This is the accepted manuscript made available via CHORUS. The article has been published as:

Stability of ring patterns arising from two-dimensional particle interactions

Theodore Kolokolnikov, Hui Sun, David Uminsky, and Andrea L. Bertozzi
Phys. Rev. E 84, 015203 - Published 22 July 2011
DOI: 10.1103/PhysRevE.84.015203

Stability of ring patterns arising from two dimensional particle interactions

Theodore Kolokolnikov*, Hui Sun ${ }^{\dagger}$, David Uminsky ${ }^{\dagger}$, Andrea L. Bertozzi ${ }^{\dagger}$
* Department of Mathematics and Statistics, Dalhousie University, Halifax, Canada and
${ }^{\dagger}$ Department of Mathematics, UCLA, Los Angeles, CA 90095, USA

Abstract

Pairwise particle interactions arise in diverse physical systems ranging from insect swarms to self-assembly of nanoparticles. In the presence of long-range attraction and short-range repulsion, such systems can exhibit bound states. We uses linear stability analysis of a ring equilibrium to classify the morphology of patterns in two dimensions. Conditions are identified that assure the wellposedness of the ring. In addition, weakly nonlinear theory and numerical simulations demonstrate how a ring can bifurcate to more complex equilibria including triangular shapes, annuli, and spot patterns with N -fold symmetry. Many of these patterns have been observed in nature although a general theory has been lacking, in particular how small changes to the interaction potential can lead to large changes in the self-organized state.

PACS numbers: 87.18.Ed, 87.10.Ed, 05.45.-a

Collective behavior of interacting systems [1] is a captivating natural phenomenon. Such systems form patterns that inspire evolutionary [2] and biological [3] questions as well as structural and physical ones. More recently, such natural behavior has inspired intelligent design of control algorithms for unmanned vehicles. Particle interaction models are extremely prevalent in the biology literature in many contexts such as insect aggregation [4], locust swarms [5]; however they also arise in other important physics applications such as self-assembly of nanoparticles [6], theory of granular gases [7], and molecular dynamics simulations of matter [8]. Regardless of whether the model is meant to describe a complex biological system such as a flock, a bacterial colony or a locust swarm, or a basic physics application derived from first principles, a common feature of all particle interaction models is the attractive-repulsive nature of the potential. Often a 'steady state' pattern can be formulated as a minimizer of a pairwise interaction energy

$$
\begin{equation*}
E(\vec{x})=\sum_{i, j \neq i} P\left(\left|x_{i}-x_{j}\right|\right) \tag{1}
\end{equation*}
$$

for some potential P.
Typically, $P(r)$ is a convex function having a single positive minimum, \vec{x} is the position vector of N particles. A potential $P(r)$ is called confining if the diameter $d=$ $\max _{i, j}\left|x_{i}-x_{j}\right|$ of the steady state is bounded as $N \rightarrow \infty$. For confining potentials, the equilibrium configuration is a minimizer of a high dimensional non-convex problem for which a fully developed predictive theory is elusive. Our analysis specifically applies to such potentials.

Recent analysis [9] shows that scaling behavior of equilibrium configuration depends on the classical H-stability properties of the interaction potential [10] but does not provide a theory for symmetry breaking of the equilibrium configuration. The last five years has seen a surge of interest in the physics literature for confining potentials which tend to yield complex equilibrium patterns. One particularly interesting question is how to infer properties of the local interactions from large scale behavior of

FIG. 1: Top: Minimizers of the energy (1) with force law (3). Diameter $d=\max _{i, j}\left|x_{i}-x_{j}\right|$ ranges from 0.3 in top-left to 3 in bottom-right. Bottom: time evolution of (4) with values $a=8, b=0.67$.
the self-organized state [11]. On the other hand, selfassembly in materials involves design of interaction potentials that lead to desired complex structures [12].

The goal of this letter is to develop a theory for prediction and classification of equilibrium patterns based on properties of the interaction potential. For simplicity, we present case studies from two different families of interaction forces $F(r)=-P^{\prime}(r)$, the power law force

$$
\begin{equation*}
F(r)=r^{p}-r^{q} ; \quad 0 \leq p<q \tag{2}
\end{equation*}
$$

and a smoothed step discontinuity

$$
\begin{equation*}
F(r)=\tanh ((1-r) a)+b ; 0<a ;-\tanh (a)<b<1 \tag{3}
\end{equation*}
$$

Both of these families yield confined patterns, so that the spatial extent of the pattern remains bounded as $N \rightarrow \infty$. Minimizers of (1) with confining potentials can exhibit intricate structure as shown in Figure 1, for the case (3). Note the complex patterns ranging from rings and annuli to more complex structures exhibiting period two and three symmetry breaking to very complex 'soccer ball' like shapes. Related patterns (in particular the annuli and spotted patterns) have been observed in experiments of stressed bacterial colonies [13] which have associated related nonlocal models [14]. We present a methodology for analyzing structures of these patterns from basic properties of the interaction potential.

Our analysis is based on stability of the interaction energy under a gradient flow, although the results could be applied to more sophisticated interaction models such as those arising from the Morse potential considered in [9]. The gradient flow equations arising from (1) are

$$
\begin{equation*}
\frac{d x_{j}}{d t}=\frac{1}{N} \sum_{k, k \neq j} F\left(\left|x_{j}-x_{k}\right|\right) \frac{x_{j}-x_{k}}{\left|x_{j}-x_{k}\right|}, \quad j=1 \ldots N \tag{4}
\end{equation*}
$$

Simulation of this system with a large number of particles results in a long time equilibrium shape. The shapes in Fig 1 are the result of a forward Euler time integration of (4) with $N=5000$, computed to $t=1000$ with $d t=0.5$. Up to rotation, the results are independent of initial condition, typically taken to be randomly distributed inside a unit square. A well-known approach in pattern formation is to consider stability of a constant state for which theory can often be derived in analytic form, and then consider bifurcations from that state to understand structures of patterns. Since the potential is confining, it does not make sense to consider stability of 'flat' states but rather that of 'ring' states in which particles are concentrated at a particular radius, as seen e.g. in the lower left corner of Figure 1. Any potential that has repulsion dominant in the near field and attraction dominant in the far field has an exact ring solution whose radius r_{0} satisfies

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{2}} F\left(2 r_{0} \sin \theta\right) \sin \theta d \theta=0 \tag{5}
\end{equation*}
$$

where we assume a continuum limit for N is large.
The ring is a special case of an extremum of (1) in which the particles concentrate on a one dimensional curve. In the limit $N \rightarrow \infty$ such curves satisfy the continuum equation [15]

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\rho\left|\frac{\partial z}{\partial \alpha}\right|\right)=0, \quad \frac{\partial z}{\partial t}=K * \rho \tag{6}
\end{equation*}
$$

where $z(\alpha ; t)$ is a parametrization of the curve; $\rho(\alpha ; t)$ is its particle density and $K * \rho=$

FIG. 2: Stability region for (2). The curves shown correspond to the boundaries of the stability $\operatorname{det}(M(m))=0$, with $m=$ $3,4,5$ and $m=\infty$, as indicated. The line $p=q$ is also drawn. Crossing any of the curves destabilizes the ring. The intersection of $m=\infty$ and $m=3$ boundaries is at $p=$ $0.10779, q=9.277102$. Black dot is the position where we compute the pitchfork bifurcation in Figure 3.
$\int F\left(\left|z(\alpha)-z\left(\alpha^{\prime}\right)\right|\right) \frac{z(\alpha)-z\left(\alpha^{\prime}\right)}{\left|z(\alpha)-z\left(\alpha^{\prime}\right)\right|} \rho\left(\alpha^{\prime}, t\right) d S\left(\alpha^{\prime}\right)$ with $d S$ denoting the arclength element. The formula (6) follows from conservation of mass and is a generalization of the classical Birkhoff-Rott equation for 2D vortex sheets [16] - applied to gradient vector fields rather than divergence free flow. See [15] for details. Linear analysis of the B-R equation describes the classical Kelvin-Helmoltz instability in fluid dynamics and we use this as an analogy to our study of equilibrium patterns for the pairwise interaction energy (1).

Consider the perturbations of the ring of N particles of the form $x_{k}=r_{0} \exp (2 \pi i k / N)\left(1+\exp (t \lambda) \phi_{k}\right)$ where $\phi_{k} \ll 1$. After some algebra we obtain

$$
\begin{array}{r}
\lambda \phi_{j}=\frac{1}{N} \sum_{\substack{k=1 . N \\
k \neq j}} G_{+}\left(\frac{\pi(k-j)}{N}\right)\left(\phi_{j}-\phi_{k} \exp \left(\frac{2 \pi i(k-j)}{N}\right)\right) \\
+G_{-}\left(\frac{\pi(k-j)}{N}\right)\left(\bar{\phi}_{k}-\bar{\phi}_{j} \exp \left(\frac{2 \pi i(k-j)}{N}\right)\right),
\end{array}
$$

where $j=1 \ldots N, G_{ \pm}(\theta)=\frac{1}{2}\left(G_{1} \pm G_{2}\right)$, and

$$
G_{1}(\theta)=F^{\prime}\left(2 r_{0}|\sin \theta|\right), \quad G_{2}(\theta)=\frac{F\left(2 r_{0}|\sin \theta|\right)}{2 r_{0}|\sin \theta|}
$$

Next we substitute $\phi_{j}=b_{+} e^{2 m \pi i j / N}+b_{-} e^{-2 m \pi i j / N}$ where we assume that $b_{ \pm}$are real, and m is a strictly positive integer. This leads to a 2 x 2 eigenvalue problem $\lambda\binom{b_{+}}{b_{-}}=M(m)\binom{b_{+}}{b_{-}}$where

$$
M(m):=\left[\begin{array}{cc}
I_{1}(m) & I_{2}(m) \tag{7}\\
I_{2}(m) & I_{1}(-m)
\end{array}\right] ; \quad m=1,2, \ldots
$$

FIG. 3: Bifurcation diagram for interaction force (2), with $p=0.5$. The solid curve is derived from weakly nonlinear analysis; while the dots are simulations of (4).

$$
\begin{aligned}
& I_{1}(m)=\frac{4}{N} \sum_{l=1}^{N / 2} G_{+}\left(\frac{\pi l}{N}\right) \sin ^{2}\left((m+1) \frac{\pi l}{N}\right) \\
& I_{2}(m)=\frac{4}{N} \sum_{l=1}^{N / 2} G_{-}\left(\frac{\pi l}{N}\right)\left[\sin ^{2}\left(\frac{\pi l}{N}\right)-\sin ^{2}\left(m \frac{\pi l}{N}\right)\right]
\end{aligned}
$$

Taking the limit $N \rightarrow \infty$, we obtain

$$
\begin{align*}
& I_{1}(m)=\frac{4}{\pi} \int_{0}^{\frac{\pi}{2}} G_{+}(\theta) \sin ^{2}((m+1) \theta) d \theta \tag{8a}\\
& I_{2}(m)=\frac{4}{\pi} \int_{0}^{\frac{\pi}{2}} G_{-}(\theta)\left[\sin ^{2}(\theta)-\sin ^{2}(m \theta)\right] d \theta \tag{8b}
\end{align*}
$$

The ring is linearly stable if the eigenvalues λ of (7) are non-positive for all integers $m \geq 1$; otherwise it is unstable. There are two possible types of instabilities - ones in which the ring is long-wave unstable, corresponding to an instability of a low order mode (small m) but stability of higher order modes. The second type corresponds to illposedness of the ring in which the eigenvalues are positive in the $m \rightarrow \infty$ limit and grow as m increases. In the latter case the ring completely breaks up and often forms a fully two-dimensional pattern. Ill-posedness in curve evolution problems is known in other problems, most notably the Kelvin-Helmholtz instability of the 2D vortex sheet $[15,16]$. However the types of nonlinear structures seen here are completely different from the vortex roll-up behavior familiar from incompressible fluids.

An example of a stable ring is provided by the force $F(r)=r-r^{2}$, for which the matrix $M(m)$ and its eigenvalues can be explicitly computed. More generally, if $F(0)>0$ and F is C^{2}, the asymptotics for large m yield $\operatorname{trace} M(m) \sim \frac{F(0)}{\pi r_{0}} \ln m>0$ as $m \rightarrow \infty$, so that all high modes m are unstable. It follows that a necessary condition for well-posedness of a ring is that $F(0)=0$. If in addition, F is C^{4}, then using integration by parts we obtain
$\operatorname{tr} M(m) \sim \frac{2}{\pi} \int_{0}^{\pi / 2}\left(\frac{F\left(2 r_{0} \sin \theta\right)}{2 r_{0} \sin \theta}-F^{\prime}\left(2 r_{0} \sin \theta\right)\right) d \theta+O\left(\frac{1}{m^{2}}\right)$ $\operatorname{det}(M(m)) \sim \operatorname{tr} M(m) \frac{F^{\prime \prime}(0) r_{0}}{m^{2}}+O\left(\frac{1}{m^{4}}\right)$.

FIG. 4: Stability of discrete vs. continuous system for $F(r)=\tanh (4(1-r))-0.5$. Top: $\operatorname{det}(M(m))$. Dashed line corresponds to continuum eq. (10) and crosses to discrete eq. (9) with $N=120,160$. Instability occurs iff $\operatorname{det}(M(m))<0$. Bottom: steady states of discrete dynamics with N as indicated; inserts show the blowup of the ring structure.

In summary, if $F(r)$ is C^{4} on $\left[0,2 r_{0}\right]$, then sufficient conditions for linear well-posedness of a ring are:

$$
\begin{equation*}
F(0)=0, F^{\prime \prime}(0)<0, \int_{0}^{\pi / 2} G_{1}(\theta)+G_{2}(\theta) d \theta<0 \tag{9}
\end{equation*}
$$

In particular, the ring solution for the force (3) is always ill-posed, since $F(0)>0$. Another general result is if F is odd and C^{∞} on $\left[0,2 r_{0}\right]$, where $\operatorname{det}(M(m))=0$ for all m; the ring then has infinitely many zero eigenvalues. This observation may be relevant for the Kuramoto model $F(r)=\sin (r)$ [17].

For the force of type (2) with $0<p<q$, the asymptotics of the mode $m=\infty$ can be computed in terms of Gamma functions. It is shown in [18] that the mode $m=\infty$ is stable if and only if $p q>1$ and $p<1$. In addition, the low modes $m=2,3,4, \ldots$ may also become unstable, see Figure 2. The dominant unstable mode corresponds to $m=3$, which bounds the stability region from above. An implicit formula for the boundary can be computed analytically and it is shown in Figure 2. Similarly, the stability boundary for $m=2$ mode happens to lie well outside the area shown in Figure 2. The stability boundaries for modes $m=4,5, \ldots$ are also expressed in terms of higher order polynomials in p, q.

We now use weakly nonlinear theory to analyze how the transition of stability occurs. Figure 3 is a bifurcation ;diagram for interaction force (2), taking $p=0.5$, where we record the change of the quantity $\Delta r=r_{M}-r_{m}$ according to the bifurcation parameter q, with r_{M} and r_{m} being the maximum and minimum of the displacement
from the origin. Numerical simulation for the whole system (4) are done with 100 particles with random initial condition, plotted as black dots. At $q=4.95$, the steady state solution remains a stable ring; while at $q=4.98$, the 3 mode becomes slightly unstable and the points tend to move tangentially to break the ring into a triangular shape. By further increasing q, the points on the curve continue to move towards a more triangular shape. The weakly nonlinear analysis confirms that this process is in fact a supercritical pitchfork bifurcation. The analytical form of the pitchfork is given by as $\Delta r=\sqrt{\max \left(0, \tau\left(q-q_{c}\right)\right)}$, with $q_{c} \approx 4.9696$ and bifurcation value $\tau \approx 0.01188$, which is plotted as a solid line in Figure 3. See [18] for detailed derivation.

In fact, a more general result can be stated as follows [18]: Near the stability transition of a fixed longwave (small m) mode, if the interaction force has a non-vanishing first derivative with respect to the bifurcation parameter, a pitchfork bifurcation is always exhibited. For example, a mode three bifurcation occurs in the first column of Figure 1 at the value $a \approx 7.912$, and second column at $a \approx 8.2115$.

Even if (4) is ill-posed in the continuous limit $N \rightarrow \infty$, the ring of discrete particles (4) may be stable with a relatively large N as in Figure 4. Note the slight instability
for $N=160$ but stability when $N=120$. The continuous limit is well approximated with $N=5000$; the resulting steady state appears to be a thin annulus, whose inner and outer radius are approximately r_{0} given by (5). See [18] for detailed analysis.

So far, we have concentrated on simple forces $(2,3)$ which do not decay for large r. However this is not a crucial restriction. For example, take $F(r)=(r-$ $\left.r^{2}\right) \exp (-a r)$. It can be shown that a ring solution exists for all $0 \leq a \leq 3.245$ and is stable for all $0 \leq a \leq 0.923$. As a is increased past 0.923 , the ring becomes ill-posed due to the violation of the third equation in (9). In general, one can add sufficient far-field decay without changing our analysis.

Numerics suggest that random initial conditions tend to converge to ring solutions, whenever the ring is stable. Global stability of the ring remains an open question.

Acknowledgements: T.K. is supported by NSERC grant 47050. D.U. is supported by NSF grant DMS0902792 and a UC Presidents Fellowship. A.B. and H.S. are supported by NSF grants DMS-0907931 and EFRI-1024765 and ONR grant N000141010641. We thank the anonymous referees for their careful reading and useful suggestions. We thank Andrew Bernoff for helpful comments.
[1] S. Camazine et al. Self Organization in Biological Systems (Princeton Univ. Press, Princeton, 2003); I. Prigogine, Order out of Chaos (Bantam, New York, 1984).
[2] J. K. Parrish and L. Edelstein-Keshet, Science 284, 99 (1999); S. A. Kaufmann, The Origins of Order: SelfOrganization and Selection in Evolution (Oxford University Press, New York, 1933).
[3] I. D. Couzin, J. Krauss, N. R. Franks, and S. A. Levin, Nature (London) 433, 513 (2005); I. Reidel, K. Kruse, and J. Howard, Science 309, 300 (2005); G. Flierl, D. Grünbaum, S. A. Levin, and D. Olson, J. Theor. Biol. 196, 397 (1999).
[4] A. Mogilner, L. Edelstein-Keshet, L. Bent, A. Spiros, J. Math. Biol. 47, 353 (2003); L. Edelstein-Keshet, J. Watmough, D. Grunbaum, J. Math. Biol. 36, 515 (1998).
[5] C.M. Topaz, A.J. Bernoff, S. Logan, and W. Toolson, Eur. Phys. J. Special Topics 157, 93-109 (2008); C.M. Topaz, A.L. Bertozzi, and M.A. Lewis, Bull. Math. Biol. 68:1601-1623 (2006); A.J. Leverentz, C.M. Topaz and A.J. Bernoff, SIAM J. Appl. Dyn. Sys. 8(3),880-908 (2009).
[6] D. D. Holm and V. Putkaradze, Phys. Rev. Lett. 95, 226106 (2005).
[7] N. V. Brilliantov and T. Pöschel, in Granular Gases, vol 564, Lecture Notes in Physics, Springer-Verlag, Berlin, 2000; R. Ramirez, T. Pöschel, N. V. Brlliantov, and and T. Schwager, Phys. Rev. E, 60, 4465 (1999); G. Toscani RAIRO Modél Math. Anal. Numér. 34, 1277 (2000).
[8] J. M. Haile Molecular Dynamics Simulation: Elementary

Methods (John Wiley and Sons, Inc., New York, 1992).
[9] H. Levine and W.J. Rappel, Phys. Rev. E 63, 017101 (2000); M.R. D’Orsogna, Y.L. Chuang, A.L. Bertozzi, and L. Chayes, Phys. Rev. Lett., 96 (2006), paper 104302; Y.-L. Chuang, M. R. D'Orsogna, D. Marthaler, A. L. Bertozzi, and L. Chayes, Physica D, 232, 33-47, 2007.
[10] D. Ruelle, Statistical Mechanics (Benjamin, New York), 1969.
[11] R. Lukeman, Y.-X. Li, and L. Edelstein-Keshet, PNAS $107(28), 12576$ (2010).
[12] M. C. Rechtsman, F. J. Stillinger, and S. Torquato, PRL 95, 228301 (2005), PRE 75, 031403 (2007); H. Cohn and A. Kumar, PNAS 106 (24), 9570 (2009).
[13] L. Tsimring, H. Levine, I. Aranson, E. Ben-Jacob, I. Cohen, O. Shechet, and W. Reynolds, PRL 75(9) 1859 (1995); A. M. Deprato, A. Samadani, A. Kudrolli, and L. S. Tsimring, PRL 87(15) 158102.
[14] E. F. Keller and L.A. Segel, J. Theor. Biol., 30:225234(1971); M.P. Brenner, P. Constantin, L. P. Kadanoff, A. Shenkel and S.C. Venkataramani, Nonlinearity 12:4, 1071-1098(1999); MP Brenner, LS Levitov, EO Budrene, Biophys. J. 74:4, 1677-1693 (1998).
[15] H. Sun, D. Uminsky, A. Bertozzi, preprint 2010.
[16] R. Krasny, J. Fluid Mech. 167, 65-93 (1986)
[17] S.H. Strogatz, Physica D 143 (2000) 1-20.
[18] H. Sun, T. Kolokolnikov, D. Uminsky, A. Bertozzi, preprint 2011.

