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Abstract

The SARS-CoV-2 pandemic has led to unprecedented, nearly real-time genetic tracing due to

the rapid community sequencing response. Researchers immediately leveraged these data to

infer the evolutionary relationships among viral samples and to study key biological questions,

including whether host viral genome editing and recombination are features of SARS-CoV-2

evolution. This global sequencing effort is inherently decentralized andmust rely on data col-

lected bymany labs using a wide variety of molecular and bioinformatic techniques. There is

thus a strong possibility that systematic errors associated with lab—or protocol—specific prac-

tices affect some sequences in the repositories. We find that some recurrent mutations in

reported SARS-CoV-2 genome sequences have been observed predominantly or exclusively

by single labs, co-localize with commonly used primer binding sites and aremore likely to affect

the protein-coding sequences than other similarly recurrent mutations. We show that their inclu-

sion can affect phylogenetic inference on scales relevant to local lineage tracing, andmake it

appear as though there has been an excess of recurrent mutation or recombination among viral

lineages.We suggest how samples can be screened and problematic variants removed, and

we plan to regularly inform the scientific community with our updated results asmore SARS-

CoV-2 genome sequences are shared (https://virological.org/t/issues-with-sars-cov-2-

sequencing-data/473 and https://virological.org/t/masking-strategies-for-sars-cov-2-alignments/

480). We also develop tools for comparing and visualizing differences among very large phylog-

enies and we show that consistent clade- and tree-based comparisons can bemade between

phylogenies produced by different groups. These will facilitate evolutionary inferences and com-

parisons among phylogenies produced for a wide array of purposes. Building on the SARS-

CoV-2 Genome Browser at UCSC, we present a toolkit to compare, analyze and combine

SARS-CoV-2 phylogenies, find and remove potential sequencing errors and establish a widely

shared, stable clade structure for a more accurate scientific inference and discourse.
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Author summary

SARS-CoV-2 genome sequences have been produced by hundreds of labs across the

world. Idiosyncratic data generation or processing has the potential to inject non-random

errors into genome sequences provided by individual lab groups. Here we show that these

sites can be detected and removed by identifying variants that appear to reoccur many

times across a phylogeny and are associated with specific lab groups. We show that the

identified variants are consistent with expectations for recurrent error. These sites may

produce spurious signatures of natural selection and viral recombination. We also provide

methods for comparisons and visualization of extremely large phylogenies.

Introduction

Extremely rapid whole-genome sequencing has enabled nearly real-time tracing of the evolu-

tion of the SARS-CoV-2 pandemic [1–6]. By leveraging sequence data produced by labs

throughout the world, researchers can trace the transmission of the virus across human popu-

lations [7–15]. Typically, viral evolution is encapsulated by a phylogenetic tree relating all of

the virus samples in a large set to one another [6,16–20]. However, despite efforts to mitigate

the impact of sequencing and assembly errors, and to provide standardized datasets for real-

time analysis [21], inferred phylogenetic histories of the outbreak often differ between analyses

of different research groups (Results) and these inferred histories sometimes differ between

analyses performed by the same group with different data (e.g., 31 different Nextstrain trees

produced between 3/23 and 4/30: Results). These differences may be created or accentuated

when samples that contain unidentified sequencing errors are incorporated into the phyloge-

netic tree. Defining stable and easily referenced major clades of the virus is essential for epide-

miological studies of viral population dynamics [18,19]. An understanding of how errors

might be affecting the trees that are being published is essential to achieving that goal (Fig 1).

It can be difficult to distinguish sequencing errors of different types from genuine transmit-

ted and non-transmitted mutations in genome sequences. Taking a conservative approach,

many researchers remove variants that are observed only once during the evolution of the

virus when constructing a phylogenetic tree, as these may be more likely to be errors [22,23] or

non-transmitted mutations. However, systematic errors, where the same error from a com-

mon source is introduced many times in otherwise distinct viral genome sequences, are not

removed by that approach [24,25]. These are more problematic, as they can appear as if they

are genuine transmitted mutations (Fig 1). This might result from recurring errors in data gen-

eration or processing, or due to contamination among samples. Each case induces an apparent

mutation that may be challenging to reconcile with the real structure of the viral tree. Conse-

quently, systematic errors can produce support for erroneous relationships between viral iso-

lates and destabilize tree-building efforts. One possible approach is to mask out specific sites in

the genome sequence where recurring errors are suspected, as suggested previously [24]. How-

ever, genuine recurrent mutations that may contain important information about properties

of viral evolution [7,9,26–28] are sometimes hard to distinguish from recurrent systematic

errors, and this could obscure important biology. Here, we present results that we hope will

help the community make the critical decision as to how to identify and treat potential errors

in SARS-CoV-2 genome sequences.

In addition to their influence on phylogenetic inference, systematic errors can also lead to

erroneous inferences about viral mutation processes, recombination and selection. For
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example, artefactual biases in mutational processes could confound signatures of mutational

hotspots [29–34]. The issue of whether or not recombination has occurred during the outbreak

is critical to the immunological battles against the virus and is under intense debate [7,35–41].

Because many tests of recombination assume that all mutations can only occur once at each

site, recurrent mutation and systematic errors can confound signatures of recombination

[7,27,36]. Finally, recurrent mutations have been identified as a possible signature of elevated

mutation rates or natural selection in SARS-CoV-2 [9,14,24,26,27,30,34,36,42], but some of

these apparent instances of selection may be due to systematic errors in the sequences. Confu-

sion about recurrent mutations and recombination affects our understanding of host response

and influences our decisions about which viral molecular processes or specific immune epi-

topes we might want to target in vaccine development. Thus, it is essential that we explore the

possible extent and impact of systematic errors in the viral genome sequences.

Another basic problem in current investigations of viral evolution is widespread phyloge-

netic uncertainty. In part, this has prevented the community from settling on a consensus defi-

nition of distinct viral clades (“(sub)types”, “groups”, “lineages”) representing the early

divergence events, producing communication problems in the scientific discourse [18,43].

Furthermore, many groups are making phylogenetic trees with widely varying goals, including

Fig 1. Effect of recurrent sequencing errors on phylogenetic inferences. (Left) Pictorial representation of how the evolutionary histories of viral sequences (long black
lines adjacent to tree nodes) can be traced on a phylogenetic tree using mutational events (green and blue circles). In this case, each mutation occurs once independently.
(Right) The introduction of recurrent errors (gray and brown circles) can obscure the true evolutionary relationship between sequences leading to the inference of
artifactual subgroups/clades (green-gray, leaves 2 & 3, and gray-brown, leaves 7 & 8) and even the incorrect assignment of viral sequences to subgroups (leaf 6 no longer
correctly groups with the blue subgroup containing leaves 4 & 5). Large boxes group together subgroups based on inferred first mutation. Note that systematic errors must
be non-heritable and their inferred placement on internal branches reflects their impacts on phylogenetic inference. We display this example as ‘clock-like’ for additional
clarity.

https://doi.org/10.1371/journal.pgen.1009175.g001
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dissecting patterns of nucleotide substitution, recurrent mutation, local lineage tracing, and

large-scale phylogenomics [9,18,27]. The resulting topologies vary dramatically in structure,

owing to differences in analysis choices and to phylogenetic uncertainty stemming from lim-

ited genetic diversity in the expanding viral populations [44]. Consistent approaches for identi-

fying commonalities and rectifying differences among trees are therefore foundational to the

efforts to characterize viral evolution and epidemiology. A maximally stable topology will be

essential for consistent nomenclature and facilitating conversations between analyses [18,43].

Our work takes on these two interrelated subjects: systematic errors and phylogenetic

uncertainty. First, we show that hundreds of samples in the current SARS-CoV-2 sequencing

datasets are affected by lab-associated variants, which are potentially erroneous. These variants

distort phylogenetic inferences at scales most relevant to local lineage tracing and impact

inferred patterns of mutational recurrence and recombination. We demonstrate that many

can be identified and removed by cross-referencing patterns of recurrence against the source

sequencing lab, and we provide automated methods for detecting suspicious and highly recur-

rent mutations. Furthermore, we intend to regularly update our methods and results, and

share our current inferred errors and alignment masking recommendations with the scientific

community through the virological.org website (specifically posts https://virological.org/t/

issues-with-sars-cov-2-sequencing-data/473 and https://virological.org/t/masking-strategies-

for-sars-cov-2-alignments/480). Second, to facilitate communication and comparison across

different SARS-CoV-2 phylogenies, we develop approaches for efficiently comparing and visu-

alizing differences among trees. All of the tools and functionality that we describe here are

publicly available and integrated into the UCSC Genome Browser to facilitate rapid visualiza-

tion, data exploration, and cross-referencing among datasets and analyses. We anticipate that

these methods will fuel more accurate continued discovery during the current pandemic and

beyond.

Results/discussion

Nextstrain datasets

Our analyses are built in large part on the work of Nextstrain [16]. This team has already

implemented a number of precautions to remove problematic sites and samples. In particular,

they remove samples that are too divergent from others or whose date of sampling is inconsis-

tent with the number of accumulated mutations. Additionally, all indels relative to the refer-

ence in the resulting multiple alignment are masked. Here, we do not consider the impact of

alternative multiple alignments, upstream filtering methods, or the possible impacts of indels.

Each of these factors has the potential to affect downstream analyses and should be considered

carefully. For our purposes, we anticipate that Nextstrain’s filters will minimize idiosyncratic

errors and should be retained in the majority of future analyses. Here, as a primary example

we use 31 different alignments and phylogenetic trees inferred by Nextstrain from days

between 3/23/2020 and 4/30/2020. We focused in particular on the dataset from 4/19/2020,

which contains 3246 variant positions in total (Methods). The vast majority of variants are at

low frequency, as is expected for a rapidly expanding population.

Systematic error could be mistaken for recurrent mutation or
recombination

Non-random errors present a fundamental challenge for phylogenetic inference and to the

interpretation of viral evolutionary dynamics. These challenges can be particularly severe in

cases, like that of SARS-CoV-2, that involve large collections of sequences with very limited
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phylogenetic signal [44]. There are at least four possible sources of (real or apparent) variants

that recur within independent lineages in a tree, and each should be accompanied by a distinct

pattern (Table 1). In particular, recent work has shown a strong bias towards C>Umutation

in the SARS-CoV-2 genome [22,43,45,46]. Systematic errors, which usually result from consis-

tent errors in molecular biology techniques or bioinformatic data processing, are subject to

biases that are of no biological relevance and can confound the inference of mutation rates.

Such errors can also give the appearance of elevated evolutionary rate at some sites which may

be mistaken for a signature of positive selection. We therefore anticipate that many systematic

errors will affect many mutation types, modify protein sequences, and strongly correlate with

genome sequences generated in particular labs [24].

Many apparently recurrent mutations found in the SARS-CoV-2 genome

To examine patterns of recurrent mutation we employ a simple statistic, the parsimony score,

which is the count of the minimum number of unique mutation events consistent with a tree

and sample genotypes ([47,48], computed using our software from https://github.com/yatisht/

strain_phylogenetics, Methods). More sophisticated statistics could be employed, but this sim-

ple one is effective, is readily interpretable, and can be computed rapidly. We restrict most

analyses to bi-allelic sites, i.e. sites that contain the allele in the reference genome from the root

of the tree (here and in Nextstrain this is sample Wuhan/Hu-1, obtained in December 2019 in

the city of Wuhan, China, RefSeq accession NC_045512.2) and a single alternate allele. At the

time of these analyses, multiallelic sites (with>1 alternate alleles) were sufficiently rare so that

this did not significantly affect the analyses; however, in our more recent analyses (see [24]) we

relaxed this assumption. Across the 4/19/2020 Nextstrain tree, we found 2533, 395, 94, 40, and

44 bi-allelic sites with parsimony score 1, 2, 3, 4, or 5 or more, respectively (Fig 2, S1 Fig). In

particular, there is a strong “on diagonal” component of the data that is defined by a linear

relationship between the log of the alternate allele count and parsimony score (dashed line in

Fig 2A, log2-based slope = 3.188). These mutations reoccur across the phylogeny at exceptional

rates relative to their allele frequencies. Hereafter, we refer to the set of variants in this on-diag-

onal group as extremal sites (blue, red, and orange in Fig 2A). This relationship suggests that

the extreme accumulation of independent clades for the alternate allele is logarithmically

related to the number of instances of the alternate allele in the phylogeny (Fig 2B). While this

is in line with the expectation that multiple recurrences of the same substitution would

increase the overall alternate allele count, another possible explanation for some of these sites

is that apparent variants caused by systematic errors would cause samples with such errors to

be wrongly inferred to group together in clades of various sizes (see e.g. Fig 1).

Automated detection of extremal sites

We sought to provide researchers with a method for rapidly identifying and flagging suspi-

ciously recurrent mutations. We therefore developed code to identify the “on diagonal”

Table 1. Expectations for various sources of apparent recurrent mutation. �As defined in the main text (below). ��Owing to ours and previous works, we expect that
most recurrent mutations will usually demonstrate a C>U bias; however, this may not be uniformly the case for example in mutation hotspots.

Source Heritable Typical Allele Frequency C>U
Biased

Lab Correlation Extremal�

Recurrent Mutation Y Low-Moderate Y�� N Y

Recombination Y High Possible N N

Systematic Error N Low Possible Y Y

Contamination Error N High N Possible N

https://doi.org/10.1371/journal.pgen.1009175.t001
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extremal sites and produce plots of the output similar to Fig 2, available at https://github.com/

yatisht/strain_phylogenetics. Note that depending on the dataset, this component is not always

so linear as in Fig 2, but it is associated with highly homoplastic sites regardless (e.g., S1 Fig). In

itself, this analysis does not differentiate between likely hypermutable sites and systematic

errors. Our list of extremal sites includes two that we later show are strongly lab-associated

Fig 2. (A) The relationship between alternate allele count and parsimony score. Point radius indicates howmany sites share a single parsimony score and alternate
allele count. Several noteworthy recurrent mutations are labelled. Note that the X-axis is log-scaled. (B) The sizes of independent clades for the same alternate allele
arranged in descending order. The number of lineages per clade is shown on logarithmic scale facilitating comparison with Panel (A). These indicate that when alternate
allele clade sizes for a given site are sorted in decreasing order, their sizes are reduced going from left to right by a multiplicative factor at each step, consistent with the
log-linear relationship displayed in Panel (A). Variants with remarkably high recurrence are shown with color reflecting their properties: lab-associated (red), recurrent
and associated with a poly-U stretch (blue), and high frequency with many forward and backward mutations (purple). Grey lines in the background are the same values
but for all other variants with parsimony score 4 or greater. The values in parentheses in the variant names indicate the number of unique clades associated with the
alternate allele. Note that in some cases, this extends beyond the limit of the X-axis and that the Y-axis is log-scaled for visibility. (C) An example of the observed patterns
of evolution at one highly recurrent site with reference allele U and alternate allele G, site 13402 and parsimony score 14, where 14 alternate allele clades (in red) each
represent an apparently independent incidence of the mutation substituting the alternate allele.

https://doi.org/10.1371/journal.pgen.1009175.g002
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(A4050C and U13402G, likely to be systematic errors), three variants that are adjacent to

>5bp poly-U segments in the genome (C11074U, G11083U, and C21575U), as well as two

more C>U variants (C21711U, C28887U). Regardless of their proximate causes, highly recur-

rent mutations can negatively impact the accuracy of inferred tree topologies, and thus we rec-

ommend their removal prior to phylogenetic tree construction and many subsequent analyses.

SARS-CoV-2 data contains many lab-associated variants

To search for systematic errors associated with a particular lab, we extracted the set of sites

with parsimony score 4 or more. We then flagged sites as lab-associated variants if more than

80% of the samples containing the alternate allele were generated by a single group. Using this

heuristic approach, we found 16 such sites (S1 Table). We note that this set of sites contains

two variants previously identified as lab-associated [24], some others identified as highly

homoplastic [9,24,26,43], as well as several identified as evidence for recombination [27].

These lab-associated sites display a range of base compositions and only one is a C>U transi-

tion (C6255U). This proportion of C>U variants is much less than expected based on the

genome-wide average proportion of non-singleton C>U variants (49%, P< 0.0005, Fisher’s

exact test), and differs significantly from the proportion of C>U variants among our set of

inferred highly recurrent mutations that are not strongly associated with a single sequencing

lab (P� 10−7, Fisher’s exact test). Furthermore, our set of lab-associated variants is weakly

enriched for protein-altering mutations relative to other highly recurrent mutations

(P = 0.094). Collectively, our results suggest that many of these 16 lab-associated variants

could be systematic errors rather than the result of mutation events.

The potential causes of lab-associated variants are numerous. A non-exhaustive list follows.

First, primers for reverse transcription or PCR might introduce systematic errors either via

errant priming, because they “overwrite” true variation, or because of errors during bioinfor-

matic processing. For example, the commonly used ARTIC primer sets amplify the viral

genome from metatranscriptomic cDNA by tiling the viral genome with PCR amplicons

(https://artic.network/). Second, if a portion (perhaps a single amplicon) from a contaminating

sample were present in many sequencing reactions from a single lab, this could propagate vari-

ants across all genome sequences from a single group. Third, contamination from the human

transcriptome itself might be inadvertently included in assembled viral genomes. Finally, RNA

degradation during sample handling or processing might be the source of lab-associated vari-

ants (Torsten Seemann, comm. at https://virological.org/t/gained-stops-in-data-from-the-

peter-doherty-institute-for-infection-and-immunity/486/8).

Two labs contributed a disproportionate number of lab-associated variants in our dataset,

suggesting a consistent source of these alternate alleles (S1 Table). One lab group is strongly

associated with two adjacent high parsimony scores and perfectly linked variants A24389C

and G24390C. These occur in a 10bp sequence in the genome, CAGCAAGTT, that otherwise

closely resembles an Oxford Nanopore sequencing adapter, CAGCACCTT, and is adjacent to

an ARTIC primer binding site. Here, the differences between the genome sequence and

adapter are bolded. See also [24], where a commenter on that work comes to a similar conclu-

sion regarding the likely source of these variants. Additionally, A4050C, U8022G, U13402G,

and A13947U (Fig 2, S1 Table) are associated with this same lab and either overlap or are

within 10bp of ARTIC primer binding sites (14_left_alt4, 26_right, 44_right, and 47_left,

respectively), suggesting that a consistent bioinformatics data processing error may be respon-

sible. Sequences submitted by another lab group are strongly associated with four additional

high parsimony score variants, G2198A, G3145U, A3778G, and C6255U (Fig 2, S1 Table).

Here again, each of these intersects one of the ARTIC primer binding sites (8_left, 11_left,
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13_left and 20_right respectively, Fig 3). In aggregate, our set of lab-associated variants are sig-

nificantly closer to ARTIC primer binding sites than would be expected by chance (P = 0.028,

permutation test, Fig 3). Our results therefore suggest that variants intersecting or immediately

surrounding commonly used primer binding sites should be subjected to particular scrutiny.

Another lab-associated variant, C22802G, also overlaps an ARTIC primer (76_left, S1

Table), but this is probably only a coincidence. The SARS-CoV-2 sequences carrying this vari-

ant were assembled from whole metatranscriptomic data without PCR selection. Instead, the

cause appears to be misalignment of a human ribosomal RNA sequence that was incorporated

into the consensuses for a subset of genomes produced by this group (Dr. Darrin Lemmer,

Pers. Comm.). This highlights the broad range of possible causes of lab-associated variants.

It is more challenging to identify the specific sources of the other five lab-associated variants

that we observed, but commonalities are informative. Three of these variants are associated

with a single group and each is a G>U transversion (G3564U, G8790U, G24933U, S1 Table).

Even more strikingly, each variant occurs in a GGUmotif, suggesting a common molecular

mechanism might underlie this set of lab-associated variants as well (i.e., GGU> GUU).

Beyond these, G1149U and U153G are associated with two different sequencing groups, but

do not show similar signatures as other variants (S1 Table). More generally, the fact that many

apparently recurrent mutations are associated with genome sequences produced by individual

lab groups suggests that consistent data processing or generation issues affect many sites. Sam-

ple contamination, which can be quite challenging to detect confidently, might also contribute

to apparent mutational recurrence and might not strongly be lab-associated (S1 Text). How-

ever, we caution that this does not definitively prove that these apparent mutations are errors,

but we believe it is prudent to remove these sites for most analyses until additional sequencing

corroborates them.

Lab-associated variants are consistent with simulated systematic error

To study how systematic errors affect phylogenetic inference and inferred properties of viral

evolution, we experimentally introduced errors in replicate experiments. We found that the

parsimony score displays a roughly linear relationship with the log of the alternate allele count,

as it does for extremal sites in Nextstrain trees we examined built on different days in April,

but with varying slope (Fig 4). This is expected because errors will sometimes occur in sample

genomes whose positions are close on the real phylogeny and even in sister lineages. Tree-

building methods could then group these samples into a single clade. Importantly, the effect of

drawing samples together can cause systematic errors to appear heritable, and to reduce the

apparent mutability of hypermutable sites.
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https://doi.org/10.1371/journal.pgen.1009175.g003
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Additionally, we find that viral genetic background and mutation type is an important con-

tributor to this relationship. When errors are placed randomly across Australian samples (Fig

4A), we see much higher parsimony scores than when errors are placed only in samples from

France collected between March 1 and March 17 (Fig 4B). The difference likely reflects the fact

that the samples from France are more closely related. Because many of the lab-associated vari-

ants that we identified are derived from a similarly restricted time and geographic region as

our samples from France, parsimony scores at those sites closely resemble these sets of simu-

lated error (Fig 4B). More generally, this suggests genetic diversity in the viral population and

in sampled isolates (which may be highly non-random relative to the population, e.g., if a sin-

gle “transmission chain” is sampled) will affect detection of lab-associated variants. Impor-

tantly, the identification of lab-associated variants will become increasingly straightforward as

the viral populations accumulate genetic diversity. We also observe that simulated errors asso-

ciated with substitution events that are typically rare in SARS-CoV-2 evolution (e.g., C>G)

have slightly lower parsimony scores. This is likely due to modeling nucleotide-specific muta-

tion rates during tree-building where errors consistent with common substitutions (e.g.,

Fig 4. Parsimony scores at sites with introduced systematic errors.We added artificial errors to 10, 25, and 50 Australian (A) and early-March French (B)
samples at the sites A11991G (purple), C22214G (blue), and C10029U (orange) in three replicates, then produced phylogenies and computed the parsimony
score at each site. (C) We also introduced errors to the early-March French samples two at a time per sequence rather than individually. For comparison, we also
show the values for three lab-associated variants (C6255U, U13402G, A4050C; A, B) and for pair of linked lab-associated variants (A24389C and G24390C; C).
Each panel (A–C) contains a best-fit line (as in Fig 2A), for the relationship between log2 alternate allele count and parsimony in simulated error data
(slopes = 10.0, 5.55, and 1.0). (D–F) Corresponding clade sizes arranged in descending order for error simulations in (A–C, respectively, as in Fig 2B).

https://doi.org/10.1371/journal.pgen.1009175.g004
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C>U) are less likely to be erroneously grouped. Importantly, our results suggest that a simple

heuristic based on each position’s parsimony score and recurrence is sufficient to identify

most lab-associated errors above very low frequencies. However, extremely infrequent lab-

associated errors could remain challenging to identify.

Because systematic errors also affect the inferred tree, they can impact inferred patterns of

mutational recurrence at other positions in the genome as well. In 50 out of 54 total experi-

ments where we introduced a single recurrent error, we found that the parsimony score

increased at other sites (range 2–44). This emphasizes the importance of identifying and

excluding such variants prior to inferring the final tree and downstream analyses.

Improvements and updates on detection of systematic errors, recurrent
mutations, and other problematic sites

Due to the continuous increase in SARS-CoV-2 genome data availability, and because we

sometimes improve our methods, we provide regular updates with up-to-date results and

methodologies. Improvements in our methods and updated results are discussed at https://

virological.org/t/issues-with-sars-cov-2-sequencing-data/473 while up-to-date recommenda-

tion for sites that we think need masking are available from https://github.com/W-L/

ProblematicSites_SARS-CoV2/blob/master/problematic_sites_sarsCov2.vcf with metadata

and format described at https://virological.org/t/masking-strategies-for-sars-cov-

2-alignments/480. These forums are also helpful for us for receiving feedback from the scien-

tific community.

Here, we list here a few of the key improvements to our methods. First, we now use infor-

mation from ambiguous characters in genome sequences to better detect systematic errors.

Ambiguity characters (in particular those other than “N”) are often used in consensus

sequences when, at a certain genome position, more than one allele is detected above a fre-

quency threshold within a sample. We often find these ambiguous characters at specific posi-

tions in sequences from particular labs. These highly ambiguous positions also tend to contain

inferred systematic errors. For these reasons, frequent ambiguous characters can provide a

reliable signal of biases in the sequencing process and can help detect lower frequency system-

atic errors. As another improvement, we now also account for the fact that in some cases the

same putative systematic error is present in sequences from more than one sequencing lab,

when different labs share the same sequencing protocols. We also now pay particular attention

to variants that are linked, low-frequency, and nearby (<10bp distance) along the genome;

these variants, if resulting from systematic errors, such as those at sites 24389 and 24390, can

be very problematic as they can strongly skew phylogenetic inference and present a low parsi-

mony score (see below). Finally, we study datasets of increased size as more genome sequences

become available, and this gives us more power to detect systematic errors.

Correlated lab-associated variants have large impacts on phylogenetic
inference

If infrequent but highly correlated errors were introduced at different sites in many samples,

this could cause more samples to be grouped into a clade than independent systematic errors.

We might not easily detect these errors based on recurrence. Two lab-associated variants,

A24389C and G24390C, are not just on adjacent genomic locations but are nearly perfectly

correlated across samples. These sites have low parsimony scores when compared to other lab-

associated variants (4 and 5, respectively, Fig 4C). When we introduced similar correlated

errors, we found that the parsimony scores were lower than in single-error introduction exper-

iments. Nonetheless, in only two error introduction experiments (out of 9) with 10 affected
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samples did we see a parsimony score as low as 3. Although low frequency and highly corre-

lated error could be challenging to identify in general, we believe this is infrequent in our data-

set (see S2 Text). In our most recent methods and analyses, we specifically tackle neighboring

variants that are rare and linked (https://virological.org/t/issues-with-sars-cov-2-sequencing-

data/473). A large proportion of these variants is likely the result of multi-nucleotide muta-

tions; however, we also recommend caution when dealing with true mutation events with

these characteristics, as they are typically not modeled in the phylogenetic context and can

therefore cause biases when inferring branch lengths and the impacts of natural selection.

Lab-associated variants affect phylogenetic inferences on scales relevant to
local lineage tracing

To investigate the impacts of lab-specific variants on phylogenetic inference, we removed

(“masked”) each of the 16 sites with a lab-associated variant (S1 Table) from the multiple

sequence alignment. Importantly, removing lab-associated variants sometimes impacted phy-

logenetic patterns at other sites. For example, after removing all lab-associated variants, the

evidence for back-mutations at C14408U is eliminated, while many forward-mutations remain

(e.g., Fig 5). In fact, the overall parsimony score decreased by 16, increased for 54 sites and

decreased for 53 sites on the tree that we inferred after removing all of the lab-associated vari-

ants relative to the tree inferred including all sites. Additionally, we find that many samples

containing lab-associated variants have been repositioned on local topologies (e.g., Fig 5). Fur-

thermore, in some cases the placement of closely related lineages that are unaffected by lab-

Fig 5. Lab-associated variants impact phylogenetic inferences. Part of the tree we obtained from the 4/19/2020 Nextstrain tree (left) compared to the corresponding
part of tree after removal of sites with lab-associated variants (right). Lab-associated variants (red) can affect the inferred phylogeny and are associated with apparent
back-mutation to the ancestral allele (grey in column 14408, left) at other sites (white). When lab-associated variants are removed, the resulting tree (right) shows no
evidence for back-mutation at those sites (now white in column 14408), though several independent forward mutations remain evident.

https://doi.org/10.1371/journal.pgen.1009175.g005
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associated variants is also affected (S2 Fig). These variants therefore affect phylogenetic infer-

ences at scales relevant to local lineage tracing, which may obscure dynamics of local

transmission.

To examine the effect of each lab-associated variant and the other extremal sites in isolation

from one another, we individually masked each site and inferred a phylogeny. As a compari-

son, we also masked a set of sites that have similar alternate allele frequencies as the lab-associ-

ated variants, but each has a parsimony score of one. The distributions of entropy-weighted

total distance (a measure of distance between trees, described below) are remarkably similar

when masking individual lab-associated sites, other extremal sites, and our control sites (Fig

6). Most exceed the distance we observed when we independently inferred two trees from the

same input alignment (dashed black line). Our results therefore suggest that the impact on

tree-building of the lab-associated and extremal sites we identified can be on a par with that of

real mutations, although the effects are typically small on the scale of whole topologies, as

expected given their typically low allele frequencies (Fig 6, S3 Fig).

Phylogenies made after removing two variants, one control and one lab-associated, are out-

liers for entropy-weighted total distance (Fig 6, S4 Fig) and other tree distance statistics (S3

Fig). In each case, however, the likelihood of the tree produced from the full dataset is actually

higher (S5 Table), suggesting that our tree-building method discovered a different locally

Fig 6. The relationship between alternate allele frequencies of lab-associated variants and effect of masking on
inferred tree topology. Entropy-weighted total distances relative to the reference maximum likelihood phylogeny are
shown for phylogenies constructed after masking individual sites. Blue points correspond to sites with lab-specific
alternate alleles, grey points correspond to control sites with parsimony scores of 1 and similar alternate allele
frequencies to the sites with lab-specific alternate alleles, and brown points correspond to non-lab-specific extremal
sites. The black horizontal line indicates the entropy-weighted total distance value for a maximum likelihood
phylogeny constructed from an alignment identical to that of the reference phylogeny. Two outliers, C21590U
(control) and G1149U (lab-associated), have outsize effects on inferred tree topology.

https://doi.org/10.1371/journal.pgen.1009175.g006
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optimal but less favorable topology rather than a dramatic impact of each site individually.

These results suggest higher level uncertainty in the tree topology largely independent of the

effects of lab-associated variants.

Recurrent mutations not associated with a lab reflect the mutation
spectrum of the SARS-CoV-2 genome

Hypermutation rather than positive selection may explain many remaining highly recurrent

sites. Previous analyses have indicated that the number of C>Umutations is exceptionally

high relative to other mutation types in the viral genome [11,26,45,49]. This class of mutations

should show increased evidence of recurring multiple times because they experience elevated

mutation rates [26]. Indeed, parsimony scores at sites containing C>Umutations are signifi-

cantly higher than those for all other mutation types (P< 2.2e-16, Wilcoxon Test, Fig 7). Fur-

thermore, parsimony scores at C>U sites also significantly exceed those at G>A (P< 6e-12)

Fig 7. Recurrence of mutations during SARS-CoV-2 evolution. (A) Frequencies of parsimony scores for C>U
(Black) vs all other mutation types (Grey). (B) Frequencies of parsimony scores for C>Umutations that do affect
amino acid sequences (non-synonymous; Grey), and those that do not affect amino acid sequences (synonymous;
Black).

https://doi.org/10.1371/journal.pgen.1009175.g007
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as well as U>C (P� 1e-10) sites. This mutational bias might be driven by APOBEC editing of

the viral genome [26,45,46,49–51]. Consistent with previous results [45,46,49–51], we find that

5’-[U|A]C>Umutation occurs more frequently than 5’-[C|G]C>U (P = 0.0501), but we do

not see a similar effect for 3’ flanking sites at 5’-C>U[U|A] relative to 5’-C>U[G|C] mutations

(P = 0.378). The highly biased spectrum of C>Umutations and the correlation with local

sequence context implies that the plus-stranded virus biology may be leading to recurrent

C>Umutations [49].

Of the 83 highly recurrent mutations with parsimony score greater than 3, 50 are bi-allelic,

not strongly lab-associated, and have an alternate allele frequency less than 0.01. Of these, 42

are C>Umutations. This is a significant excess of C>Umutations relative to the rate among

non-singleton bi-allelic sites with parsimony score ≼3 (P = 3.658e-07, Fisher’s exact test).

Additionally, synonymous C>Umutations (those that do not affect the underlying amino

acid sequences) display higher parsimony scores than do non-synonymous C>Umutations

(that do affect amino acid sequences; P = 0.0553, Wilcoxon test, Fig 7). This suggests that nega-

tive selection has played a role in shaping the distribution of highly recurrent mutations by

purging strongly deleterious alleles.

Evidence suggests that any contribution of sequencing error to the excess of C>Umutation

is small. Alternate alleles at 81.4% of sites with parsimony>3 are corroborated by more than

one sequencing technology. Of those, 77% of bi-allelic sites are C>U transitions (S2 Table).

Illumina C>T errors in raw cDNA-derived sequencing reads are typically enriched in the con-

texts of flanking G regions [52,53], but here we do not see this pattern. Similarly, nanopore

sequencing typically creates errors in homopolymer stretches [54], but we only see a few recur-

rent mutations associated with such regions, notably the extremal sites C11074U, and

C21575U, which abut poly-U stretches in the genome and might result from replication slip-

page (see also G11083U). Despite this intriguing observation, a recent analysis formally tested

for and did not find enrichment of homoplastic evolution at positions adjacent to or within

homopolymer stretches [26] and we therefore do not recommend uniformly masking posi-

tions adjacent to homopolymer sequences. It is possible that the excess of C>Umutations is

driven in part by high error rates during reverse transcription [55–58], which is required for

cDNA sequencing. However, C>Umutation is overrepresented in high-frequency mutations

as well (9/20 frequency> 0.025 mutations are C>U, S3 Table), indicating that this bias likely

reflects a true mutational process. Additionally, these mutations are approximately as distant

from ARTIC primer binding sites as would be expected by chance (P = 0.7851, Permutation

Test, S2 Table). Collectively, our results suggest that neither library preparation nor sequenc-

ing error is the major driving force behind biased C>Umutation observed at highly recurrent

mutations that are not strongly associated with a single lab. However, even if real, the existence

of these highly recurrent mutations does not require that they are inherited (it must be that

many viral mutations are never transmitted), in which case they will occur on terminal

branches in the real tree and their phylogenetic behavior should be the same as systematic

errors.

Possible mitigations for lab-associated variants and highly recurrent
mutations

We have proposed a simple heuristic approach to detect lab-associated variants, summarized

as first identifying sites that apparently experience mutations on at least four independent

branches of the SARS-CoV-2 tree, and then extracting the set where 80% or more of the alter-

nate allele comes from sequences produced by a single lab. These are classified as lab-associ-

ated variants. Then for all sites we plot parsimony score versus log2 of alternate allele count
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and determine a set of extremal sites as described in Methods. We recommend that lab-associ-

ated and most extremal variants be masked for the purposes of constructing a phylogenetic

tree to be used in downstream analyses. One exception here is extremal site 11083, which is

sufficiently high frequency that it affects inference of the deepest branches of the tree. We sug-

gest that it should be included during phylogenetic inference. However, alternative masking

strategies that remove small clades containing apparent forward and backward mutations at

high-frequency sites might also be effective and will be investigated going forward. Many

downstream analyses following tree-building should consider masking 11083 as well. After

masking the set of lab-associated and extremal sites, the samples which previously contained

them can be retained in phylogenetic inference and downstream analyses. Tracks identifying

these sites are available on the UCSC Genome Browser and in S1 Table.

Though not a focus here, we emphasize that filtering for genomic regions that are difficult

to assemble or align (e.g., those used by Nextstrain to filter the ends of chromosomes as defined

here https://github.com/nextstrain/ncov) should also be rigorously employed. In fact, in light

of our discovery of a possible lab-associated variant at position 153, which is just within the

usual filtering range, we suggest that it may be preferable to simply mask the full 5’ and 3’ UTR

regions, which are typically harder to assemble and align confidently.

To examine the aggregate effect of lab-associated and extremal variants, we inferred a tree

from the full dataset (“total tree”), and another after masking all lab-associated and extremal

variants except 11083 (“filtered tree”) using IQ-TREE 2 with 1000 ultrafast bootstraps [59,60].

We then collapsed all branches that do not contain a mutation into a polytomy. In contrast to

the single site masking experiments above, here the topologies of the two maximum likelihood

consensus trees differ significantly. The symmetric entropy-weighted total distance between

the two topologies is not large, 9.4, but the fit of the filtered tree to the masked multiple align-

ment improved by 189 log-likelihood units relative to the total tree. IQ-TREE 2 is stochastic

and each run may not yield an optimal topology. We therefore confirmed that the filtered tree

is a better fit for the filtered data by producing 10 replicate trees using the total and filtered

datasets. We found that the likelihood of the filtered trees was highest for the filtered datasets

for nine of the ten replicated filtered trees. The final replicate topology had a much lower likeli-

hood suggesting that IQ Tree inferred a suboptimal topology in that case. Collectively our

results indicate that the inferred topology is indeed affected by excluding lab-associated and

extremal variants. Below, we show that confident relationships at higher branches in the topol-

ogy are minimally affected relative to other widely-used phylogenies, which were inferred

including lab-associated and extremal variants. Our phylogeny produced following these

masking recommendations is available from the UCSC Genome Browser (Fig 8).

Many of the most intriguing and evolutionarily relevant biological phenomena, such as

viral recombination and recurrent mutation, explicitly require inferences based on homoplas-

tic mutations. Special caution is clearly warranted. For these analyses, it is still necessary to

mask lab-associated variants and extremal sites because they can destabilize phylogenetic infer-

ence, but clearly one could not exclude all homoplasies. In light of significant phylogenetic

uncertainty, which we address below, we recommend that each analysis be repeated across

alternative possible tree topologies to confirm the robustness of biological inferences. How-

ever, this is not without significant challenges and the most general solution for confirming

recurrent mutation or recombination is heritability. If a mutant or recombinant lineage grows

sufficiently large and is corroborated by many labs, we can be much more confident [27]. We

therefore suggest that evidence of heritability and independent sequence confirmation should

be required to support inferences of either recurrent mutation or recombination.

Although our results above indicate that our approach has worked well on these SARS-

COV-2 datasets, we caution that the identification of systematic errors based on the apparent
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https://doi.org/10.1371/journal.pgen.1009175.g008
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recurrence of mutations carries important challenges. In particular, this approach implicitly

assumes that the real signal in a set of samples is sufficient to infer a reasonably correct global

phylogeny despite the noise induced by the presence of systematic errors. If systematic errors

are frequent relative to true mutations or highly correlated, this might impact the initial phy-

logeny to the point that they could not be detected. By removing the most obviously discordant

sites, one could “lock in” errant variants and thereby reinforce the incorrect phylogeny. A sec-

ond related consideration is that systematic errors could be correlated with real genetic varia-

tion (e.g., if mutations present in a primer binding site affect the resulting consensus

sequences). Because these errors would likely be strongly correlated with the real phylogeny,

their detection based on apparent homoplasy could be difficult.

Exploring data quality and mutational recurrence using our tools

SARS-CoV-2 sequence data is growing at an incredible pace. Here we developed tools to

enable investigations of similar patterns in updated and additional datasets. To summarize: (1)

we provide a method for rapidly computing parsimony scores to identify highly recurrent

positions; (2) we provide an approach for identification of unusually recurrent sites relative to

their allele frequencies (here, termed extremal); (3) we provide an approach for semi-auto-

mated metadata correction (See Methods), which improved detection of lab-associated vari-

ants; and (4) we provide a method for identifying the set of highly homoplastic variants that

are strongly associated with individual sequencing labs. Our heuristic cutoffs appear to per-

form well in the datasets we examined, but the program is designed to empower users to

explore other datasets and other filters as well. Software to perform each analysis are provided

via GitHub (https://github.com/lgozasht/COVID-19-Lab-Specific-Bias-Filter and https://

github.com/yatisht/strain_phylogenetics). Further, (5) we provide a regularly updated list in

VCF format (Variant Call Format, [61]]) of sites that we recommend masking based on our

analyses, available from https://github.com/W-L/ProblematicSites_SARS-CoV2/blob/master/

problematic_sites_sarsCov2.vcf and explained at https://virological.org/t/masking-strategies-

for-sars-cov-2-alignments/480; and (6) we regularly update and discuss our methods on viro-

logical.org https://virological.org/t/issues-with-sars-cov-2-sequencing-data/473 and welcome

feedback from the scientific community.

Visualizing data quality, genetic variation and correlation via the UCSC
SARS-CoV-2 Genome Browser

Data visualization remains one of the most powerful mechanisms for identifying unusual pat-

terns and possible errors in genome sequence data (e.g., Fig 3, above). Therefore, as an integral

part of this work, we provide powerful data exploration and visualization tools that can be

applied to future variation datasets as well. Output from our programs for computing parsi-

mony scores and detecting lab-association variants can be imported directly into the UCSC

SARS-CoV-2 Genome Browser [62] as custom tracks to facilitate visual exploration of suspect

mutations with a user-defined VCF file and tree. This is a very useful visualization framework

for data quality control and for investigating the root causes of highly recurrent mutation. For

example, it is straightforward to explore the relationships between phylogeny, genetic varia-

tion, and functional genomic annotations (Fig 8).

Researchers can upload their own aligned SARS-CoV-2 genome samples and phylogenetic

trees to the SARS-CoV-2 Genome Browser in order to compare their phylogenetic analyses to

those from Nextstrain and COG-UK, and also to look at the specific molecular features of the

clades that their phylogenetic analysis identifies (S4 Text). These molecular features include

widely used primer pairs (as in Fig 3) as well as CRISPR guides, predicted and validated
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epitopes for CD4+ and CD8+ T-cells, key functional sites on the viral genome including cleav-

age sites for viral proteases PL-PRO and 3CL-PRO as well as cleavage sites for host proteases,

locations of important RNA secondary structures, the locations of the transcriptional regula-

tory sequences, locations of protein phosphorylation and glycosylation sites, identification of

sites in the virus that are highly conserved or rapidly evolving in closely related viruses in bats

and other mammals, as well as a lively “crowd-sourced annotation” set where any researcher

can point out additional sites on the viral genome of special functional, diagnostic, or thera-

peutic significance [62]. This helps researchers to quickly determine if alternate alleles they

believe characterize a new viral clade may be significant beyond their role as epidemiological

markers. Instructions for producing custom genome-browser tracks for a given phylogeny

and variation dataset are provided in S4 Text.

Phylogenetic uncertainty and facilitating tree comparisons across analyses

In the second part of this work, we address concerns arising from phylogenetic uncertainty. As

expected for a relatively slowly evolving and rapidly expanding viral population [63], there is

substantial uncertainty in the SARS-CoV-2 phylogeny. This extends well beyond the typically

localized impacts of lab-associated and highly recurrent variants, and instead derives from the

fact that most branches in the SARS-CoV-2 phylogeny are supported by few mutations.

Undoubtedly, thousands of unique phylogenies will be produced by groups studying this viral

outbreak, and these may sometimes support conflicting evolutionary relationships. We there-

fore sought to provide tools to facilitate interpretation of commonalities and differences

among such large phylogenies.

A tree comparison algorithm using entropy-weighted matching splits

There are many metrics for measuring the total distance between two or more phylogenetic

trees [64–69]. One popular metric (Maximum Cluster distance (MCdist)) also identifies the

best-matching clades between the two trees. A clade in a rooted tree splits the leaf nodes of that

tree into two sets: those inside the clade and those outside the clade. Given a clade C in tree T

and a clade C’ in tree T’, the split distance between C and C’ is the number of leaves that have

to be moved so that the split for C in T becomes equal to the split for C’ in T’. The (nonsym-

metric) correspondence between the clades of T and the clades of T’ established by minimizing

the split distance is referred to as the “maximum cluster alignment” or “best split alignment”

from T to T’, [64]. This is particularly appealing here because we aim to facilitate comparisons

across phylogenetic trees both globally and at individual clades.

We implemented a modified version of MCdist in https://github.com/yatisht/strain_

phylogenetics to compare two trees, T and T’, restricted to the same set of samples, with two

improvements. First, we proportionally weighted the split distance between each clade C of T

to the best matching clade in T’ by the entropy of C, i.e., by H(p) = -p log2(p)—(1-p) log2(1-p)

where p is the fraction of leaves from T that are in C (see Methods, Fig 9). The entropy-

weighted matching split distance emphasizes the importance of the clades in T in terms of how

much information about the leaves they carry, which helps highlight clades where the most

dramatic changes have occurred. The sum, over all clades in T, of the entropy-weighted match-

ing split distance to the best-matching clade in T’ is referred to as entropy-weighted total dis-

tance from T to T’. Second, we label all internal branches in T and T’, and identify the most

similar branches in both trees based on the clades they define. When multiple branches in T’

match the branch b in T with the same best split distance, we report all best-matching branches

(Methods). Additionally, we confirmed that our statistic is a robust measure of tree distance,

judging by the strong correlation with other frequently used tree distance metrics (S3 Text).
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Our implementation can compute this statistic for two trees of size 10,000 leaves in just 20 min-

utes on a single CPU, so it scales to the large trees required for SARS-CoV-2 phylogenetics.

A fast algorithm for producing tanglegrams for trees with thousands of
leaves

A tanglegram is the most often used method of visualizing the topological difference between

two rooted phylogenetic trees defined on the same set of leaf taxa (here, termed samples)[70].

We expect that tanglegrams will have a wide use for analyzing and comparing different SARS--

CoV-2 phylogenies. Tanglegrams plot two trees side-by-side with their common leaves con-

nected by straight lines (e.g., S5 Fig). For visually appealing and informative tanglegrams,

clades in both trees are arranged in a similar vertical order (given the tree topology constraints)

with minimum crossing of connecting lines with each other. While there are a number of tree

node “rotation” algorithms that optimize tanglegrams for visual appeal [70,71], we found none

of the available implementations that we tested [71,72] worked reasonably for phylogenies as

large as SARS-CoV-2 phylogenies, either producing unacceptable results or not able to finish

the computation. We therefore developed a fast heuristic approach that produces vastly

improved tanglegrams (Methods, S5 Fig, https://github.com/yatisht/strain_phylogenetics).

Our approach takes approximately one minute for the tanglegrams we show here, and we use

this heuristic for displaying tanglegrams throughout the text.

Nextstrain phylogenies vary significantly over time

We next explored differences among trees made by the same group from slightly different

sample sets with the goal of understanding phylogenetic stability as new samples are incorpo-

rated. For comparison, we restricted 31 Nextstrain trees produced between March 23, 2020

and April 30, 2020 to just the 468 samples they all have in common. Comparing topologies, we

found that a number of these 468 samples moved back and forth between different clade desig-

nations during the month (S5 Fig), including samples in the specific clades (A1a, A2, A2a, A6,

Fig 9. Entropy-weighted distance statistic. (A) Example trees (T and T’) for this comparison with identical sets of leaves but different topologies. Internal branches are
labelled in red. (B) The split distance statistic for each T node (see Methods for notation). Split distance of each T split (branch) from all T’ splits plus a “garbage node”
(f) containing a null set of leaves, with the matching split distance and its corresponding T’ split (branch) for each T split (branch) highlighted in red. Multiple T’ splits
can match a T split but the garbage node is given precedence (as is the case in T branch 4). (C) Table showing the entropy, best-matching T’ branch(es), matching split
distance and entropy-weighted matching split distance for each branch in T, as well as the entropy-weighted total distance D(T,T’) between T and T’.

https://doi.org/10.1371/journal.pgen.1009175.g009
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A7, B, B1, B2, B4) named and analyzed by the Nexstrain consortium during this period (e.g., S6

Table). Note that the Nextstrain clade ID system was updated while we were finalizing this work

[73]. We then measured all pairwise tree distances between restricted trees and found that they

varied widely (normalized entropy-weighted total distances ranged from 0.089 to 0.352, Fig 10).

There is therefore substantial variation in Nextstrain phylogenies over time.

Multidimensional scaling (MDS) of the pairwise distances among each topology, as well as

meta-tree analysis [67] reveals a strong relationship between topologies and the date that each

tree was produced (Fig 10). In particular, the first MDS coordinate is strongly correlated with

the release date of the tree (Spearman’s rho = 0.688, P = 3.087e-05). This effect is expected and

likely driven, at least in part, by the impact of the sample set used to produce the resulting tree,

which necessarily changes as new data are incorporated. Indeed, the proportion of overlapping

samples used in constructing each pair of trees is strongly negatively correlated with the nor-

malized entropy-weighted total distance between their topologies (r = -0.384, P = 4e-05, Man-

tel test), while the set of 468 samples for which we analyze topology is held fixed for all trees.

These tools provide the research community a method for tracking the phylogenies of SARS--

CoV-2 as the pandemic progresses and phylogenies are produced for larger and larger sample

sets. The tools can detect when older clades are confirmed as new samples accumulate, stabiliz-

ing inference of these clades, as well as track new subclades as they grow. If inconsistent data

are causing persistent clade instability, which may result from lab-associated sequencing errors

or actual recombination, it should be visible in this analysis.

Higher-level branches are remarkably consistent across analyses

Even if it was possible to obtain error-free data and multiple alignments as well as have all

groups use those same data, different tree inference approaches can produce different topolo-

gies. Furthermore, there is substantial uncertainty inherent to SARS-CoV-2 evolution because

Fig 10. Comparisons of Nextstrain trees over time. (A) Multidimensional scaling of normalized entropy-weighted total distances among phylogenetic trees
produced by Nextstrain fromMarch and April. Each topology is labelled with its date and dates are depicted in a color gradient from 3/23 (red) to 4/30 (blue).
Coordinates 1 and 2 are plotted here and each contributes 34% and 15% of the total variance explained, respectively. (B) Relationships between Nextstrain
phylogenies are shown in a tree-of-trees, “meta-tree” [67] we constructed, which displays the distances among topologies of the constitutive trees.

https://doi.org/10.1371/journal.pgen.1009175.g010
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there are few mutations that uniquely mark each branch. Nonetheless, it is essential that epide-

miologists studying the pandemic be able to communicate phylogenetically informed observa-

tions [18,43]. As discussed above, the clade placements of individual samples, even when

inferred by the same group, can vary as different datasets are incorporated into the tree con-

struction process (e.g., S4 Table, Fig 10). Differences between groups are expected to be even

more pronounced. This threatens to leave the community with a communication problem in

clade characterization and naming from various different phylogenetic trees. Indeed, the

names used for Nextstrain’s original clades (A1a, A2, A2a, A6, A7, B, B1, B2, B4) bear no rela-

tionship to the lineage names (A, B, A.1, A.2, B.1, B.2, A.1.1, etc.) suggested by the COG-UK

consortium [18,19], and without a 1–1 correspondence between the topologically defined

clades in their respective phylogenetic trees, it is difficult to translate nomenclature in order to

conduct precise scientific discourse pertaining to the evolutionary conclusions reached by

these groups. Adding further difficulty to this situation, clade naming approaches based on

phylogenies must themselves be subject to change as the pandemic spreads and as the evolu-

tion of new genotypes requires naming new clades and modifying existing clades. As clade

based comparisons are an essential part of consistent scientific discourse, tools are needed to

ameliorate these difficulties.

To explore the differences among available phylogenies and to provide guidelines for clade-

based comparisons across possible evolutionary histories, we used our approach to identify the

correspondence between the Nextstrain phylogeny produced on April 19, 2020 and the

COG-UK phylogeny produced on April 24, 2020 (Fig 11A). We observe good agreement

between the big Nextstrain named clades and their corresponding best matching named clades

in the COG-UK tree and vice versa (e.g., “A2a” clade in Nextstrain, “B.1” clade in COG-UK,

etc., Fig 11B), suggesting that these clades are reasonably stable across different analyses. How-

ever, in small named subclades within those prominent clades, there are many noteworthy dif-

ferences between the two topologies, and the overall congruence is significantly reduced (Fig

11A). In addition to differences in methodology, this reflects a difference in the time when

clades were originally named and the intent of each nomenclature system. Nextstrain named

clades much earlier and many did not increase in size subsequently; others have since emerged

and were named by COG-UK later. Additionally, the COG-UK system is intentionally

dynamic and clades that have become inactive are removed. As a consequence, some clades do

not have an obvious named analog in the two systems, resulting in low similarities (Fig 11B).

Perhaps the most obvious difference between the topologies is that the COG-UK tree has

many more large polytomies (Fig 11A). This reflects the decisions motivating their analysis

[18,74], where the authors’ goal is to provide a well-supported and stable topology to facilitate

lucid communication about viral lineages for evolutionary as well as epidemiological studies.

This contrasts with the Nextstrain project’s primary goal of up-to-date transmission tracing.

As is typical in phylogenetics, topological stability comes as a tradeoff against the cost of articu-

lation in the branches. Because of the many different motivations for constructing phyloge-

netic trees, it is a certainty that many independent trees will be used to study the evolution of

SARS-CoV-2. Comparisons using our approaches can enable communication about evolving

viral lineages across disparate analyses by facilitating the identification and visualization of the

most closely matching clades.

Higher branches in our tree closely mirror a Nextstrain “consensus” tree
and the COG-UK Tree

To identify stable nodes across analyses we compared a Nextstrain “consensus tree” and the

COG-UK tree. To do this, we produced a majority rule clade consensus tree [75] for the 422

PLOS GENETICS Stability of SARS-CoV-2 Phylogenies

PLOSGenetics | https://doi.org/10.1371/journal.pgen.1009175 November 18, 2020 21 / 34

https://doi.org/10.1371/journal.pgen.1009175


common samples in 31 trees produced by Nextstrain between 3/23 to 4/30, and restricted the

COG-UK tree to these same samples. We find exceptionally good congruence between our

Nextstrain consensus and the COG-UK phylogenies (Fig 12A), even though the inference

methods differed substantially. Specifically, the COG-UK tree is built using a more typical

bootstrapping approach [60], whereas our approach for building a Nextstrain “consensus”

from trees produced on subsequent days would resemble a kind of “bootstrapping by samples”

approach. This congruence reaffirms the idea that the COG-UK tree provides a stable “back-

bone” to enable direct conversations in epidemiology. Nonetheless, we still observe several

Fig 11. Comparison of Nextstrain and COG-UK trees. (A) A tanglegram of the Nextstrain tree from 4/19 (left) with the COG-UK tree
from 4/24 (right). Each tree has 4167 samples. (B) The COG-UK clades (which they term “lineages”) having the highest Jaccard similarity
coefficient (J) with each Nextstrain (NS) named clade and vice versa, where the Jaccard similarity coefficient is computed using the set of
samples from the root of that clade. Clades with more than 200 samples are shown in bold font and called “big”, the others “small”. While
the naming schemes differ, for each big Nexstrain clade there is a closely corresponding COG-UK clade, and vice-versa.

https://doi.org/10.1371/journal.pgen.1009175.g011
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small rearrangements between the two topologies, suggesting that both will likely be subject to

clade refinements in the future.

We also observed good overall congruence between the tree that we produced after remov-

ing lab-associated and extremal variants (except 11083, see above) and the COG-UK tree (Fig

12C). Here, the sample size is much larger, 4172, allowing for a much more quantitative com-

parison. The correspondence between the two trees is very high with normalized entropy

weighted total distance of just 0.12. Because lab-associated and extremal variants were used in

the COG-UK tree but not in our tree, this consistency among topologies supports our asser-

tion that the effect of lab-associated and extremal variants will typically not result in large-scale

Fig 12. Comparison of Nextstrain and the COG-UK trees. (A) A tanglegram of our Nextstrain consensus tree (left) and COG-UK tree from 4/24 (right). Each tree has
422 samples. (B) The COG-UK lineages having the highest Jaccard similarity coefficient (J) with each Nextstrain consensus (NS) named clade and vice versa. Big clades
defined in Fig 11 (those containing 200 or more samples in the Fig 11A trees) are in bold. Lineages in ‘N/A’ (B.1.3, B.1.p2 and B.1.p21) were pruned out as a result of
restricting the trees to common samples. (C) A tanglegram of our tree produced after masking all lab-associated and extremal variants except 11083 (left) and COG-UK
tree from 4/24 (right). Each tree has 4172 samples and the samples (branches) have been colored based on COG-UK lineage labels.

https://doi.org/10.1371/journal.pgen.1009175.g012
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reorganizations of large clades across the phylogeny. Each tree, including our Nextstrain “con-

sensus”, is available for visualization through the UCSC Genome Browser (Fig 8, S6).

Powerful tools for visualizing and interpreting differences among
phylogenies

Different analysis goals require varying levels of phylogenetic resolution and certainty, and it is

very likely that hundreds of partially independent phylogenies will be produced studying

SARS-CoV-2 evolution. For that reason, we have sought to provide the community with effec-

tive methods for tree-based comparisons. In particular, here we provide (1) improved methods

for quantitative comparison among trees at the level of whole topologies and at individual

nodes; (2) an extremely rapid tanglegram clade rotation method for visualization of differences

among tree topologies; and (3) dynamic tree visualization capabilities within the SARS-CoV-2

Genome Browser. Importantly, each method that we present scales well to thousands of sam-

ples, and is integrated into the SARS-CoV-2 Genome Browser to facilitate rapid comparison

with existing phylogenetic datasets, and to cross-reference sites to molecular information rele-

vant to basic biology, diagnostics, and therapy. Software to run each analysis is available from

https://github.com/yatisht/strain_phylogenetics.

Conclusion and outlook

The SARS-CoV-2 pandemic has driven an impressive global community response providing

real-time sequencing data to trace the viral outbreak [2–6]. Because these efforts are both

decentralized and urgent, there is potential for systematic differences in data generation and

processing to introduce artefactual biases and signal into these data [24]. Similarly, thousands

of distinct and differing phylogenies will be made from these data. In this work, we sought to

provide tools to detect and interpret sources of conflict and uncertainty in local and global

phylogenies. We integrate these into powerful visualization systems to facilitate continued

global analysis of viral population dynamics.

Methods

Obtaining Nextstrain trees and genotype data

We have downloaded genomic variation data from http://nextstrain.org/ncov, which is ulti-

mately processed and derived from the GISAID database [76], and transformed it into a VCF

file with genotypes for all samples as assigned by Nextstrain and a Newick tree file, and associ-

ated files for display in the UCSC SARS-CoV-2 Genome Browser. Software to perform this is

described here: https://github.com/ucscGenomeBrowser/kent/blob/master/src/hg/utils/otto/

nextstrainNcov/nextstrain.py.

Obtaining and correcting sample metadata

We obtained the GISAID metadata table in bulk from GISAID [77]. Before we were able to

search for lab-associated variants, we identified various errors in GISAID metadata files, most

of which appear to be due to misspellings and inconsistent naming conventions of “originat-

ing” and “submitting” labs across separate sample submissions. We therefore developed a sim-

ple approach to detect these errors systematically based on the character content and length of

“originating” and “submitting” lab names (https://github.com/lgozasht/COVID-19-Lab-

Specific-Bias-Filter). We merge coincident metadata under consistent lab names if “originat-

ing” or “submitting” lab names share 70% length similarity and 90% character similarity or

70% length similarity and 80% identical character positions, and output a revised metadata
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file. We checked all merged names by hand to ensure accuracy, and we maintain a log of each

merger event and annotate low confidence mergers. Our updated metadata table is available

from https://github.com/lgozasht/COVID-19-Lab-Specific-Bias-Filter.

Identification of highly recurrent mutations

To detect mutations that reoccur many times through viral evolution, we computed the parsi-

mony score [47,48] for each polymorphic site (our program is available from https://github.

com/yatisht/strain_phylogenetics). Briefly, conditional on a tree, we compute the minimum

number of branches that have experienced a mutation at a single site to accommodate the phy-

logenetic distribution of the mutant and reference allele. We note however that recurrent

mutations and systematic errors can adversely impact the process of tree building itself, which

in turn can impact the inference of parsimony scores: these should therefore be interpreted

with caution. This software also computes the sizes of subclades containing the alternative

allele after mapping mutations on to the phylogeny using parsimony. This is done by counting

the number of descendants following a mutation on a branch that shares the derived allele.

These values are reported in e.g., S1 Table, Fig 1.

Automated identification of extremal sites

After computing the parsimony score for each polymorphic site, we identified a set of extremal

sites that displayed exceptional parsimony scores relative to their allele frequencies as follows.

First, we excluded sites with rare alternate alleles, i.e., sites whose alternate allele frequency was

found to be lower than a certain threshold K, where K is the maximum alternate allele fre-

quency at which at least two sites had saturated parsimony scores (i.e., parsimony score equals

alternate allele count). Second, we extracted sites whose parsimony score was found to be the

highest among sites with the same or smaller alternate allele frequency. Finally, we also

required that extremal sites have an alternate allele frequency that is lowest among all sites

with its parsimony score or higher. A program to perform this search is available at https://

github.com/yatisht/strain_phylogenetics. This program also optionally allows for extremal

sites to be identified without including C>Umutations as these are particularly abundant in

SARS-CoV-2 genomes.

Discovery of lab-associated variants

We systematically flagged possible variants resulting from lab-specific biases based on the pro-

portion of lab-specific alternate allele calls and respective alternate allele frequency (https://

github.com/lgozasht/COVID-19-Lab-Specific-Bias-Filter). To do this, we first filtered variants

with parsimony score greater than 4 using concurrent Nextstrain tree and VCF files from 4/

19/2020. Next, we obtained metadata for all COVID-19 genomes on GISAID (accessed 4/28/

2020) and computed the proportion of alternate allele calls contributed by each “originating

lab” and “submitting lab” for each filtered variant. We then employed a Fisher’s exact test asso-

ciating the number of major and alternate alleles attributed to each specific “originating” and

“submitting” lab and the respective global major and alternate allele counts. We flagged vari-

ants for which one lab accounts for more than 80% of the total alternate allele calls and for

which a Fisher’s Exact Test suggests a strong correlation (at the p< 0.01 level) between that

lab and samples containing the alternate allele. We note that these cutoffs are somewhat arbi-

trary, and may require modification in the future, but the subdivision of the data is consistent

with our expectations as described in Results. Because samples are not independent and identi-

cally distributed, p-values may not reflect error but rather relatedness among samples

sequenced at a single facility. For example, if a single lab sampled a particular transmission
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chain, many chain-specific mutations could be strongly associated with that facility. These

should be interpreted cautiously, however, there is no obvious reason why unrelated samples

sequenced at the same facility should share an excess of homoplastic mutations. More recent

updates to the methods for identifying putative systematic errors can be found at https://

virological.org/t/issues-with-sars-cov-2-sequencing-data/473/13, and we also give a short

description in the Results/Discussion section.

Testing for overlap with ARTIC primers

To compare our highly recurrent mutations to the ARTIC primer set, we downloaded the

positions of the ARTIC primer binding sites from https://github.com/artic-network/artic-

ncov2019/blob/master/primer_schemes/nCoV-2019/V3/nCoV-2019.bed (last accessed 5/6/

2020). We computed the number of mutations in each category that overlapped primer bind-

ing sites, and we computed the mean distance between each variant and the nearest primer

binding site. To test for enrichment for overlap and proximity to primer binding sites, we per-

formed a permutation test where we selected positions at random without replacement across

the viral genome to compare to our observed distribution for the real mutations. Each permu-

tation was performed 10,000 times.

A clade comparison method using branch splits

Comparison of clades is made using a symmetric notion of clades called splits as defined in

TreeCmp [64]. In a rooted tree, the branches are directed to point away from the root, and a

directed branch defining a clade divides all the leaves (lineages) into two categories: those in

the clade (reachable by following additional directed edges forward from the branch; we call

this being “inside” the branch) and the rest, i.e., those not in the clade (“outside” the branch;

we might say these samples are in the “unclade”). It is the root of the tree that polarizes each

split by providing a direction for the branch; i.e., providing a concept of “inside” versus “out-

side”, or equivalently “clade” versus “unclade”. For a branch containing a polytomy, the

descendant leaves of each of its children form its “clade”. The two sets “clade” and “unclade”,

denoted by A and B, define the split. The split is denoted as A|B.

Two phylogenetic trees are similar if their branches produce a similar set of splits. When

comparing two phylogenetic trees, we begin by finding the common leaf set: that is, the set of

leaves (lineages) that are included in both trees. Then for each tree and each branch in that

tree, the reduced split is obtained from the split by removing all samples not in the common

leaf set for the two trees being compared. To compare two reduced splits, A|B and X|Y, we first

compute the size of the set-theoretic symmetric difference between the clades A and X, i.e., the

number of samples that are in A but not in X (denoted by |A\X|), plus the number of samples

that are in X but not in A (denoted by |X\A|). This number is denoted by s(A|B,X|Y) and is

called the split distance between the reduced splits A|B and X|Y. Symbolically,

s(A|B,X|Y) = |A\X| + |X\A|.

The same comparison of B with Y is not necessary as it will yield the same number as

obtained by comparing A and X.

Now, if b is a branch in tree T and A|B is its reduced split, thematching split distance of

the branch b in tree T’ is

c(b,T,T’) = min s(A|B,X|Y) over all reduced splits X|Y in T’.

Given the reduced split A|B for a branch b in a tree T and the set of all reduced splits in a

second tree T’, i.e., {X|Y: X|Y is a reduced split in T’}, the set of best-matching splits for A|B is

in T’ is defined as

M(b,T’,T’) = {X|Y: X|Y is a reduced split in T’ and s(A|B, X|Y) = c(b,T,T’)}.
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That is, every reduced split in M(b,T,T’) has a split distance from A|B equal to the matching

split distance of branch b in T’, which is the smallest distance possible. The branches corre-

sponding to the best matching splits are called best matching branches.

We can also define the (Shannon) entropy of the branch b in the tree T as the entropy in

units of bits of its reduced split A|B. Let p = |A|/(|A|+|B|) where |S| denotes the cardinality of a

set S. Then the entropy of b is

H(b) = —p log2(p)—(1-p) log2(1-p).

The proportional entropy weight of the branch b in the tree T is the normalized entropy

w(b) = H(b)/Z, where Z = sum of H(b”) over all branches b” in T.

The entropy-weighted matching split distance to tree T’ of branch b in tree T is then

d(b,T,T’) = w(b) c(b,T,T’).

We define a distance measure, called entropy-weighted total distance, for two trees T and

T’, as the sum of entropy-weighted matching split distance for all branches in T:

D(T,T’) = sum of d(b,T,T’) over every branch b in T.

As this distance measure is not symmetric, we also define a symmetric version of it as

S(T,T’) =½ (D(T,T’) + D(T’,T)).

Since the above metric scales with the size of trees being compared, we also define a nor-

malized version using the expected distance [78] (which is computed using trees Tp and Tp’

that randomly permute the leaves of T and T’, respectively, while maintaining the tree struc-

ture) as

Sp(T,T’) = (D(T,T’) + D(T’,T)) / (D(T,Tp’) + D(T’,Tp)).

Code for computing these distance measures can be found at https://github.com/yatisht/

strain_phylogenetics. This code has additional features, such as the ability to replace the Shan-

non entropy—p log2(p)—(1-p) log2(1-p) with related weighting functions such as 2 min

{p,1-p}. We find that the method is robust to such replacements.

Clade orientation for tree comparison

While node rotation algorithms in the context of tanglegram visualization have been imple-

mented in the cophylo and Dendroscope3 tools [70,71], we found these algorithms to be either

too slow or inadequate for the large SARS-CoV-2 phylogenies that we compared. We imple-

mented a simple node rotation heuristic, RotTrees, that works well and completes in reason-

able time (~1 min) for SARS-CoV-2 trees with ~5K leaves. The algorithm RotTrees accepts

two trees, T and T’, each pruned to contain only the shared set of leaves, as input. First, while

maintaining the leaf order of T, RotTrees makes a breadth-first traversal in T’, rotating the

children of each traversed node based on its average rank (i.e. child with a lower average rank

appears higher), which is the average of the positions of the appearance of that child node’s

leaves in T. Second, RotTrees repeats the above to rotate the leaves of T while maintaining the

leaf order of T’. The previous two steps are repeated until convergence (no new rotations in

that iteration) and the final tree rotations for T and T’ are returned. We made this routine

available in https://github.com/yatisht/strain_phylogenetics. This may not be optimal for all

tree co-visualization purposes, but here we find that this approach is sufficient to produce

improved tree visualizations compared to many available packages.

Phylogenetic trees

We obtained the phylogenetic tree hosted by Nextstrain (accessed 4/19/2020) and used this in

our comparisons of clades among trees and as our primary data object for examining appar-

ently recurrent mutation on the tree. We did separately confirm that most apparently recur-

rent mutations are recovered on the trees produced on different days by Nextstrain.
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For comparison of clades among different tree-building approaches, we obtained variant

datasets, and phylogenies from Nextstrain (https://nextstrain.org/ncov accessed 4/19/2020-4/

26/2020) and from COG-UK (https://cog-uk.s3.climb.ac.uk/20200424/cog_2020-04-24_tree.

newick, accessed 4/24/2020).

Phylogenetic reconstruction

From the 04/19 Nextstrain tree, we created a “reference phylogeny”using IQ-TREE 2 [59,79]

to build phylogenies from each of these alignments using the GTR+G nucleotide substitution

model. For all other phylogenies, we altered the input by removing or “masking” individual

sites, then produced phylogenies from these altered alignments using the same IQ-TREE 2

parameters.

The likelihood of a tree given the alignment from which it was constructed was automati-

cally calculated by the IQ-TREE command used above (iqtree -s<alignment.phy> -m GTR

+G). However, to compute the likelihood of a particular alignment given a different tree, we

used the command iqtree -s<alignment.phy> -te<phylogeny.nh> -m GTR+G.

To generate our final tree having masked lab-associated and extremal variants, we used the

same command but also included the ultrafast bootstrapping option “-bb 1000” to assist with

quantifying uncertainty in our final phylogeny [60]. Finally, we collapsed all branches that

were not supported by at least one mutation using parsimony to identify nodes that experi-

enced a mutation.

Systematic error addition experiments

To investigate the effects of lab-specific alleles on phylogenetic topology, we also introduced

artificial errors at control sites. We chose three sites at which to introduce these errors:

A11991G, C22214G, and C10029U. To introduce an error, we manually changed a reference

allele to an alternate allele for a given sample at a given site. For each of these sites, we chose

10, 25, and 50 samples for which we introduced errors. To mimic the effects of a lab-specific

allele, we ensured that each set of samples with artificial errors must come from the same coun-

try. We chose Australia due to its high representation in the Nextstrain trees (372 samples in

the 04/19 Nextstrain tree). To further mimic lab-specific behavior, we separately introduced

errors at the same sites for 10, 25, and 50 randomly selected French samples collected between

March 1 and March 17. After introducing these errors, we constructed phylogenies from the

modified alignments using IQ-TREE 2 [59,79] as described above. In total, we produced 54

phylogenies in this experiment, introducing errors at three sets of random samples for each of

the three sites, at 10, 25, and 50 samples each, for Australian and French samples.

We also repeated this experiment, but introducing errors at pairs of sites simultaneously

rather than at individual sites (i.e., A11991G and C22214G, A11991G and C10029U, and

C10029U and C22214G). We used the same randomly chosen sets of French samples for this

aspect of the experiment, and produced phylogenies by the same methods. In total, we pro-

duced 27 phylogenies in this experiment, introducing errors at three sets of randomly chosen

samples, at 10, 25, and 50 samples each, for each of the three pairs of sites.

Comparisons across Nextstrain trees

To understand commonalities in tree structure over time, we used MDS of a distance matrix

of normalized entropy-weighted total distances among Nextstrain trees (pruned to 468 shared

samples) spanning fromMarch 23 to April 30. To do this, we used the cmdscale() function in

base R (https://www.R-project.org/). We computed the correlation between our distance
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matrix and the proportion of samples shared among topologies produced each day using a

Mantel test implemented within the ade4 package in R.

Producing a Nextstrain consensus tree

To produce a Nextstrain consensus tree, we first pruned all Nextstrain trees to a common set

of samples included in each tree. We then used the sumtrees script within the dendropy pack-

age [72] to produce a majority rule consensus tree out of each tree requiring at least 50% of

trees support a clade for inclusion in the final consensus tree. Specifically, we used the sum-

trees function to perform this task. In our cases, that is equivalent to requiring at least 16 of 31

trees contain a given clade to include it.

Supporting information

S1 Text. High Allele Frequency Variants Could Reveal Cross-Contamination.

(DOCX)

S2 Text. Potential for Correlated Error in Our Dataset.

(DOCX)

S3 Text. EntropyWeighted Distance is a Robust Tree-Distance Measure.

(DOCX)

S4 Text. Step-by-step instructions for setting up a genome browser session with a custom

tree and VCF.

(DOCX)

S1 Fig. Alternate allele count versus parsimony score for the Nextstrain 4/20/2020 dataset

and tree. Each point is labeled as in Fig 2A with additional extremal points annotated. The

dashed line is fit to the extremal points and has log2-base slope 3.518.

(PNG)

S2 Fig. Lab-associated variants influence tree topology. Phylogenies created using the vari-

ants from 04/19 Nextstrain tree without modification (left) and with lab-associated variants

completely masked (right) demonstrate movement of multiple samples between sub-clades.

Those samples with the greatest changes in placement between the phylogenies are bolded.

This includes many samples containing lab-associated variants that we masked, which are col-

ored in red.

(PNG)

S3 Fig. Comparisons between the reference phylogeny, built from the 04/19/2020 release of

Nextstrain, to phylogenies built by entirely masking lab-associated variants (blue), control sites

(grey), and extremal sites (brown) are shown for Robinson-Foulds (A), Quartet (B), Path Dif-

ference (C), and Triples (D) scores as calculated by TreeCmp [64]. Horizontal lines indicate

scores for phylogenies constructed after masking all lab-associated sites (blue), all control sites

(grey), all extremal sites (brown), or using an unaltered Nextstrain 04/19/2020 dataset (black).

(PNG)

S4 Fig. The entropy-weighted total distance values between the reference phylogeny and

phylogenies constructed after entirely masking all samples with an alternate allele at a

given site are shown. The sites used here are the same sites corresponding to lab-specific

shown in Fig 5.

(PNG)

PLOS GENETICS Stability of SARS-CoV-2 Phylogenies

PLOSGenetics | https://doi.org/10.1371/journal.pgen.1009175 November 18, 2020 29 / 34

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009175.s001
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009175.s002
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009175.s003
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009175.s004
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009175.s005
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009175.s006
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009175.s007
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009175.s008
https://doi.org/10.1371/journal.pgen.1009175


S5 Fig. Tanglegrams for the two Nextstrain trees released on 04/19/2020 (left) and 04/20/2020

(right). (A) Without tree rotation, the tanglegram has a large mesh of connecting lines, making

it hard to see the tree correspondence. (B) With trees rotated using RotTrees, the tanglegram

is more visually appealing and the tree correspondence is a lot clearer.

(PNG)

S6 Fig. UCSC Genome Browser display of the trees from Fig 11C (COG-UK tree from 4/

24, restricted to 422 samples in common with consensus tree of Nextstrain trees 3/23-4/30,

and Nextstrain consensus tree), colored by Nextstrain clade assigned to sample. Interactive

view: http://genome.ucsc.edu/s/SARS_CoV2/cogVsNsCladeColors

(PNG)

S1 Table. Lab-associated variants discovered in our dataset.

(XLSX)

S2 Table. Highly recurrent, low alternate allele frequency variants.

(XLSX)

S3 Table. High alternate allele frequency, highly recurrent sites.

(XLSX)

S4 Table. Lab-associated, low parsimony score sites.

(XLSX)

S5 Table. Log-likelihood of outlier alignments based on entropy-weighted total distance.

(XLSX)

S6 Table. GISAID IDs whose clade annotation changed in the Nextstrain tree from 4/19/

2020 to 3/30/2020, and from 4/19/2020 to 4/28/2020.

(XLSX)

S7 Table. Acknowledgements GISAID Sample ID’s FromMarch 19-March31.

(PDF)

S8 Table. Acknowledgements GISAID Sample ID’s From April 1-April 15.

(PDF)

S9 Table. Acknowledgements GISAID Sample ID’s From April 16-April3.

(PDF)

Acknowledgments

The authors thank the GISAID database, the Nextstrain project, the COG-UK consortium and

all labs who contributed SARS-CoV-2 sequence data (S7–S9 Tables). We additionally thank

Nick Loman and Jared Simpson for feedback early on when we began to notice anomalous

data. Additionally, several groups have been extremely forthcoming with information about

the likely sources of lab-associated variants and eager to correct them.

Author Contributions

Conceptualization: Yatish Turakhia, Nicola De Maio, David Haussler, Nick Goldman, Russell

Corbett-Detig.

Data curation: Conor R. Walker, Angie S. Hinrichs.

Funding acquisition: David Haussler, Nick Goldman, Russell Corbett-Detig.

PLOS GENETICS Stability of SARS-CoV-2 Phylogenies

PLOSGenetics | https://doi.org/10.1371/journal.pgen.1009175 November 18, 2020 30 / 34

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009175.s009
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009175.s010
http://genome.ucsc.edu/s/SARS_CoV2/cogVsNsCladeColors
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009175.s011
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009175.s012
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009175.s013
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009175.s014
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009175.s015
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009175.s016
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009175.s017
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009175.s018
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009175.s019
https://doi.org/10.1371/journal.pgen.1009175


Investigation: Yatish Turakhia, Nicola De Maio, Bryan Thornlow, Landen Gozashti, Rui Bor-

ges, Greg Slodkowicz, Russell Corbett-Detig.

Methodology: Yatish Turakhia, Nicola De Maio, Bryan Thornlow, Conor R. Walker, Rui Bor-

ges, Nick Goldman.

Project administration: Nick Goldman, Russell Corbett-Detig.

Resources: Conor R. Walker, Lukas Weilguny.

Software: Yatish Turakhia, Landen Gozashti.

Supervision: Russell Corbett-Detig.

Visualization: Yatish Turakhia, Bryan Thornlow, Angie S. Hinrichs.

Writing – original draft: Yatish Turakhia, Nicola De Maio, Bryan Thornlow, David Haussler,

Russell Corbett-Detig.

Writing – review & editing: Yatish Turakhia, Nicola De Maio, Bryan Thornlow, Robert Lan-

fear, Conor R. Walker, Angie S. Hinrichs, Jason D. Fernandes, Rui Borges, Greg Slodko-

wicz, Lukas Weilguny, David Haussler, Nick Goldman, Russell Corbett-Detig.

References
1. NCBI Staff. NCBI Insights: INSDC Statement on SARS-CoV-2 sequence data sharing during COVID-

19. 17 Aug 2020 [cited 26 Aug 2020]. Available: https://ncbiinsights.ncbi.nlm.nih.gov/2020/08/17/insdc-
covid-data-sharing/

2. Maurano MT, Ramaswami S, Westby G, Zappile P, Dimartino D, Shen G, et al. Sequencing identifies
multiple, early introductions of SARS-CoV2 to New York City Region. https://doi.org/10.1101/2020.04.
15.20064931 PMID: 32511587

3. Deng X, GuW, Federman S, Du Plessis L, Pybus O, Faria N, et al. A Genomic Survey of SARS-CoV-2
Reveals Multiple Introductions into Northern California without a Predominant Lineage. https://doi.org/
10.1101/2020.03.27.20044925 PMID: 32511579

4. Zhang Y-Z, Holmes EC. A Genomic Perspective on the Origin and Emergence of SARS-CoV-2. Cell.
2020; 181:223–227. https://doi.org/10.1016/j.cell.2020.03.035 PMID: 32220310

5. Bal A, Destras G, Gaymard A, Bouscambert-DuchampM, Valette M, Escuret V, et al. Molecular charac-
terization of SARS-CoV-2 in the first COVID-19 cluster in France reveals an amino-acid deletion in nsp2
(Asp268Del). https://doi.org/10.1016/j.cmi.2020.03.020 PMID: 32234449

6. Grubaugh ND, Ladner JT, Lemey P, Pybus OG, Rambaut A, Holmes EC, et al. Tracking virus outbreaks
in the twenty-first century. Nat Microbiol. 2019; 4:10–19. https://doi.org/10.1038/s41564-018-0296-2
PMID: 30546099

7. Yi H. 2019 novel coronavirus is undergoing active recombination. Clin Infect Dis. 2020. https://doi.org/
10.1093/cid/ciaa219 PMID: 32130405

8. Chaw S-M, Tai J-H, Chen S-L, Hsieh C-H, Chang S-Y, Yeh S-H, et al. The origin and underlying driving
forces of the SARS-CoV-2 outbreak. https://doi.org/10.1186/s12929-020-00665-8 PMID: 32507105

9. van Dorp L, AcmanM, Richard D, Shaw LP, Ford CE, Ormond L, et al. Emergence of genomic diversity
and recurrent mutations in SARS-CoV-2. Infection, Genetics and Evolution. 2020. p. 104351. https://
doi.org/10.1016/j.meegid.2020.104351 PMID: 32387564

10. Li Y, Wang Y, Qiu Y, Gong Z, Deng L, Pan M, et al. SARS-CoV-2 Spike Glycoprotein Receptor Binding
Domain is Subject to Negative Selection with Predicted Positive Selection Mutations. https://doi.org/10.
1101/2020.05.04.077842

11. Victorovich KV, Rajanish G, Aleksandrovna KT, Krishna KS, Nicolaevich SA, Vitoldovich PV. Transla-
tion-associated mutational U-pressure in the first ORF of SARS-CoV-2 and other coronaviruses. https://
doi.org/10.3389/fmicb.2020.559165 PMID: 33072018

12. Zehender G, Lai A, Bergna A, Meroni L, Riva A, Balotta C, et al. GENOMIC CHARACTERISATION
AND PHYLOGENETIC ANALYSIS OF SARS-COV-2 IN ITALY. https://doi.org/10.1101/2020.03.15.
20032870

13. Gardy JL, Loman NJ. Towards a genomics-informed, real-time, global pathogen surveillance system.
Nat Rev Genet. 2018; 19:9–20. https://doi.org/10.1038/nrg.2017.88 PMID: 29129921

PLOS GENETICS Stability of SARS-CoV-2 Phylogenies

PLOSGenetics | https://doi.org/10.1371/journal.pgen.1009175 November 18, 2020 31 / 34

https://ncbiinsights.ncbi.nlm.nih.gov/2020/08/17/insdc-covid-data-sharing/
https://ncbiinsights.ncbi.nlm.nih.gov/2020/08/17/insdc-covid-data-sharing/
https://doi.org/10.1101/2020.04.15.20064931
https://doi.org/10.1101/2020.04.15.20064931
http://www.ncbi.nlm.nih.gov/pubmed/32511587
https://doi.org/10.1101/2020.03.27.20044925
https://doi.org/10.1101/2020.03.27.20044925
http://www.ncbi.nlm.nih.gov/pubmed/32511579
https://doi.org/10.1016/j.cell.2020.03.035
http://www.ncbi.nlm.nih.gov/pubmed/32220310
https://doi.org/10.1016/j.cmi.2020.03.020
http://www.ncbi.nlm.nih.gov/pubmed/32234449
https://doi.org/10.1038/s41564-018-0296-2
http://www.ncbi.nlm.nih.gov/pubmed/30546099
https://doi.org/10.1093/cid/ciaa219
https://doi.org/10.1093/cid/ciaa219
http://www.ncbi.nlm.nih.gov/pubmed/32130405
https://doi.org/10.1186/s12929-020-00665-8
http://www.ncbi.nlm.nih.gov/pubmed/32507105
https://doi.org/10.1016/j.meegid.2020.104351
https://doi.org/10.1016/j.meegid.2020.104351
http://www.ncbi.nlm.nih.gov/pubmed/32387564
https://doi.org/10.1101/2020.05.04.077842
https://doi.org/10.1101/2020.05.04.077842
https://doi.org/10.3389/fmicb.2020.559165
https://doi.org/10.3389/fmicb.2020.559165
http://www.ncbi.nlm.nih.gov/pubmed/33072018
https://doi.org/10.1101/2020.03.15.20032870
https://doi.org/10.1101/2020.03.15.20032870
https://doi.org/10.1038/nrg.2017.88
http://www.ncbi.nlm.nih.gov/pubmed/29129921
https://doi.org/10.1371/journal.pgen.1009175


14. Chitranshi N, Gupta VK, Rajput R, Godinez A, Pushpitha K, Sheng T, et al. Evolving geographic diver-
sity in SARS-CoV2 and in silico analysis of replicating enzyme 3CLPro targeting repurposed drug candi-
dates. https://doi.org/10.1186/s12967-020-02448-z PMID: 32646487

15. Adebali O, Bircan A, Circi D, Islek B, Kilinc Z, Selcuk B, et al. Phylogenetic Analysis of SARS-CoV-2
Genomes in Turkey. https://doi.org/10.3906/biy-2005-35 PMID: 32595351

16. Hadfield J, Megill C, Bell SM, Huddleston J, Potter B, Callender C, et al. Nextstrain: real-time tracking of
pathogen evolution. Bioinformatics. 2018. pp. 4121–4123. https://doi.org/10.1093/bioinformatics/
bty407 PMID: 29790939

17. Neher RA, Bedford T. nextflu: real-time tracking of seasonal influenza virus evolution in humans. Bioin-
formatics. 2015. pp. 3546–3548. https://doi.org/10.1093/bioinformatics/btv381 PMID: 26115986
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