we

have numerically integrated the Hamiltonian equations for

Hamiltonian (10). With time normalized by x�, this

Hamiltonian takes the form

H ¼ 1

2
gP2 þ ew2 cos/� a0/� a1d~b/; (26)

where d~b is given by the equation

d~b � 1

60
� 2p
xs

x=Xc0

1� x=Xc0

� �3=2
L

5

� �2 ffiffiffiffiffiffiffiffi

r

pT2

r

f tð Þ; (27)

where f(t) is a random function with a time-step of variation

equal to s and an amplitude equal to one. We assume that f

FIG. 5. Left and central panels: fluctuation amplitude
ffiffiffi

r
p

that corresponds to two values of K0 as a function of main parallel (left panel) and oblique (central

panel) wave amplitude for two typical whistler-mode chorus wave frequencies x=Xc0. Right panel shows amplitude
ffiffiffi

r
p

of magnetic field fluctuations corre-

sponding to high frequency hiss-like waves with 2p=s ¼ 200XcH as a function of EMIC wave frequency x for different values of K0.
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has a uniform distribution within the interval ½�1; 1	. For
L � 5; x=Xc0 � 0:5, and s � 2p=x we have d~b

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

r=pT2
p

f ðtÞ=60. Figure 6 shows several examples of par-

ticle trajectories for a1ðsÞ ¼ 1=ð1� s2Þ and different values

of r. Initially, all particles are located close to the bottom of

the potential well (I0, the initial value of I, is significantly

smaller than S=2p). In the absence of additional fluctuations

(r¼ 0), the adiabatic invariant I is conserved and the particle

escapes from the resonance when S ¼ 2pI0. In a system with

magnetic field fluctuations (r 6¼ 0), however, the conserva-

tion of I is broken and the invariant may increase or decrease

with time (the profile I(s) depends on realizations of the ran-

dom function f along the trace). However, decreasing I does

not change the type of motion (a particle remains trapped),

but increasing I may cause detrapping. For that purpose, in

Fig. 6, we chose trajectories with increasing I. A stronger

fluctuation level corresponds to a larger rate of I variation

and, as a result, to earlier particle escape from resonance

when I ¼ S=2p. The bottom panel of Fig. 6 shows the effec-

tive increase of the area surrounded by the particle trajectory

in the ð/;PÞ plane.

B. Landau resonance with oblique whistler waves

Recent spacecraft observations have revealed the exis-

tence of a substantial population of very intense oblique

whistler-mode waves in the radiation belts.2,18,19,84 These

waves propagate with a large angle h > hg between their

k-vector and the background magnetic field (where cos hg ¼
2x=Xc0 and hg is the so-called Gendrin angle26). Propagating

in an almost electrostatic mode and having a large parallel

electric field,2 such oblique waves are able to trap energetic

(�10� 100 keV) electrons via the Landau resonance.9,53 The

corresponding frequency of trapped motion Xtr is determined

by the electric field amplitude Ew: Xtr �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

keEw=m
p

wðsÞ.
The corresponding resonant velocity is vR0 ¼ x=kk
¼ x=ðk cos hÞ. Accordingly, we consider h ¼ hg and rewrite

Eq. (20) for K0

K0 ¼
2p

xs

4r

EwB0

N3 x4

X
4
c0

Xc0R0

c
: (28)

The refractive index N for the Gendrin mode is

N ¼ kc=x ¼ xpe=x. Thus, substituting the numerical factors

listed below Eq. (24) into Eq. (28), we readily obtain

K0 �
2p

xs

r=pT2

Ew=2:7mV=m

L

5

� �4
x

Xc0

: (29)

Typical amplitudes of intense oblique chorus wave are

within the range Ew 2 ½10; 200	 mV/m (see, e.g., Refs. 2, 18,

and 74). For s � 2p=x and given values of K0, we plot in

Fig. 5 (central panel) the corresponding fluctuation ampli-

tude r1=2 as a function of main wave amplitude Ew. At

L � 5, where a substantial population of oblique chorus

waves has been observed,1 a moderate level of additional

magnetic field fluctuations
ffiffiffi

r
p 2 ½1; 10	 pT appears to be

sufficient to significantly destroy the trapped particle motion

(at larger L-shells, the required level of r is even smaller). If

one considers coherent magnetic fluctuations corresponding

to parallel whistler-mode waves with xf � x and kf � k,

jvR0j must be replaced by jvef f j ¼ jvR0 � x=kj in K0. It yields

an additional multiplicative factor �1=ð1� cos hgÞ > 1 in

K0 and therefore a slightly stronger effect.

C. Cyclotron resonance with EMIC waves

Strong EMIC waves are observed by spacecrafts mainly

during geomagnetically disturbed conditions and inside

regions of enhanced plasma density on the duskside.43,81

These waves play an important role in the scattering of rela-

tivistic and especially ultra-relativistic electrons and can

ultimately precipitate them into the atmosphere.33,39,68,75

Moreover, the very high intensity of EMIC waves leads to

nonlinear wave-particle interactions, including the trapping

of relativistic electrons.5,38,58,59 Let us consider here the

hydrogen band of EMIC waves.43,68 The dispersion relation

of such parallel EMIC waves is

FIG. 6. The top panel shows the profile of the area S surrounded by the sepa-

ratrix and several profiles of adiabatic invariants I calculated for different

values of r. The bottom panel shows fragments of particle trajectories in the

ð/;PÞ plane (the last period before escaping from resonance). The dashed

curve in the bottom panel shows a fragment of particle trajectory at the ini-

tial time (it is the same for all trajectories).
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N ¼ ck

x
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
pH

XcH XcH � xð Þ

s

; (30)

where the hydrogen plasma frequency is xpH ¼ g1=2xpe, and

the proton gyrofrequency is XcH ¼ gXc0, with g ¼ me=mH

the electron to proton mass ratio. Since one has x � Xc0,

the corresponding electron velocity at cyclotron resonance is

simply vR0 � Xc0=ðckÞ (e.g., see Ref. 68), while c can reach

10� 15 and must therefore be retained. Using Eq. (30), we

rewrite Eq. (20) as

K0 ¼
2p

xs

rc2g5=2

BwB0

x3
pe

X
3
c0

x=XcHð Þ4

1� x=XcHð Þ3=2
Xc0R0

c
: (31)

We substitute numerical estimates listed below Eq. (24) into

Eq. (31)

K0 �
2p

xs

c2 xpe=Xc0

� �3

8 � 106
r=nT2

Bw=nT

L

5

� �

x=XcHð Þ4

1� x=XcHð Þ3=2
: (32)

We consider 5MeV electrons (a typical energy for resonant

interaction with EMIC waves, see Refs. 58 and 59),

xpe=Xc0 � 15 (EMIC waves are generally observed in the

regions with enhanced plasma density33), wave amplitude is

about 1 nT (see statistics in Ref. 43), and L¼ 5. In the pres-

ence of additional magnetic field fluctuations in the same fre-

quency range as EMIC waves (i.e., with s � 2p=x), electron
trapping by EMIC waves is considerably more stable than

trapping by whistler-mode waves: the amplitude
ffiffiffi

r
p

of the

additional fluctuations must reach the same level as the

EMIC wave amplitude Bw even to merely get K0 ¼ 0:2.
Actually, the effect of such extremely low frequency mag-

netic field fluctuations becomes important only for EMIC

waves with x=XcH > 0:9 while general spacecraft statistics

show that the typical frequency of EMIC waves in the

magnetosphere is rather x=XcH � 0:5 (see, e.g., Ref. 43).
However, EMIC waves are frequently observed in high

density regions of the magnetosphere (like plasmaspheric

plumes or just inside the plasmapause) in conjunction with

whistler-mode hiss waves. The latter waves have much

higher frequencies than EMIC waves, typically correspond-

ing to 2p=s ’ 200XcH. Magnetic field fluctuations from such

considerably higher frequency waves are expected to perturb

trapping by EMIC waves much more efficiently than fluctua-

tions in the same frequency range. As a result, strong hiss-

like waves with amplitudes reaching locally �15% of EMIC

wave amplitudes could significantly reduce the efficiency of

trapping by intense EMIC waves (see Fig. 5 (right panel)).

Recent Van Allen Probe measurements have shown that hiss

amplitudes often reach >10% of EMIC wave amplitudes

during moderately disturbed geomagnetic conditions,39

while intense hiss waves reaching �0:2 nT have been

observed at high L on the duskside.42,79 However, such

strong hiss-like waves (or higher-frequency chorus) would

be required to occur on the same magnetic field lines as the

considered EMIC waves, which may not be always the case

(e.g., see Ref. 86). Besides, it is worth noting that for trap-

ping by EMIC waves, the corresponding vR0 is much larger

than the phase velocity of parallel hiss waves, so that vef f �
vR0 in this case.

IV. SPACECRAFT OBSERVATIONS

To derive equations describing the effects of magnetic

field fluctuations on trapped particle motion, we assume that

the timescale of these fluctuations is comparable with the pe-

riod of the main wave trapping the electrons. To illustrate

the presence of such fluctuations in real systems, we show

two examples of observations of intense whistler-mode

waves (highly oblique and parallel) in the radiation belts by

one of the two Van Allen Probes41 spacecrafts (see Fig. 7).

The top row of panels shows one example of oblique

whistler-mode waves (strong parallel electric field and weak

magnetic field). In this spectrum, the central peak at �1:5
kHz is surrounded by fluctuations (for instance at �1:8 kHz

or �3 kHz) with a magnetic field power two-three orders of

magnitude smaller than the main wave intensity. Magnetic

field data show that the wave amplitude reaches �30 pT,

while the amplitude of fluctuations is about �1� 2:5 pT.

Figure 5 (central panel) shows that such fluctuations can sig-

nificantly influence the dynamics of trapped particles. In the

case of the intense weakly oblique whistler wave at �2:4
kHz shown in bottom panels of Fig. 7, the intensity of nearby

magnetic field fluctuations is also significant. The main wave

amplitude is about �250 pT, while surrounding fluctuations

(at �1:7 kHz or �3:9 kHz) have amplitudes �2� 8 pT. The

latter level of fluctuations is high enough to result in particle

escape from the resonance (see Fig. 5 (left panel)).

Therefore, we can conclude that the effects discussed in our

paper can actually occur under realistic conditions in the

Earth’s radiation belts.

V. ALTERNATIVE MECHANISMS OF DESTRUCTION
OF TRAPPING MOTION

In the present study, the destruction of trapped particle

motion is due to external, non-resonant magnetic field fluctu-

ations, included as externally driven variations of the main

system parameters. However, there are two other important

sources of similar variations.

A. Modulation of wave amplitude

Intense whistler waves are usually propagating in the

form of relatively long wave packets often exhibiting a fine

subpacket structure corresponding to fast modulations of the

wave amplitude.2,31,73,77,84 For resonant whistler-mode waves

with h ¼ 0�, these modulations concern the wave magnetic

field component transverse to the geomagnetic field line,

while, in the case of very oblique quasi-electrostatic whis-

tlers, they concern the wave electric field parallel component.

Such fast modulations can effectively reduce the timespan of

charged particle trapped motion72,73 and may be considered

as fluctuations of the parameter e. In this case, the second

term in the Hamiltonian (7) can be divided into nonperturbed

(ew2 cos/) and perturbed (dew2 cos/) parts. The correspond-

ing change of invariant I over one time step (�s � 2p=Xtr)

can be written (in analogy with Eq. (11)) as
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DI ¼ 1

Xtrg
DH ¼ 1

g
Xtr

de

e
sin/D/: (33)

For VarðDIÞ, we obtain (see Eqs. (12)–(15))

VarðDIÞ � X
3
trIs

2re=2; (34)

where re ¼ Varðde=eÞ and Varðsin/Þ ¼ 1=2. Thus, the cor-

responding parameter K0 is

K0 �
pX2

trsR0

vR0

re ¼
pec

vR0

Xc0sre: (35)

Equation (35) shows that the trapped particle motion is more

unstable for high wave amplitude and a larger timescale of

fluctuations s. Thus, for charged particle trapping by very

intense waves, the effect of strong modulations of the main

wave amplitude can be more dangerous than the essentially

diffusive effects of additional non-resonant magnetic field

fluctuations studied in Section III.

B. Externally driven pitch-angle diffusion

The term a in the Hamiltonian (5) depends on the mag-

netic moment l of trapped particles. In the case of Landau

resonance, l is conserved, while particle trapping into cyclo-

tron resonance results in a variation of l with s (for details,

see Ref. 62). Thus, externally driven fluctuations of l should

result in high-frequency variations of the term a, with a final

effect similar to the effect of magnetic field fluctuations.

Thus, the term a � l can be separated into two parts: undis-

turbed a0 and fluctuating a1 ¼ a0ðdl=lÞ. In this case, the

main equations coincide with equations derived for fluctua-

tions of the magnetic field, while the dimensionless variable

K from Eq. (20) takes the form

K ¼ 2px4
�R0s

X
2
trvR0

rl
w sð Þ
a20 sð Þ

ð

s

a20 s0ð Þds0
w s0ð ÞuR s0ð Þ ; (36)

with rl ¼ Varðdl=lÞ and s the timescale of l variations,

giving

K0 ¼
2p

e

c

vR0

Xc0srl: (37)

Equation (37) provides an estimate of the role of external

pitch-angle (or magnetic moment) diffusion. However, the

quasi-linear pitch-angle diffusion induced by a wide spec-

trum of low amplitude whistler-mode waves seems to be

insufficiently strong (even for highly oblique waves44) to

produce a measurable change in the pitch-angle of particles

within one bounce period of energetic electrons between

their mirror points.45,66 Nevertheless, small-scale intense

electrostatic structures recently observed in the radiation

belts40,46 could bring forth a much more efficient pitch-angle

scattering. Being generated in the form of wide packets with

wide frequency ranges, these structures could interact with

<20 keV electrons47 and the corresponding pitch-angle dif-

fusion could result in a destruction of trapped motion.

Moreover, disturbances to the current of thermal electrons

caused by such electrostatic structures often generate

magnetic field perturbations,83 which could serve as a source

for some of the magnetic field fluctuations considered in

Section III.

VI. CONCLUSIONS

In this paper, we have proposed an approach allowing to

estimate the effect of additional non-resonant magnetic field

fluctuations on the motion of relativistic electrons trapped by

intense waves. Such an approach is principally based on the

consideration of trapped electron oscillations in the phase

FIG. 7. The data are captured on November 1, 2012 by one Van Allen Probes spacecraft.41 Electric and magnetic field waveforms were produced by the

EFW85 and EMFISIS34 detectors. The top panels show a very oblique wave with h � 70�. The bottom panels present waves with h � 10�. Left panels show
the parallel (relative to the background magnetic field) electric field component. Middle panels present one of the transverse components of wave magnetic

field. Spectra for the intervals indicated by colors are displayed in the right panels.
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plane where a corresponding adiabatic invariant can be intro-

duced. Magnetic field fluctuations can break the conservation

of this invariant and ultimately result in electron detrapping.

This general approach has been used here to estimate the sta-

bility of trapped motion in three systems describing electron

acceleration in the Earth’s radiation belts.

We show that the first and second systems describe elec-

tron trapping into the first cyclotron and Landau resonances

by intense parallel and oblique whistler-mode waves. For typ-

ical wave amplitudes (�0:1� 1 nT or �10� 100 mV/m),

additional magnetic field fluctuations with an intensity �1�
100 pT2 can significantly disrupt the trapped motion. The

fluctuation intensity necessary for significant perturbations of

the trapped motion varies with L-shell as �L�4, and it is

larger for a smaller frequency x=Xc0 of the main wave.

The third system concerns electron trapping into the first

cyclotron resonance by intense EMIC waves. For typical

wave amplitudes �1 nT, significant perturbations of the

trapped motion can be obtained only for much higher fre-

quency magnetic field fluctuations at a high intensity

�10 000 pT2. Thus, trapped motion appears more stable than

in the two previous cases. It can be perturbed only for high-

frequency EMIC waves with x=XcH 
 0:5.
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