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Abstract—Realistic multiport interferometers (beam-

splitter meshes) are sensitive to component imperfec-

tions, and this sensitivity increases with size. Self-

configuration techniques can be employed to correct

these imperfections, but not all techniques are equal.

This paper highlights the importance of algorithmic

stability in self-configuration. Näıve approaches based

on sequentially setting matrix elements are unstable

and perform poorly for large meshes, while techniques

based on power ratios perform well in all cases, even

in the presence of large errors. Based on this insight,

we propose a self-configuration scheme for triangu-

lar meshes that requires only external detectors and

works without prior knowledge of the component im-

perfections. This scheme extends to the rectangular

mesh by adding a single array of detectors along the

diagonal.
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1 Introduction

Photonic technologies increasingly rely on programmable
and reconfigurable circuits. A central component in such
circuits is the universal multiport interferometer: an op-
tical device with N > 2 inputs and outputs, whose lin-
ear input-output relation (transfer matrix) is set by the
user. Such interferometers are indispensable in appli-
cations ranging from linear optical quantum computing
[1, 2] and RF photonics [3, 4] to signal processing [5, 6]
and machine learning acceleration [7–10], and will play an
important role in proposed photonic field-programmable
gate arrays [5, 11]. Size (i.e. number of ports) is an im-
portant figure of merit for all of these applications, and
scaling up multiport interferometers is an active field in
research. Recent advances in silicon photonics are promis-
ing, allowing the scale-up from small proof-of-concept de-
signs to large (and therefore technologically useful) sys-
tems [2, 12, 13].

Component imperfections are a major challenge to scal-
ing the size of multiport interferometers. This is because
all large devices are based on dense meshes of tunable
beamsplitters, whose circuit depth grows with size. Most
non-recirculating designs are variants of the triangular
Reck [14] or rectangular Clements [15] beamsplitter
mesh, both of which encode anN×N unitary transfer ma-

trix into a compact mesh of programmable Mach-Zehnder
interferometers (MZIs). These circuits have O(N) depth,
meaning that component errors cascade as light prop-
agates down the mesh. The upshot is that scaling in
size must be accompanied by scaling in precision to pre-
serve the accuracy of the input-output map. This chal-
lenge is most acute for optical machine learning appli-
cations [7, 10], which rely on very large mesh sizes for
performance [12, 13], where fabrication errors from even
state-of-the-art technology are predicted to significantly
degrade ONN accuracy in hardware [16].

Several self-configuration techniques can suppress the ef-
fect of component imprecisions. For machine learning
applications, the MZI phase shifts can be learned by in
situ training [17], but this requires extra hardware (in-
line power detectors [18]) and the learned weights are
specific to the given device. Alternatively, if the chip
has been pre-calibrated so the imperfections are known,
global optimization can be used to find the phase shifts
offline [19, 20]; however, this approach is time-consuming
and requires that the hardware imperfections be known
to high accuracy. MZI errors can also be eliminated by
pairing MZIs, though this doubles the loss and chip area
[21]. Finally, for triangular meshes, the MZIs of each
diagonal can be configured sequentially [22–24]. This ap-
proach, however, also requires O(N2) inline power detec-
tors (or pre-calibrated MZIs that can be configured to
a perfect “bar” or “cross” state). In short, all configura-
tion schemes to date rely on either (i) additional hardware
complexity, i.e. inline detectors or MZI pairing, or (ii) ac-
curate pre-calibration of the mesh’s component errors.

In this article, we analyze self-configuration algorithms
that require only external detectors and do not rely on
prior calibration of the MZI mesh. Not all algorithms
are created equal, and algorithmic stability distinguishes
good algorithms from bad ones: for example, a straight-
forward approach based on sequentially matching matrix
elements works in principle, but performs poorly in the
presence of large errors. Based on this insight, we pro-
pose an algorithm based on orthogonality and power ra-
tios that performs well in all cases, even in the presence of
large errors. This scheme is directly applicable to trian-
gular meshes, but can also be extended to a rectangular
mesh with the addition of a single array of inline power
detectors along the diagonal.

This paper is organized as follows: In Sec. 2, we introduce
the Reck and Clements meshes, analyze their statisti-
cal properties in the presence of errors, and derive an-
alytic estimates for the improvements possible by self-
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configuration. Sec. 3 covers the theory of self-configuring
algorithms and introduces our proposed methods in the
context of the Reck scheme. Sec. 4 analyzes the accu-
racy of self-configuration in the presence of component
errors and highlights the importance of algorithmic sta-
bility. Finally, Sec. 5 extends our method to the rectan-
gular Clements scheme by splitting the rectangle with
a diagonal of internal monitors.

2 Statistics of Imperfect Meshes

The most common multiport interferometer designs are
the Reck triangle [14] and the Clements rectangle [15].
In both cases, the circuit can be laid out on a regular
grid of 2× 2 elements (Fig. 1(a)) without any waveguide
crossings, a major advantage compared to competing de-
signs [25–28]. The input-output matrix of the mesh is
accordingly a product:

U =
(∑

n

Tn

)
D (1)

where D is a phase mask and the Tn are 2× 2 block ma-
trices representing a phase shifter cascaded into an MZI
crossing (Fig. 1(b)):

Tn =

[
1 0
0 eiφn

]
︸ ︷︷ ︸
P2(φn)

[
cos(π4 + βn) i sin(π4 + βn)
i sin(π4 + βn) cos(π4 + βn)

]
︸ ︷︷ ︸

S(
π
4 +βn)

×
[
eiθn 0

0 1

]
︸ ︷︷ ︸
P1(θn)

[
cos(π4 + αn) i sin(π4 + αn)
i sin(π4 + αn) cos(π4 + αn)

]
︸ ︷︷ ︸

S(
π
4 +αn)

(2)

Here (θn, φn) are the phases programmed by the user, e.g.
through thermo-optic [29], or MEMS [13] phase shifters,
while (π4 +αn,

π
4 + βn) are the coupler angles, a property

of the circuit and its imperfections (αn, βn). These angles
are π/4 in an ideal MZI, which enables perfect contrast
on each MZI output. In such a device, the phase shifts
can be found by a procedure that diagonalizes U with a
sequence of 2× 2 rotations [14, 15].

(An equally valid convention is to place the phase mask
at the end, U = D

∏
n Tn, and put the phase shifter

φn at the beginning of the unit cell: Tn = S(π4 +
βn)P1(θn)S(π4 + αn)P1(φn); however, the algorithm de-
scribed in Sec. 3 is easiest to adapt to the convention in
Eqs. (1-2)).

2.1 Component Errors

Component errors (deviations from design) will perturb
the input-output matrix. We are primarily interested in
the magnitude of this perturbation ∆U , quantified by the
Frobenius norm ‖∆U‖2 =

∑
ij |∆Uij |2 and normalized to

define an error measure:

E =
1√
N
〈‖∆U‖〉rms ∈ [0, 2] (3)

This metric can be interpreted as an average relative error
per entry in the matrix U ; for small E , the quantity (1−E)
plays a role similar to the fidelity of a quantum operation.
To first order, the effect of component errors is linear:

∆U =
∑
n

[( ∂U
∂αn

)
αn +

( ∂U
∂βn

)
βn

]
(4)

Applying Eqs. (1-2), we find ∂U/∂αn = UpreS
′(π/4)Upost

(and likewise for ∂U/∂βn). Since we are interested here
in the magnitude ‖∆U‖ and matrices (Upre, Upost) are
unitary, it follows that:∥∥∥ ∂U

∂αn

∥∥∥ =
∥∥∥ ∂U
∂βn

∥∥∥ = ‖S′(π/4)‖ =
√

2 (5)

Thus, the mesh is equally sensitive to all beamsplitters,
irrespective of geometry.

At this point it becomes necessary to introduce an er-
ror model, since perturbations from nearby crossings may
lead to correlated errors in U . While real imperfections
are correlated, this adds significant complexity to the
math that obfuscates the insights. Moreover, while cor-
relations may affect the error measure of a particular ma-
trix, when considering ensembles of matrices, they are
expected to average to zero (see Appendix A). Therefore,
for the remainder of this paper, we assume an uncorre-
lated error model where 〈αn〉rms = 〈βn〉rms = σ for a
given error amplitude σ.
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Figure 1: (a) Triangular (Reck) universal multiport interfer-
ometer [14]. (b) Constituent components and 2 × 2 unit cell
Tn, illustrating the effect of errors on the transfer matrix. (c)
Distribution of splitting angles θ and phase shifts φ over the
Haar measure, Eq. (10-11).
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Under the uncorrelated model, the error terms in Eq. (4)
add in quadrature over the N(N − 1) couplers to give:

E =
√

2(N − 1)σ ∼ (2N)1/2σ (6)

Since the depth of the circuit is O(N), and independent
errors in each layer add in quadrature, it is not surpris-
ing that E ∝ N1/2. Component precision therefore must
increase as meshes are scaled up in order to maintain a
desired matrix accuracy.

2.2 Error Correction

As mentioned earlier, if the imperfections (αn, βn) are
known, correction schemes can be used to program a uni-
tary to, in most cases, better accuracy than Eq. (6). Re-
cently, we presented a straightforward “local” scheme to
correct for imperfections at each MZI separately [30] (see
also Ref. [31]). The method is based on the observation
that 2 × 2 unitaries with the same power splitting ratio
are equivalent up to external phase shifts. In the presence
of imperfections, the MZI does not achieve perfect con-
trast in both output ports. The range of splitting angles
is truncated to:

2|α+ β| ≤ θ ≤ π − 2|α− β| (7)

Provided Eq. (7) is satisfied, a perfect MZI T (θn, φn) can
be replaced by an imperfect MZI with external phase
shifts:

∃ θ′n, φ′n, χ′n, ψ′n :

T (θn, φn) = T (θ′n, φ
′
n|αn, βn)

[
eiχ

′
n 0

0 eiψ
′
n

]
(8)

(The extra phase shifts can be absorbed into the neigh-
boring MZIs so that the number of physical phase shifters
on the mesh does not increase.) Provided that Eq. (7)
is satisfied for all MZIs in the ideal Reck / Clements
decomposition, this procedure in Ref. [30] leads to a per-
fect representation of the matrix. The fraction of unitary
matrices realizable by this imperfect mesh is called the
coverage, cov(N, σ). If some MZIs do not satisfy Eq. (7),

we pick the closest possible θ̂n ∈ {θmin, θmax}, which leads
to an error in the matrix:

‖∆U‖MZI =

∥∥∥∥[ cos(θn/2) i sin(θn/2)
i sin(θn/2) cos(θn/2)

]
−
[

cos(θ̂n/2) i sin(θ̂n/2)

i sin(θ̂n/2) cos(θ̂n/2)

]∥∥∥∥
= 2−1/2|θn − θ̂n|+O

(
(θn − θ̂n)3

)
(9)

Not all unitaries are equally easy to express on an MZI
mesh. For this reason, when analyzing the efficiency of an
error correction scheme, one must specify the probability
distribution of U . Here, we consider random unitaries

under the Haar measure, a distribution that samples uni-
formly from the space of unitary matrices [32, 33]. Under
this measure, the phase shifts θn ∈ [0, π) and φn ∈ [0, 2π)
are uncorrelated and distributed according to [34]:

P (φ) =
1

2π
(uniform over [0, 2π)) (10)

P (θ|k) = k sin(θ/2) cos(θ/2)2k−1 (11)

where k is the row index of the Reck mesh, starting from
k = 1 at the bottom (Fig. 1(a)). The phase shifts of the
Clements mesh follow the same distribution with a dif-
ferent layout of crossings [34]. The distribution Eq. (11)
clusters tightly around θ = 0 for MZIs with large k
[19, 20, 34] (Fig. 1(c)). Therefore, coverage and accuracy
in large meshes is primarily limited by the small θ values.
P (θ|k) can be linearized for small θ, so the probability of
a single MZI breaking the bound Eq. (7) is approximately

punsat(k) =

∫ 2|α+β|

0

P (θ|k)dθ ≈ k(α+ β)2 (12)

For an N × N unitary, there are (N − k) MZIs of rank
k. The coverage is equal to the probability, under the
Haar measure, that all θn are realizable. Since the θn
are uncorrelated, this is a product of the probabilities for
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ln
(c
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n = N
3 2 /3
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Figure 2: Realization of Haar-random unitaries with imper-
fect meshes, N = 128. (a) Number of unsatisfied MZIs, which
is related to the coverage nunsat = − ln(cov(N)), Eq. (13).
(b) Matrix error E = ‖∆U‖/

√
N with and without correc-

tion, demonstrating the accuracy enhancement of the “local”
correction algorithm.
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each MZI:

cov(N) =
∏
k

(
1− punsat(k)

)N−k
≈ exp

[
−
∑
k

k(N − k)〈(α+ β)2︸ ︷︷ ︸
nunsat

〉
]
≈ e−N

3σ2/3 (13)

This is vanishingly small for large MZI meshes: for exam-
ple, taking a reasonable value of σ = 0.02, even a 32× 32
mesh has a coverage around 1%. In general, the number
nunsat of “unsatisfiable” MZIs that break condition (7)
increases rapidly with error and problem size (Fig 2(a)).

Even if most unitaries cannot be realized exactly, they
can be approximated to much better accuracy than the
uncorrected result Eq. (6). Each MZI with an unrealiz-
able θn will lead to a matrix error per Eq. (9). Over the
Haar measure, the average error induced by a particular
MZI is thus:

〈‖∆U‖2〉MZI,k =

∫
P (θ|k)‖∆U(θ)‖2dθ

≈
∫ 2|α+β|

0

kθ

2

(2|α+ β| − θ)2

2
dθ =

k

3
(α+ β)4 (14)

Assuming the errors are uncorrelated (see Appendix A for
the correlated case), they add in quadrature: 〈‖∆U‖2〉 =∑
k(N − k)〈‖∆U‖2〉k ≈ 1

18N
3〈(α + β)4〉 = 2

3N
3σ4. Fol-

lowing Eq. (3), the corrected normalized error is therefore:

Ecorr =
√

2/3Nσ2 (15)

This is plotted in Fig. 2(b). Recall from Eq. (6) that the
uncorrected error scales as E ∝

√
N σ. This means that

Ecorr ∝ E2, i.e. correction allows for an effective “squar-
ing” of the error. If the errors are very large to begin with,
error correction will not provide much benefit. However,
for most fabricated circuits the uncorrected E is reason-
ably small (though not small enough for many applica-
tions), and error correction can give a significant boost in
accuracy.

3 Self-Configuring Algorithms

In many circumstances, the correction procedure in
Sec. 2.2 cannot be applied because the errors in an MZI
mesh are known to sufficient accuracy. Nevertheless, for
triangular meshes, “progressive” self-configuration strate-
gies can still be used. As noted earlier, existing strategies
rely on inline photodetectors or pre-calibration, which
limits their usefulness in many systems [22–24, 35]. This
section introduces two schemes that do not rely on these
assumptions and can be run on uncalibrated hardware
with only external detectors: a simple “direct” method
based on sequentially setting matrix elements and a “ra-
tio” method based on setting power ratios. While both

schemes work in principle, only the ratio method is robust
in the presence of large errors. This distinction highlights
the importance of algorithmic stability when configuring
large multiport interferometers.

3.1 Direct Method

The simplest way to program a triangular mesh is to set
the MZI phases one at a time to match the target matrix
elements Ûij . This is easiest to understand by considering
first the case of a tunable 1:N splitter and later general-
izing to an N ×N unitary. Fig. 3(a) shows the “direct”
method for programming a 1:N splitter, which we wish to
set to a target splitting vector û, ‖û‖ = 1. Given a coher-
ent input Ein, the procedure consists of N steps, starting
from the input of the splitter and working towards the fi-
nal output. In the first N−1 steps, a pair of phases (θ, φ)
(corresponding to an MZI and phase shifter, Fig. 1(a))
are tuned to set the mth (complex) output amplitude to
ûmEin. The two degrees of freedom are sufficient to inde-
pendently set the real and imaginary components of ûm.
In the final step, there is only a single degree of freedom
(a phase shift φ); however, since û has unit norm, at this
stage its amplitude is already constrained and only the
phase is free; therefore, provided the preceding elements
ûm are set properly, only single phase shift is needed to
set ûN .

Fig. 3(b) shows the direct method for programming a
Reck triangle, which can be divided into N diagonals,
each functioning as a tunable one-to-many splitter, with

Step 2

Ein

4

5

2

3

1

6

Step 1

Ein

set: u1Ein

(a)

(b)

u2Ein

5

Ein

u5Ein

Ein

U23Ein

Figure 3: Direct method for programming triangular MZI
meshes. (a) Procedure for programming a 1:N splitter, start-
ing at the input MZI and working down to the last output.
(b) Programming the Reck triangle. This involves starting at
the top diagonal and working down, applying the procedure
in Fig. 3(a) to each diagonal.

4



the output of each diagonal fed into the inputs of its
upper-right neighbor. The triangle is configured from the
top diagonal to the bottom, working down each diagonal.
Each MZI element (θmn, φmn) (the nth element of the mth

diagonal, starting from the top) is configured to set the
matrix element Ûnm between output n and input m. In
this way, the lower diagonal of Û is correctly configured –
which, given the unitarity of Û , correctly configures the
entire matrix.

The matrix must be triangular in order for this procedure
to work. Triangularity guarantees that tuning steps do
not disturb the matrix elements that have already been
set, provided that the order in Eq. 3(b) is followed. Thus,
the direct method cannot configure the Clements ma-
trix, although we show in Sec. 5 that Clements can be
divided into two triangles, which can be separately con-
figured.

3.2 Ratio Method

One can also configure the mesh by a method based on
power ratios. As before, it is easiest to describe this
method in the case of a 1:N splitter (Fig. 4(a)) and then
generalize to the Reck triangle. In this case, the splitter
phases are configured in reverse order to set the power

Step 2

Step 1
set: u4/u5

(a)

(b)

5

4

5

2

3

1

6

P3/(P4+P5), 
phase

global
phase

(c)

θ,φ

Upre
Upost

a
α

T11β

b c

T21γ

um = a+s eiψ(T11b+T21c)

Smn

s ψ

T (m,n)

Figure 4: Ratio method for configuring MZI meshes. (a) Pro-
gramming a 1:N splitter. (b) MZI order for programming an
N × N Reck triangle. (c) Output field during configuration
of MZI (m,n) decomposed into three components according
to the path of the light.

ratios (and relative phases) of the outputs. As before, let
û be the target vector and ~u be the output of the physical
splitter. The configuration steps are as follows:

• Step 1: Set splitter angle θ to match the power
ratio |uN−1/uN | = |ûN−1/ûN |. Next, set phase
shift φ to match the relative phase arg(uN−1/uN ) =
arg(ûN−1/ûN ) between the last two outputs.

• Intermediate Steps: Here, we configure the phase
shifts corresponding to the nth output, 1 ≤ n < N .
These are set to align the partial output vectors:
~un:N ‖ ûn:N (here ~an:N = [an, . . . , aN ] denotes the
slice of a vector ~a over a given index set, red out-
puts in Fig. 4(a)). The splitter angle θ is set to
match the power ratios Pn/(Pn+1 + . . .+PN ), while
the phase shift is used to compensate any relative
phases. Overall, this corresponds to maximizing the
inner product maxθ,φ

∣∣〈~un:N |ûn:N 〉∣∣.
Without errors, this is equivalent to matching the
amplitude and phase of un/un+1 as all downstream
ratios have already been configured; however, using
all the outputs in the configuration is more robust to
errors (especially when un+1 is small).

• Step N: Set the final phase shift to align the phase of
~u with û.

The Reck triangle is configured one diagonal at a time
in the order shown in Fig. 4(b). Here, we have indexed
the each MZI (m,n) according to its diagonal (m) and
position relative to the triangle base (n). When config-
uring an MZI along the mth diagonal, light enters port
m so that only the top port of the MZI is excited. All
MZIs downstream from (m,n) have been tuned, while up-
stream MZIs are untuned, and a spacelike separator Smn
(purple line in figure) divides the configured and uncon-
figured parts of the mesh. We can write the unitary of
this circuit as:

U = UpostTUpre (16)

where T =
[
[T11, T12], [T21, T22]

]
is the MZI transfer func-

tion, which depends on the phases (θmn, φmn). The out-
put field is a sum of 3 contributions (Fig. 4(c)):

1. Light that bypasses the MZI (m,n). At surface Smn,
this is denoted by ~α, and at the output it is ~a =
Upost~α.

2. Light that enters (m,n) and leaves through its top
port. The input light has an unknown amplitude
s eiψ (ψ set by the upstream phase shifter, purple),
but only relative amplitudes matter when configur-
ing (m,n). The output to the top port is s eiψT11.
At surface Smn, the field is denoted by the vector
s eiψT11~β, where ~β = êN−n is the one-hot vector for
waveguide (N − n) (the top output of (m,n)). Thus

the output field is s eiψT11~b, where b = Upost
~β.
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3. Light that enters (m,n) and leaves through the bot-
tom port. Analogous to the top port, we have
s eiψT21~γ at Smn (~γ = êN−n+1), and s eiψT21~c at
the output (~c = Upost~γ).

Summing these terms, the output from port m is:

~um = ~a+ s eiψ(T11~b+ T21~c) (17)

The goal is to configure the MZI so that this output best
approximates ûm, the mth column of target matrix Û .
This is done by minimizing the L2 norm ‖~um−ûm‖. Since

T and Upost are unitary, we have ~a ⊥ ~b ⊥ ~c and |T11|2 +
|T21|2 = 1; applying these relations we find:

‖~um − ûm‖2 = ‖ûm − ~a‖2 + |s|2︸ ︷︷ ︸
const

− 2 Re
[
s eiψ

(
T11〈ûm|~b〉+ T21〈ûm|~c〉

)]
(18)

The first two terms drop out as constants since they
do not depend on the optimization variables θmn, φmn
(which determine (T11, T21)). Since each MZI is preceded
by a phase shifter, the phase of ψ is also freely tunable;
we therefore wish to perform the following maximization:

maxθ,φmaxψRe
[
s eiψ

(
T11〈ûm|~b〉+ T21〈ûm|~c〉

)]
∝ maxθ,φ

∣∣T11〈ûm|~b〉+ T21〈ûm|~c〉
∣∣ (19)

subject to the constraint |T11|2 + |T21|2 = 1. This is just
optimizing a dot product, which amounts to setting the
amplitude ratio:

T11
T21

=
〈~b|ûm〉
〈~c|ûm〉

(20)

We cannot measure T11, T21,~b, or ~c directly in an exper-
iment. Instead, we proceed as follows: first sweep the
value of ψ to obtain ~a, which is the value of ui averaged
over opposite phases ψ:

~a =
~um(ψ = 0) + ~um(ψ = π)

2
=

1

2π

∫
~um(ψ)dψ (21)

Next, once ~a is found, set (θ, φ) to maximize the quantity:

maxθ,φ
∣∣〈ûm|~um(θ, φ)− ~a〉

∣∣ (22)

which is mathematically the same as Eq. (19) and inde-
pendent of ψ, but only relies on external output measure-
ments.

The Ratio Method is closely related to mesh configuration
methods based on matrix diagonalization [15, 22, 23, 36].

4 Performance Comparison

To compare the strategies, we simulate the self-calibration
of Reck meshes in the presence of component errors.
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Figure 5: Performance of mesh calibration methods, Reck
triangle. (a) Matrix error E vs. MZI error σ for N = 64.
Dots are individual instances; the line traces the median. (b)
Uncorrected vs. corrected error, 8 ≤ N ≤ 64. (c) Correction
factor Ecorr/E as a function of σ and N , showing the sharp
transition for the direct method. Data for (b-c) show medians
for each (N,σ) parameter pair.

Here, the target unitaries Û are sampled from the Haar
measure, with random, Gaussian-distributed errors in the
beamsplitter angles (i.e. 〈α〉rms = 〈β〉rms = σ). We con-
sider mesh sizes in the range 8 ≤ N ≤ 64 to analyze the
scaling of the algorithms with mesh size. Along the lines
of Sec. 2.2, we expect that error correction should allow
perfect configuration when errors are low enough (cover-
age is order unity), and an error reduction of Ecorr ∝ E2
in the uncorrectable case.

Fig. 5(a) shows the scaling of error metric E with σ for
a 64 × 64 Reck mesh. As expected, the uncorrected
error increases linearly with σ, following Eq. (6). For
sufficiently small σ, the corrected error diverges to zero
for both methods. However, the direct method suffers a
hard performance cutoff around σ = 0.005. For realistic
σ & 0.01, the direct method actually performs worse than
no correction at all! In contrast, the ratio method per-
forms well at both small and large σ. Above the cutoff, it
roughly follows the trend E =

√
2/3Nσ2, the same rela-

tion derived for the local scheme in Eq. (15). Unlike the
local scheme, the ratio method requires no prior knowl-
edge of the MZI imperfections, and can be configured
using only output detectors.
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Figure 6: Matrix element errors |Umn−Ûmn| for 64×64 Reck
mesh as a function of MZI error σ and calibration method.

By combining the two fits in Fig. 5(a), we arrive at the
following expression:

Ecorr =
1√
6
E2 (23)

This relation is independent of N , and can be used to
test the scaling of the algorithms as the matrix dimension
increases. Fig. 5(b) plots Ecorr against E for 8 ≤ N ≤
64. Predictably, there is a sharp drop for both schemes
corresponding to perfect correction, but the threshold for
such perfect correction decreases with N . This is a serious
challenge for the direct method, since Ecorr > E in the
imperfect correction regime. On the contrary, the ratio
method shows an improvement for the whole range of N ,
with the data asymptoting to Eq. (23), suggesting that
the approach is scalable.

Fig. 5(c) plots the same data in (N, σ) space. For both
methods, we observe a transition when the coverage of
the mesh drops below unity. Since cov(N) ∼ e−N

3σ2/3,
this transition occurs roughly at N3σ2 = 3 (white curve).
Both methods work in the exact regime, but only the
ratio method is successful when errors are large enough
that U cannot be represented exactly.

Why does the direct method perform poorly in the uncor-
rectable error regime? The structure of the error matrix
|U − Û | (Fig. 6) sheds light on the problem. The direct
method only guarantees Umn = Ûmn for the upper-left
triangle of entries m + n < N . If these are exactly sat-
isfied, the matrices will be equal. However, even small
errors are pushed to the lower-right triangle, where they
cascade as the mesh is configured column by column. This
instability leads, in general, to a matrix that is only well
configured for at most half of its entries.

When following the ratio method, errors do not build up.
To understand the stability of the ratio method, it is
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Figure 7: Configuration of MZI mesh corresponds to diago-
nalizing a unitary matrix with 2× 2 blocks.

helpful to relate the method to the 2 × 2 block decom-
position of a unitary matrix [14] (Fig. 7). Given a target
matrix Û , we wish to find 2 × 2 blocks Umn such that
U†N1 . . . U

†
12U

†
11Û = I. We start by configuring block U11,

which mixes the last two rows to zero out the lower-right
element of the matrix. Next, U12 is configured to zero the
element directly above. The procedure is repeated until
all elements in the lower diagonal have been zeroed, at
which point the matrix equals the identity.

Because of MZI errors, not all off-diagonal terms can
be zeroed. If a term cannot be zeroed, it leaves a
residual term (|αmn − βmn| − θmn) below the diagonal,
where θmn is the target splitting ratio for MZI (m,n),
which is unrealizable since |αmn − βmn| > θmn. Let

V (mn) = U†mn . . . U
†
12U

†
11Û be the matrix after configuring

Umn and define

εmn =

m−1∑
i=1

N∑
j=i+1

|V (mn)
ij |2 +

N∑
j=N−n

|V (mn)
mj |2 (24)

which is the sum of squares of all elements V
(mn)
ij in the

zero region below the diagonal (white and green in Fig. 7).
Each imperfect configuration step adds a new element to
this region, incrementing εmn by (|αmn − βmn| − θmn)2,
the norm of the new element added. The existing ma-
trix elements are mixed around, but the norm for them
does not change because the mixing is unitary. There-
fore, errors do not grow in the ratio scheme; they just get
mixed into other matrix elements. This is the critical dif-
ference between the direct and ratio schemes. The final
matrix will be close to the identity and therefore takes the
form V (N1) ≈ I + iH for some Hermitian H. Therefore,
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‖U − Û‖2 ≈ 2εN1, and we have:

E2corr =
2〈εN1〉
N

=
2

N

∑
mn

〈max(|αmn − βmn| − θmn, 0)2〉 =
2N2σ4

3
(25)

which is the same result as for the local scheme Eq. (15).

5 Rectangular Mesh

Compared to the Reck triangle, the rectangular
Clements mesh has the advantages of increased com-
pactness, reduced circuit depth, and relative insensitiv-
ity to fixed component losses [15]. However, it cannot be
written as a cascade of diagonals, so the self-configuration
techniques presented above cannot be used. However, a
simple modification to Clements—placing a diagonal of
tunable drop ports and detectors—suffices to make the
mesh programmable (Fig. 8(a)). The diagonal elements
effectively split the mesh into two triangles, each which
can be programmed independently.

First, following the Clements representation of an ideal

θ,φ
Upost

Upre

α

β

γ

a+s eiψ(T21β+T22γ)

ψ

T (m,n)

1

2

3

4 5

1'

2'

3'4'

θ

φ

=

=

=

Port / PD

Outm= 

um
*

(a)

(b)

(c)

Figure 8: Self-configuration of rectangular mesh. (a) Modified
Clements mesh with a row of drop ports and detectors along
the diagonal. (b) Clements mesh divided along the diagonal,
showing the order or MZI configuration each triangle, accord-
ing to the ratio method (reciprocal variant used for the first
triangle). (c) Flow of light when configuring an MZI in the
reciprocal ratio method.

MZI mesh [15], the target matrix is decomposed into two
components Û = Û2Û1 for the left and right triangles.
Next, the diagonal ports are set to the “cross” state to
collect all of the light along the diagonal. This allows the
left triangle to be programmed to Û1 (Fig. 8(b)), achieved
by a reciprocal form of the ratio method described below.
Finally, the diagonal switches are used to isolate the in-
puts of the right triangle; this allows it to be programmed
to Û2 (up to an input phase) by the conventional ratio
method (Sec. 3.2).

In the reciprocal form of the ratio method, instead of
sending light into a single port and matching the output
vector to a column of Û , we send in a column u∗m of Û† as
input and try to direct all the power to a single output.
This is analogous to the Reverse Local Light Interference
Method (RELLIM) [24], but does not require internal de-
tectors. The MZIs are programmed along falling diag-
onals, but compared to Sec. 3.2, the order is reversed
(bottom to top, down each diagonal).

When configuring MZI (m,n), all upstream components
have been configured, while downstream components
have not. The input-output relation is the product
v = UpostTUpreû

∗
m, where Upre has been configured but

Upost has not. The light at output m can take one of
three paths: (1) bypassing the MZI, (2) entering the top
port of the MZI, or (3) entering the bottom port of the
MZI (Fig. 8(c)), leading to a sum:

vm = a+ s eiψ(T21β + T22γ) (26)

U1

U2 U2U11*

... U2U11*U41* ...U32*

U1U11* U1U11* U21*

U1U11* U21* ...U51*...

(a)

(b)

...

Figure 9: Zeroing matrix elements when configuring the trian-
gular meshes in Fig. 8(b) to match Û1 and Û2. (a) Reciprocal
ratio method configures upper-left triangle to Û1. (b) Ratio
method configures lower-right triangle to Û2.
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Figure 10: Accuracy of self-configured Clements mesh. (a) Matrix error E vs. MZI error σ for N = 64. (b) Correction factor
Ecorr/E . (c) Matrix element errors |Umn − Ûmn| for U1 and U2 employing the direct and ratio methods (N = 64, σ = 0.01).

The MZI must be configured to direct all its output power
to the bottom port (T21/T22 = (β/γ)∗). In RELLIM [24],
this is accomplished with the use of internal detectors.
However, external detectors can also be used, even if the
downstream MZIs have not been calibrated to a “cross”
state. As in Sec. 3.2, first the phase ψ is swept and the
value of a is extracted from the average:

a =
vm(ψ = 0) + vm(ψ = π)

2
=

1

2π

∫
vm(ψ)dψ (27)

Next, the phases of the MZI are set to maximize:

maxθ,φ|vm − a| (28)

As with the Reck scheme, we can prove that this config-
uration method is resistant to errors by visualizing how
each configuration step zeroes out entries in the target
matrix. Each matrix has ≈ 3

4N
2 free entries and ≈ 1

4N
2

zeroes below the diagonal. Each mesh is self-configured to
eliminate the remaining nonzero elements in the lower tri-
angle, which takes ≈ 1

4N
2 steps, half the number of steps

as the Reck triangle. In each step in the reciprocal ratio
method (Fig. 9(a)), the target matrix is right-multiplied
by a 2× 2 block to zero out a matrix entry; after ≈ 1

4N
2

steps, the upper triangle of Fig. 8(b) is configured and Û1

has been diagonalized. Likewise, the conventional ratio
method configures the lower triangle and diagonalizes Û2

(Fig. 9(b)). The remaining phase shifts along the diago-
nal can be set by inspection.

The accuracy of the self-configured meshes is plotted
in Fig. 10. Again, we see that the ratio method suc-
cessfully corrects MZI errors and follows the same re-
lation E =

√
2/3Nσ2 observed for the Reck triangle

(Fig. 10(a)). The direct method can also be used to con-
figure the sub-triangles in Fig. 8(b), but shows poor per-
formance in the large-σ regime where MZI errors cannot

be exactly corrected. The boundary between the exact
and inexact correction regime is the same (Fig. 10(b))
owing to the fact that the MZI splitting angles in Reck
and Clements meshes have the same statistics over the
Haar measure (Sec. 2). Visualizing the matrix imperfec-
tions (Fig. 10(c)) again reveals the harmful cascading of
errors in the direct method, which cause certain parts of
the matrix to be well-configured while other parts are not.
This cascading effect is avoided in the ratio method for
the same reasons applicable to Reck (Sec. 4).

6 Discussion

Component imprecision will limit practical performance
as multiport interferometers grow larger—barring a
breakthrough in fabrication accuracy, some form of self-
calibration or error correction will need to be employed.
In this paper, we have presented a method based on power
ratios that can operate without any internal detectors or
knowledge of the component imperfections. This algo-
rithm is applicable to any triangular mesh, but can be
extended to rectangular meshes by adding a single diag-
onal of drop ports, a small amount of additional com-
plexity as the mesh size grows large. The accuracy of
our algorithm is guaranteed by the algorithmic stability
of unitary matrix diagonalization, and follows the asymp-
totic form Ecorr ∝ Nσ2 over the Haar measure with in-
dependent Gaussian component errors. Employing this
algorithm suppresses matrix errors by a quadratic factor:
Ecorr = E2/

√
6, allowing MZI meshes to scale to large sizes

(N > 64) without unreasonable demands on fabrication
tolerance.

Two limitations to our algorithm merit future work.
First, it relies heavily on unitarity and will fail to cor-
rect non-unitary errors. Non-unitary mesh architec-
tures and calibration are important topics for future
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study, as many ultra-compact or energy-efficient compo-
nent designs [29, 37–39] involve some loss (often phase-
dependent). Second, the algorithm will only be effective
if uncorrected errors are reasonably small to begin with.
For large enough meshes (N & 1/σ2), E ∼ 1 and errors
will be uncorrectable. This may lead to a fundamental
limit on size, closely tied to the transition between ballis-
tic and diffusive transport of light [20]. For such extreme
sizes, entirely new crossing designs [21] or mesh architec-
tures [25–28, 40] may be required.
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A Correlated Errors

In this paper, we have assumed an uncorrelated error
model, where αn and βn are independent random vari-
ables sampled from a zero-mean Gaussian with standard
deviation σ. In practice, the fabrication imperfections
that lead to splitter errors have a long correlation length,
so errors will be strongly correlated. In this section, we
show that:

1. Averaged over the Haar measure, inter-MZI correla-
tions cancel out. Therefore, only correlations within
each MZI (i.e. between αn and βn) need be consid-
ered.

2. For most unitaries, the effect of the symmetric error
αn + βn is dominant.

The error metric Eq. (3) can be expanded to second order,
accounting for all correlations:

E2 =
1

N

∑
mn

(〈 ∂U

∂αm

∣∣∣ ∂U
∂αn

〉
〈αmαn〉+

〈 ∂U

∂αm

∣∣∣ ∂U
∂βn

〉
〈αmβn〉

+
〈 ∂U
∂βm

∣∣∣ ∂U
∂αn

〉
〈βmαn〉+

〈 ∂U
∂βm

∣∣∣ ∂U
∂βn

〉
〈βmβn〉

)
(29)

with the matrix inner product 〈V |W 〉 = tr(V †W ).

Correlations can be classified into two types: intra-MZI
and inter-MZI (Fig. 11(a)). We first show that, averaged
over the Haar measure, inter-MZI correlations are zero or
at least very small. Consider an arbitrary inter-MZI pair
of splitters (p ∈ {αm, βm}, q ∈ {αn, βn}). The unitary
takes the form:

U = UpostS(π4 +q)Uq

[
eiφ 0
0 1

]
Uint

[
1 0

0 eiφ
′

]
UpS(π4 +p)Upre

+ P (p) +Q(q) (30)

where S is the symmetric splitter matrix (Eq. (2))

S(ψ) = eiψσx =

[
cosψ i sinψ
i sinψ cosψ

]
S′(ψ) = iS(ψ)σx = iσxS(ψ) (31)

and σx = [[0, 1], [1, 0]] is the Pauli matrix.

The terms P (p) and Q(q) in Eq. (30) correspond to paths
of light that pass through at most one splitter. These are
mutually orthogonal and do not contribute to the cor-
relation in Eq. (29). Error correlations only arise from
the first term, corresponding to paths of light that pass
through both splitters p and q. The resulting inner prod-
uct is independent of Upre and Upost and takes the form
(at p = q = 0):〈∂U
∂p

∣∣∣∂U
∂q

〉
=
〈
S(π4 )Uq

[
eiφ 0
0 1

]
Uint

[
1 0

0 eiφ
′

]
UpS(π4 )σx

∣∣∣∣∣∣σxS(π4 )Uq

[
eiφ 0
0 1

]
Uint

[
1 0

0 eiφ
′

]
UpS(π4 )

〉
(32)
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Figure 11: (a) Intra- and inter-MZI beamsplitter error corre-
lations. (b) Four inter-MZI correlation types.
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In general, this quantity is nonzero. However, the phases
(φ, φ′) are uniformly distributed over [0, 2π) for Haar-
random unitaries. Therefore, in the ensemble average
over the Haar measure, the phase-dependent terms in
Eq. (32) cancel out. This means that each path from
splitter p to q, which has a separate phase dependence,
can be considered separately in the inner product. Con-
sider the path from output i ∈ {1, 2} to input j ∈ {1, 2}
(i = j = 1 shown in Fig. 11(b)). Focusing on a single
path, we can ignore (φ, φ′) and replace Uint → êj ê

T
i :〈∂U

∂p

∣∣∣∂U
∂q

〉
ij
∝
〈
S(π4 )Uq êj ê

T
i UpS(π4 )σx

∣∣∣∣σxS(π4 )Uq êj ê
T
i UpS(π4 )

〉
= (êTj U

†
qσUq êj)(ê

T
i UpσU

†
p êi) (33)

There are four cases to be considered (Fig. 11(b)). If p
is directly adjacent to the connecting path (cases I-II),
then Up is the identity and êTi UpσU

†
p êi = êTi σêi = 0.

Likewise, if q is adjacent to the path (cases I and III),
êTj U

†
qσUq êj = 0. Only in case IV does Eq. (33) lead to a

nontrivial inner product:〈∂U
∂p

∣∣∣∂U
∂q

〉
ij
∝ sin(θm) sin(θn) (34)

This is very small for the majority of MZIs, where the
splitter angles (θm, θn) cluster tightly around zero. More-
over, while it is always possible to find a matrix decompo-
sition with only positive θ (e.g. distribution of Eqs. (10-
11)), one can also sample from the Haar measure employ-
ing both positive and negative θ with equal probability; in
this case, under the ensemble average, Eq. (34) vanishes
and all inter-MZI correlations are zero.

On the other hand, correlations within an MZI, i.e. be-
tween αn and βn, always matter. The matrix error of a
single MZI is:

‖∆U‖2 = 2
[
〈α2
n〉+ 〈β2

n〉+ 2 cos(θn)〈αnβn〉
]

= 2
[
cos2(θn/2)〈(αn + βn)2〉
+ sin2(θn/2)〈(αn − βn)2〉

]
(35)

For the large majority of MZIs, θn ≈ 0 and the symmetric
error dominates ‖∆U‖2. The normalized error for the
whole mesh is approximately:

E ≈
√
N〈(α+ β)〉rms (36)

which in the case of uncorrelated (α, β) reduces to the
form derived in the main text: E =

√
2N σ.

For completeness, we now consider the case of fully cor-
related splitter errors, i.e. αn = βn = µ, where µ is a
constant. Systematic effects such as imperfect coupler
design or fabrication errors with long correlation length
will lead to this situation, as will operating the mesh away
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Figure 12: Correlated errors: unsatisfied MZI fraction nsat

and matrix error E as a function of splitter error µ. N = 128
Reck mesh.

from the coupler design wavelength. The uncorrected er-
ror amplitude is (compare Eq. (6)):

E = 2
√
Nµ (37)

Following the analysis of Eq. (10-13), the coverage of uni-
tary space is found to be (compare Eq. (13)):

cov(N) = e−(2/3)N
3µ2

(38)

Finally, in the presence of error correction, the matrix
error becomes (compare Eqs. (15, 23)):

Ecorr =
√

8/9Nµ2 =
1√
18
E2 (39)

Eqs. (37-39) are plotted against numerical data in Fig. 12.

B Time and Computational Cost

Many programming algorithms for photonic meshes have
been reported in the literature. Table 1 summarizes sev-
eral leading approaches, evaluated in terms of their gen-
erality (applicable mesh types) and time / computational
cost. While this list does not claim to be exhaustive,
it provides a representative sample and sheds light onto
the limitations and tradeoffs of past approaches, where
to date all optimization schemes require either (1) accu-
rate pre-calibration of the hardware errors, or (2) O(N2)
internal photodetectors used to monitor power at inter-
mediate points on the mesh. Unique among its peers,
our algorithm lacks both requirements, allowing its use
on uncalibrated “zero-change” photonic hardware and re-
quiring coherent control / measurement only over inputs
and outputs.

Moreover, our algorithm is competitive in terms of com-
putational resources. The required resources of an al-
gorithm depend on whether it is performed in situ (for
correction of unknown errors) or in silico (for known, cal-
ibrated errors). For in-situ algorithms, the number of
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Mesh∗ MVMs CFLOPs Caveats†

Progressive [22, 23] R N2 N3 (D)
RELLIM [24, 35] R C N–N2 N3 (D)
In-situ [17] R C NT N3T (D)
SGD [20] R C BT N2BT (C)
Numerical [19, 43] R C NT N3T (C)
Local [30] R C – N2 (C)
Direct (this R N2 N3 (S)
Ratio work) R N2 N3

Table 1: Comparison of a representative sample of optimization algorithms. Scaling of computational cost plotted for in-situ
resources (number of MVM calls), and in-silico resources (CFLOPs), where N is the mesh size, T is the number of optimization
steps, and B is the SGD batch size. ∗Mesh types: (R)eck, (C)lements. †Caveats include (D) requires internal detectors, (C)
requires pre-calibration of errors, (S) stability issues in presence of errors.
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Figure 13: Convergence of L-BFGS-B for an imperfect Reck
mesh (σ = 0.02), minimizing the L2 norm. The convergence
curve depends on the initial solution, and is compared with
the result from self-configuration. (a) Plot in terms of in-situ
MVMs to solution. (b) In-silico CFLOPs to solution.

matrix-vector multiplication (MVM) calls is most rele-
vant. The ratio method takes approximately 3N2 calls
(2 to obtain vector a, 4 calls to optimize (θ, φ) per MZI),
which is comparable to progressive self-configuration and
the initial RELLIM proposal [22–24] (although RELLIM
with internal detectors can run in parallel in O(N) time
[35]). The direct method can be performed with 2N2

calls since the vector a does not need to be measured.
On the other hand, numerical optimization with T time
steps takes 3NT calls (three calls per step, first to esti-

mate U , next to back-propagate U − Û , and finally one
forward-pass step to compute the gradient with respect to
phase shifts [17]). Fig. 13(a) shows the convergence of a
64×64 Reck mesh in terms of MVMs under the L-BFGS-
B algorithm. Convergence depends strongly on the mesh
initialization [20]. Initializing to Haar-random unitaries is
a significant improvement over random phase shifts, since
a mesh with random phase shifts has a banded structure
that leads to vanishing gradients with respect to matrix
elements far from the diagonal. Even with Haar initial-
ization, the algorithm takes thousands of steps and mil-
lions of MVMs to converge to the accuracy Ec reached
by our algorithm. Initializing to the phases of an ideal
(error-free) Reck mesh helps considerably, but optimiza-
tion still takes 5× more calls. Stochastic gradient descent
(SGD) has been proposed as a solution to speed up the
optimization, since a batch of B < N columns is used
rather than the whole matrix; however, one observes a
tradeoff between batch size and iteration count, so the
overall resource requirement is higher [20].

Fig. 13(b) shows the performance gap with respect to
the in-silico case, where accurate calibration of the er-
rors (α, β) allows the phases (θ, φ) to be computed nu-
merically. Here, optimization protocols require O(N3)
complex FLOPs (CFLOPs), equivalent to one matrix-
matrix multiplication per time step, leading to a scaling of
N3T (SGD scales as N2BT ). The ratio method requires
approximately N2/2 Givens rotations to Upost with 4N
CFLOPs each, for a total of 2N3 CFLOPs, and thus runs
about 102× faster (the direct method is similarly fast).
As before, numerical optimization can still be somewhat
helpful as a means for further refinement of the solution.

However, for in silico optimization, the local correction
method [30] is superior, as it takes only N2 CFLOPs and
is parallelizable to N time steps.
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[5] D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson,
A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich,
and J. Capmany, “Multipurpose silicon photon-
ics signal processor core,” Nature Communications,
vol. 8, no. 1, pp. 1–9, 2017.

[6] J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret,
and S. Sales, “Microwave photonic signal process-
ing,” Journal of Lightwave Technology, vol. 31, no. 4,
pp. 571–586, 2012.

[7] Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu,
T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao,
H. Larochelle, D. Englund et al., “Deep learning with
coherent nanophotonic circuits,” Nature Photonics,
vol. 11, no. 7, p. 441, 2017.

[8] A. N. Tait, T. F. De Lima, E. Zhou, A. X. Wu, M. A.
Nahmias, B. J. Shastri, and P. R. Prucnal, “Neu-
romorphic photonic networks using silicon photonic
weight banks,” Scientific Reports, vol. 7, no. 1, pp.
1–10, 2017.

[9] R. Hamerly, L. Bernstein, A. Sludds, M. Soljačić,
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